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The Performance of Feedback
Control Systems

EXERCISES

E5.1 For a zero steady-state error, when the input is a step we need one integration, or
atype 1 system. A type 2 system is required for e;; = 0 for a ramp input.

E5.2 (a) The closed-loop transfer function is
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The steady-state error is given by
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where R(s) = A/s and
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(b) The closed-loop system is a second-order system with natural frequency
wn, = /110,
and damping ratio
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Since the steady-state value of the output is 0.909, we must modify the per-
cent overshoot formula which implicitly assumes that the steady-state value
is 1. This requires that we scale the formula by 0.909. The percent overshoot
is thus computed to be

P.O. = 0.909(100e~¢/v178%) = 29% .

The closed-loop transfer function is
Ys)  GGs)  _ K 3 K
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Utilizing Table 5.6 in Dorf & Bishop, we find that the optimum coefficients are
given by

5% + LAwys + oF .
We have
s2+14s+ K,

so equating coefficients yields w, = 10and K = w? = 100 . We can also
compute the damping ratio as
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Then, using Figure 5.8 in Dorf & Bishop, we find that P. 0.~ 5%.

(a) The closed-loop transfer function is

G(s) _ 2(s+8)
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T(s) =

(b) We can expand Y (s) in a partial fraction expansion as
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Taking the inverse Laplace transform (using the Laplace transform tables),
we find

y() = A[1 — 1.07¢"* sin(v/7t + 1.21)] .

(c) Using the closed-loop transfer function, we compute { = 0.75 and w, = 4.
Thus,
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where ¢ = 8. From Figure 5.13(a) in Dorf & Bishop, we find (approxi-
mately) that P.O. =4% .

(d) This is a type 1 system, thus the steady-state error is zero and y(f) — A as
t — oo.

E5.5 (a) The closed-loop transfer function is

Y(s) = G(s) o 100
R(s) 1+ GH(s) s2+100Ks+ 100"

T(s)=

where H(s) = 1+ Ks and G(s) = 100/s%. The steady-state error is com-
puted as follows:

ey = Ei%s[R(s) — Y(;)] = sli_r:(l)s[l = T(s)]%
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(b) From the closed-loop transfer function, T (s), we determine that w, = 10
and .
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We want to choose K so that the system is critically damped, or { = 1.0.
Thus,

K ===0.20.

A =

The closed-loop system has no zeros and the poles are at

s12 = —50K £ 10v/25K2 - 1.

The percent overshoot to a step input is

4.4

P.O.=100ev1-2x%2 for 0< K <0.2

and P.O.=0for X > 0.2.
E5.6 The closed-loop transfer function is

_Y(s) _ KG(s) _ K(s+2) _ K(s+2)
~RG) 1+KG(s) sG+D+EKGE+2) s2+sK+1D)+2K°

T(s)
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Therefore, w, = ~/2K and { = 2" £l So;
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From Figure 5.13a in Dorf & Bishop, we determine that

a
{wn

~ 1.5

when ¢ = 0.707. Thus, solving for X yields

4
— =15
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or
E=1%].

The pole-zero map is shown in Figure E5.7. Since the dominant poles are real,
you do not expect to have a large overshoot, as shown in Figure E5.7b.
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(a) Pole-zero map.
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CONTINUED: (b) Unit step response.

E5.8 (a) The closed-loop transfer function is

K
T(s) = - .
o s2++2Ks+ K
The damping ratio is
2
¢= 2

and the natural frequency is w, = +/K. Therefore, we compute the percent
overshoot to be

P.O. =100V — 439

for ¢ = 0.707. The settling time is estimated via
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(b) The settling time is less than 1 second whenever K > 32.




P53 Given the input
1
R (S) = ;3 ’
we compute the steady-state error as
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Since we require that e;; < 0.5 cm, we determine

K=>2.
P5.4 (a) The closed-loop transfer function is

_ Gk kK w;
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Thus,
wp =+EK and ¢=1/w,=1/VK.

Our perccnt overshoot requirement of 5% implies that ¢ = 1/+/2 , which in
turn implies that w, = /2. However, the corresponding time to peak would
be

4.4
Tp = —k = 3-15 .

72

Our desired 7, = 1.1—we éannot meet both specification simultaneously.

(b) LetT, = 1.1A and P.O. = 0.05A, where A is the relaxation factor to be
determined. We have that K = 2 and {w, = 1, s0

1

{=—
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Thus,
P.O. = e ™ IN1-8? = g~ IVE-T



Also,
Ty = s = L1A.
K-1

Therefore, from the proceeding two equations we determine that

P.O.=0.05A =¢ 12,

Solving for A yields
f(A) =InA +1n(0.05) +1.1A=0.

The plot of f(A) versus A is shown in Figure P5.4. From the plot we see

f(4)

FIGURE P5.4
Solving for the zeros of .

that A = 2.07 results in f(A) = 0. Thus,

P.0.=0.05A = 10%
T, = 1.1A = 2.3 sec.

So, we can meet the specifications if they are relaxed by a factor of about 2
(i.e. A = 2.07). :



