“Control Theory” - Exercise #2

E2.8, E2.9, E2.10, E2.14, E2.15, P2.18, P2.32, P2.34

Exercises

The input r(t) represents the desired position of the
laser beam.
(a) If r(r) is a unit step input, find the output y(r).
(b) What is the final value of y(¢)?
Answer: (a) v(r) = 1 — 0.125¢ % — 1.125¢ 10,
() yss =1

E25 A noninverting amplifier uses an op-amp as shown
in Fig. E2.5. Assume an ideal op-amp model and de-
termine vy/v,,.
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Answer: i ('1 += —)
’ Vin . RE

FIGURE E2.5 A noninverting amplifier using an op-amp.

E26 A nonlinear device is represented by the function

y=fm)=x"
where the operating point for the input x is x, = 1/2. De-
termine the linear approximation in the form of Eq. (2.9).

Answer: Ay = Ax/ Y]

E2.7 A lamp’s intensity stays constant when monitored by
an optotransistor-controlled feedback loop. When the
voltage drops, the lamp’s output also drops, and opto-
transistor Q; draws less current. As a result, a power
transistor conducts more heavily and charges a capac-
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itor more rapidly |25]. The capacitor voltage controls
the lamp voltage directly. A flow diagram of the system
is shown in Fig. E2.7. Find the closed-loop transfer func-
tion, /(s)/R(s) where /(s) is the lamp intensity, and R(s)
is the command or desired level of light.
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FIGURE E2.7 Lamp controller.

E2.8 A control engineer, N. Minorsky, designed an inno-

vative ship steering system in the 1930s for the U.S.
Navy. The system is represented by the signal-flow
graph shown in Fig. E2.8 where ¥(s) is the ship’s course,
R(s) is the desired course, and A(s) is the rudder angle
[17]. Find the transfer function Y(s)/R(s).
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Ship steering
system.
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E2.9 A four-wheel antilock automeobile braking system
uses electronic feedback to control automatically the
brake force on each wheel [16]. A simplified flow graph
of a brake control system is shown in Fig. E2.9, where
F;(s) and Fp(s) are the braking force of the front and
rear wheels, respectively, and R(s) is the desired auto-
mobile response on an icy road. Find F(s)/R(s).

—Hely D) Fals)

FIGURE E2.9 Brake control system.

E2.10  One of the most potentially benelicial applications
of automotive control systems is the active control of
the suspension system. One feedback control system
uses a shock absorber consisting of a cylinder filled with
a compressible fluid that provides both spring and
damping forces [18]. The cylinder has a plunger acti-
vated by a gear motor, a displacement-measuring sen-
sor, and a piston. Spring force is generated by piston
displacement, which compresses the fluid. During pis-
ton displacement, the pressure imbalance across the
piston is used to control damping. The plunger varies
the internal volume of the cylinder. This feedback
system is shown in Fig. E2.10. Develop a lincar model
for this device using a block diagram model.
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FIGURE E2.10 Shock absorber.
E2.11 A spring exhibits a force-versus-displacement char-
acteristic as shown in Fig. E2.11. For small deviations

from the operating point, find the spring constant when
x,i8 (a) — L4, (b} 0,(c) 3.5.
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FIGURE E2.11 Spring characteristic.
E2.12 Off-road vehicles experience many disturbance in-

puts as they traverse over rough roads. An active sus-
pension system can be controlled by a sensor that looks
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Active suspension horizontal
system.
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FIGURE E2.13
Multivariable | Hoy(s) e
system.

“ahead” at the road conditions. An example of a simple
suspension system that can accommodate the bumps is
shown in Fig. E2.12. Find the appropriate gain K| so
that the vehicle does not bounce when the desired de-
flection is R(s) =0 and the disturbance is D(s).

Answer: KK, =1
E2.13 Find the transfer function
¥i(s)
Ry(s)

for the multivariable system in Fig. E2.13.

E2.14 Obtain the differential equations in terms of i; and
i for the circuit in Fig. E2.14.
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FIGURE E2.14 Electric circuit.

E2.15 The position control system for a spacecratt plat-
form is governed by the following equations:

d*p dp
—+t2—+4p=48
dr* di =
¥ ==
dg
E — 0.6112
My — 7V1

The variables involved are as follows:
r(t) = desired platform position
p(t) = actual platform position
r((t) = amplifier input voltage
v,(tr) = amplifier output voltage
(1) = motor shaft position
Sketch a signal-flow diagram of the system, identifying

the component parts and their transmittances; then de-
termine the system transfer function P(s)/R(s).

E2.16 A spring used in an auto shock absorber develops a
force, f, represented by the relation

f: kxda

where x is the displacement of the spring. Determine a
linear model for the spring when x, = 1.

E2.17 'The output, y, and input, x, of a device are related by

y=x+ 079

(a) Find the values of the output for steady-state oper-
ation at the two operating points x, = 1 and x, = 2.
(b) Obtain a linearized model for both operating points
and compare them.

