## "Control Theory" - Solution #3

E5.2, E5.4, E5.5, E5.7, E5.8, P5.4

#### CHAPTER 5

# The Performance of Feedback Control Systems

### EXERCISES

- E5.1 For a zero steady-state error, when the input is a step we need one integration, or a type 1 system. A type 2 system is required for  $e_{ss} = 0$  for a ramp input.
- E5.2 (a) The closed-loop transfer function is

$$T(s) = \frac{Y(s)}{R(s)} = \frac{G(s)}{1 + G(s)} = \frac{100}{(s+2)(s+5) + 100} = \frac{100}{s^2 + 2\zeta\omega_n s + \omega_n^2}.$$

The steady-state error is given by

$$e_{ss} = \frac{A}{1 + K_p} \,,$$

where R(s) = A/s and

$$K_p = \lim_{s \to 0} G(s) = \frac{100}{10} = 10$$
.

Therefore,

$$e_{ss}=\frac{A}{11}.$$

(b) The closed-loop system is a second-order system with natural frequency

$$\omega_n = \sqrt{110}$$
,

and damping ratio

$$\zeta = \frac{7}{2\sqrt{110}} = 0.334$$
.

Since the steady-state value of the output is 0.909, we must modify the percent overshoot formula which implicitly assumes that the steady-state value is 1. This requires that we scale the formula by 0.909. The percent overshoot is thus computed to be

$$P.O. = 0.909(100e^{-\pi\zeta/\sqrt{1-\zeta^2}}) = 29\%$$
.

E5.3 The closed-loop transfer function is

$$\frac{Y(s)}{I(s)} = \frac{G(s)}{1 + G(s)} = \frac{K}{s(s+14) + K} = \frac{K}{s^2 + 14s + K}.$$

Utilizing Table 5.6 in Dorf & Bishop, we find that the optimum coefficients are given by

$$s^2 + 1.4\omega_n s + \omega_n^2.$$

We have

$$s^2 + 14s + K$$
,

so equating coefficients yields  $\omega_n=10$  and  $K=\omega_n^2=100$ . We can also compute the damping ratio as

$$\zeta = \frac{14}{2\omega_n} = 0.7 \ .$$

Then, using Figure 5.8 in Dorf & Bishop, we find that  $P.O. \approx 5\%$ .

E5.4 (a) The closed-loop transfer function is

$$T(s) = \frac{G(s)}{1 + G(s)} = \frac{2(s+8)}{s^2 + 6s + 16}.$$

(b) We can expand Y(s) in a partial fraction expansion as

$$Y(s) = \frac{2(s+8)}{(s^2+6s+16)} \frac{A}{s} = A\left(\frac{1}{s} - \frac{s+4}{s^2+6s+16}\right).$$

Taking the inverse Laplace transform (using the Laplace transform tables), we find

$$y(t) = A[1 - 1.07e^{-3t}\sin(\sqrt{7}t + 1.21)].$$

(c) Using the closed-loop transfer function, we compute  $\zeta = 0.75$  and  $\omega_n = 4$ . Thus,

$$\frac{a}{\zeta \omega_n} = \frac{8}{3} = 2.67 ,$$

where a=8. From Figure 5.13(a) in Dorf & Bishop, we find (approximately) that P.O.=4%.

- (d) This is a type 1 system, thus the steady-state error is zero and  $y(t) \to A$  as  $t \to \infty$ .
- E5.5 (a) The closed-loop transfer function is

$$T(s) = \frac{Y(s)}{R(s)} = \frac{G(s)}{1 + GH(s)} = \frac{100}{s^2 + 100Ks + 100}$$

where H(s) = 1 + Ks and  $G(s) = 100/s^2$ . The steady-state error is computed as follows:

$$e_{ss} = \lim_{s \to 0} s[R(s) - Y(s)] = \lim_{s \to 0} s[1 - T(s)] \frac{A}{s^2}$$
$$= \lim_{s \to 0} \left[ 1 - \frac{\frac{100}{s^2}}{1 + \frac{100}{s^2}(1 + Ks)} \right] \frac{A}{s} = KA.$$

(b) From the closed-loop transfer function, T(s), we determine that  $\omega_n = 10$  and

$$\zeta = \frac{100K}{2(10)} = 5K \ .$$

We want to choose K so that the system is critically damped, or  $\zeta=1.0$ . Thus,

$$K=\frac{1}{5}=0.20$$
.

The closed-loop system has no zeros and the poles are at

$$s_{1,2} = -50K \pm 10\sqrt{25K^2 - 1} \ .$$

The percent overshoot to a step input is

$$P.O. = 100e^{\frac{-5\pi K}{\sqrt{1-25K^2}}}$$
 for  $0 < K < 0.2$ 

and P.O. = 0 for K > 0.2.

