“Control Theory” - Solution #2

E2.8, E2.9, E2.10, E2.14, E2.15, P2.18, P2.32, P2.34
E2.8 The block diagram is shown in Figure E2.8.
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FIGURE E2.8
Block diagram model.
Starting at the output we obtain

Y(s) = lZ(s) = le(s)A(s).
s Ry
But A(s) = G1(s) [ Ha(5)Z(s) — H3(s)A(s) + W(s)] and Z(s) = sY (s), sO
1
Y(s) = —G1(s)G2(s)Ha(s)Y (s) — G1(s) H3(s)Y (s) + ;GI(S)GZ(S)W(S)-

Substituting W (s) = K E(s) — Hy(s)Z(s) into the above equation yields

Y(s) = —=G1(5)G2(s)Ha(s)Y (s) — G1(s)H3(s)Y (5)
. 1 '
+ ;Gl (5)Ga(s) [KE(s) = Hy(s)Z(s5)]
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and with E(s) = R(s) — Y (s) and Z(s) = sY (s) this reduces to
Y (s) = [—=G1(s)G2(s) (H2(s) + Hi(s)) — G1(s)H3(s)
- %Gl(s)Gg(S)K]Y(S) + %Gl(S)Gz(S)KR(S).
Solving for Y (s) yields the transfer function
Y(s) =T(s)R(s),

where

KG1(s)Ga(s)/s
14+ G1(5)G2(s) [(Hz(s) + H1(s)] + G1(s)H3(s) + KG1(s)G2(s) /s

T{s)=

The transfer function is

Fy(s) 2 G1(s)Ga(s)
R(s) 1—Ly(s)—La(s)

where

Li(s) = —G1(s)G2(s)Hi(s) (loopl)

Ly(s) = —G1(s)G3(s)Hz(s) (loop2).
The shock absorber block diagram is shown in Figure E2.10. The closed-loop
transfer function model is
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Shock absorber block diagram.



24 CHAPTER 2 Mathematical Models of Systems

F

Hy(s)

Ry(s) — Gi(s) J-’(P—‘ Gy(s) |+ Gs(s) > Yy(s)
+ +

Gaf(s) Gy(s) Gof(s)

+ /
Ro(s) ——| Gy |2 Gs(s) o Gy(s) — ¥y(s)

=
=
2,

A

FIGURE E2.13
Block diagram model.

or
[1+ Gs(s)Hz2(s)] W(s) = Gs5(s)Ga(s)Rz(s).
Substituting the expression for W (s) into the above equation for Y; (s) yields

Yi(s) _ G2(5)G3(5)G4(5)Gs(5)Gg(s) + G3(5)G4(s)Gs(s)Go(s)
Ra(s) 14 G3(s)Hi(s) + Gs(s)Ha(s) + G3(s)Gs(s) Hi(s)Ha(s)

E2.14 Forloop 1, we have

di
Ryiy + Lli + == f(ll —i2)dt + Ry(iy — ip) = v(2) .
And for loop 2, we have
dip
idt + LZ“— + Ra(ip — i)+ — f(lz —iydt =
Cz dt
E2.15 The transfer function from R(s) to P(s) is
P(s) 4.2

R(s) s342524+4s+42°
The corresponding signal flow graph is shown in Figure E2.15 for

42
34252 +45+42°

P(s)/R(s) =



P2.18 The signal flow graph is shown in Figure P2.18.
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Signal flow graph.



P232 The signal flow graph shows three loops:
Ly =-G,1G:H;
Ly = GsGgHy

P2.33

P2.34

L3 = G3G4GgH>
L, and L are nontouching, so
A=1—(L1+Ly+ L3+ (L1Ly).

(a) For Y;/R;, L, does not touch the path, so

Ay=1-1L,,
and
Yl L G1G261
Ry A
(b) For Y;/R;, the path touchs all loops, so
ﬁ _ G1G4Gs
oot e

The signal flow graph shows three loops:

L =—-G1G3G4H,
Ly = —-G2GsGeH,
Ly = —H1GsGsG2G7G4H G .

The transfer function Y>/R; is found to be

Ya(s) 2 G1G3GeA1 — G2Gs5GeA2
Ri(s) 1—(Li+Ly+L3)+ILiLy)’

where for path 1
Ap=1
and forpathz ,
| Ay=1-1L;.

Since we want Y to be independent of R;, we need Y>/R; = 0. Therefore, we
require
G1GsGe — G2Gs5Ge(1 + G1G3G4Hy) = 0.

The closed-loop transfer function is

Y(s) _ , G3(s)G1(s)(G2(s) + K5Ke)
R(s) 11— G3(s)(Hi(s) + Ke) + G3(s)G1(5)(G2(s) + K5Ke) (Ha(s) + K4)