E2.18 The transfer function of a system is

Y(s)  10(s +2)

R(s) '+ 8s+15 ‘
Determine y(¢) when r(¢) is a unit step input.
Answer: y(1) =133+ 1.67¢ " =3¢ 1 =0

E2.19 Determine the transfer function V(s)/V(s) of the
operational amplifier circuit shown in Fig. E2.19. As-
sume an ideal operational amplifier. Determine the
transfer function when £, = R, = 100 k), C, = 10 uf]
and C; =5 uF.
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P2.14 A rotating load is connected to a field-controlled
de electric motor through a gear system. The motor is
assumed to be linear. A test results in the output
load reaching a speed of 1 rad/s within Eﬁ s when a

constant 80 V is applied to the motor terminals. The

output steady-state speed is 2.4 rad/s. Determine the
transfer function of the motor, 8(s)/V,(s) in rad/V. The
inductance of the field may be assumed to be negligi-
ble (see Fig. 2.17). Also, note that the application of

80 V to the motor terminals is a step input of 80 V in

magnitude.

P2.15 Consider the mass-spring system depicted in Fig.
P2.15. Determine a differential equation to describe
the motion of the mass, m. Obtain the system response
to an initial displacement x(0) = 1. Assume motion only
in the vertical plane.

f\@ pEEEEE = 93"@@&&’&-5@8&5“@-,v»;&"‘?'.:éal

FIGURE P2.15 Suspended mass-spring system.

P2.16 Obtain a signal-flow graph to represent the follow-
ing set of algebraic equations where x; and x, are to be
considered the dependent variables and 6 and 11 are
the inputs:

x+1.5x,=06, 2x; +4x, =11

Determine the value of each dependent variable by
using the gain formula. After solving for x, by Mason’s
signal-flow gain formula, verify the solution by using
Cramer’s rule.

P2.17 A mechanical system is shown in Fig. P2.17, which is
subjected to a known displacement x;(¢) with respect
to the reference. (a) Determine the two independent
equations of motion. (b) Obtain the equations of
motion in terms of the Laplace transform, assuming
that the initial conditions are zero. (¢) Sketch a signal-
flow graph representing the system of equations.
(d) Obtain the relationship between X,(s) and X5(s),
T13(s), by using Mason’s signal-flow gain formula.
Compare the work necessary (o obtain T,5(s) by ma-
trix methods to that using Mason’s signal-flow gain
formula.
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FIGURE P2.17 Mechanical system.

P2.18 An LC ladder network is shown in Fig. P2.18. One
may write the equations describing the network as fol-
lows:

11 = (V\ - Vu)ylt
[”: (vu_ VZ)Y%

vu = (]l . ‘fu)z?,a
VQ: [{‘24.

Construct a flow graph [rom the equations and deter-
mine the transfer function V,($)/V,(s).

FIGURE P2.18 LC Ladder network.

P2.19 A voltage follower (buffer amplifier) is shown in
Figure P2.19. Show that 7= vy/v,,= 1. Assume an ideal
op-amp.
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FIGURE P2.19 A buffer amplifier.
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system.

sired cable speed is 50 m/sec. Develop a digital com-
puter simulation of this system and obtain the response
of the speed over 20 seconds for the three values of gain
K=10.2,0.4.and 0.6. The reel angular velocity @ = df/dt
is equal to 1/1 times the integral of the torque. Note that
the inertia changes with time as the reel is unwound.
However, an equation for / within the simulation will
account for this change. Select the gain K to limit the
overshoot to less than 9% and yet attain the fastest re-
sponse. Assume W=2.0,D=0.1,and R=35at¢=0.

P2.32 An interacting control system with two inputs and
two outputs is shown in Fig. P2.32. Solve for Y, (s)/R,(s)
and Y5(s)/R,(s), when R, = 0.
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FIGURE P2.32 Interacting system.

G (s)

P2.33 A system consists of two electric motors that are

coupled by a continuous flexible belt. The belt also pass-
es over a swinging arm that is instrumented to allow
measurement of the belt speed and tension. The basic
control problem is to regulate the belt speed and ten-
sion by varying the motor torques.

An example of a practical system similar to that
shown occurs in textile fiber manufacturing processes
when yarn is wound from one spool to another at high
speed. Between the two spools the yarn is processed in
a way that may require the yarn speed and tension to
be controlled to within defined limits. A model of the
system is shown in Fig. P2.33. Find Y,(s)/R,(s). Deter-
mine a relationship for the system that will make Y, in-
dependent of R,.

P2.34 Find the transfer function for Y(s)/R(s) for the idle

speed control system for a fuel injected engine as shown
in Fig. P2.34.

P2.35 The suspension system [or one wheel of an old-

fashioned pickup truck is illustrated in Fig. P2.35. The
mass of the vehicle is m; and the mass of the wheel is
m,. The suspension spring has a spring constant k,, and
the tire has a spring constant k. The damping constant
of the shock absorber is b. Obtain the transfer function
Y,(8)/X(s), which represents the vehicle response to
bumps in the road.
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FIGURE P2.33 control
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