E5.6 The closed-loop transfer function is

$$T(s) = \frac{Y(s)}{R(s)} = \frac{KG(s)}{1 + KG(s)} = \frac{K(s+2)}{s(s+1) + K(s+2)} = \frac{K(s+2)}{s^2 + s(K+1) + 2K}.$$

Therefore,  $\omega_n = \sqrt{2K}$  and  $\zeta = \frac{K+1}{2\sqrt{2K}}$ . So,

$$\frac{a}{\zeta \omega_n} = \frac{4}{K+1} \ .$$

From Figure 5.13a in Dorf & Bishop, we determine that

$$\frac{a}{\zeta \omega_n} \approx 1.5$$

when  $\zeta = 0.707$ . Thus, solving for K yields

$$\frac{4}{K+1} = 1.5$$

or

$$K = 1.67$$
.

E5.7 The pole-zero map is shown in Figure E5.7. Since the dominant poles are real, you do not expect to have a large overshoot, as shown in Figure E5.7b.



FIGURE E5.7
(a) Pole-zero map.



FIGURE E5.7 CONTINUED: (b) Unit step response.

### E5.8 (a) The closed-loop transfer function is

$$T(s) = \frac{K}{s^2 + \sqrt{2K}s + K}.$$

The damping ratio is

$$\zeta = \frac{\sqrt{2}}{2}$$

and the natural frequency is  $\omega_n = \sqrt{K}$ . Therefore, we compute the percent overshoot to be

$$P.O. = 100e^{-\pi\zeta/\sqrt{1-\zeta^2}} = 4.3\%$$

for  $\zeta = 0.707$ . The settling time is estimated via

$$T_s = \frac{4}{\zeta \omega_n} = \frac{8}{\sqrt{2K}} .$$

(b) The settling time is less than 1 second whenever K > 32.

$$R(s) = \frac{1}{s^3} \,,$$

we compute the steady-state error as

$$e_{ss} = \lim_{s \to 0} s \left( \frac{1}{1 + G(s)} \right) \frac{1}{s^3} = \lim_{s \to 0} \left( \frac{1}{s^2 G(s)} \right) = \lim_{s \to 0} \left( \frac{1}{s^2 \left( \frac{K}{s^2} \right)} \right) = \frac{1}{K} .$$

Since we require that  $e_{ss} \leq 0.5$  cm, we determine

$$K \geq 2$$
.

P5.4 (a) The closed-loop transfer function is

$$T(s) = \frac{G(s)}{1 + G(s)} = \frac{K}{s^2 + 2s + K} = \frac{\omega_n^2}{s^2 + 2\zeta \,\omega_n s + \omega_n^2}.$$

Thus,

$$\omega_n = \sqrt{K}$$
 and  $\zeta = 1/\omega_n = 1/\sqrt{K}$ .

Our percent overshoot requirement of 5% implies that  $\zeta = 1/\sqrt{2}$ , which in turn implies that  $\omega_n = \sqrt{2}$ . However, the corresponding time to peak would be

$$T_p = \frac{4.4}{\sqrt{2}} = 3.15$$
.

Our desired  $T_p = 1.1$ —we cannot meet both specification simultaneously.

(b) Let  $T_p=1.1\Delta$  and  $P.O.=0.05\Delta$ , where  $\Delta$  is the relaxation factor to be determined. We have that  $K=\omega_n^2$  and  $\zeta\omega_n=1$ , so

$$\zeta = \frac{1}{\sqrt{K}}.$$

Thus,

$$P.O. = e^{-\pi \zeta/\sqrt{1-\zeta^2}} = e^{-\pi/\sqrt{K-1}}$$

Also,

$$T_p = \frac{\pi}{\sqrt{K-1}} = 1.1\Delta .$$

Therefore, from the proceeding two equations we determine that

$$P.O. = 0.05\Delta = e^{-1.1\Delta}$$
.

Solving for  $\Delta$  yields

$$f(\Delta) = \ln \Delta + \ln(0.05) + 1.1\Delta = 0$$
.

The plot of  $f(\Delta)$  versus  $\Delta$  is shown in Figure P5.4. From the plot we see



FIGURE P5.4 Solving for the zeros of f.

that  $\Delta = 2.07$  results in  $f(\Delta) = 0$ . Thus,

$$P.O. = 0.05\Delta = 10\%$$
  
 $T_p = 1.1\Delta = 2.3 \text{ sec.}$ 

So, we can meet the specifications if they are relaxed by a factor of about 2 (i.e.  $\Delta = 2.07$ ).