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SUMMARY

In this paper, an adaptive Kalman "ltering algorithm is developed for use to estimate the reduction of
control e!ectiveness in a closed-loop setting. Control e!ectiveness factors are used to quantify faults entering
control systems through actuators. A set of covariance-dependent forgetting factors is introduced into the
"ltering algorithm. As a result, the change in the control e!ectiveness is accentuated to help achieve a more
accurate estimate more rapidly. A weighted sum-squared bias estimate is de"ned for the change detection.
The state estimate is fed back to achieve the steady-state regulation, while the control e!ectiveness estimate
is used for the on-line tuning of the control law. A stability analysis is performed for the adaptive regulator.
Copyright ( 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Due to the increasing complexity of modern engineering systems, reliability has become an
increasingly important issue. One way to improve reliability is to enhance the fault tolerance of
the systems. Many researchers have focused on the development of methodologies to detect and
isolate faults [1}7], so that measures could be taken to accommodate their e!ects. The prompt
accommodation of certain critical faults is of paramount importance in some applications.
Therefore, the timely identi"cation of a faulty model with su$cient accuracy may be necessary.
The faulty model can then be used in a subsequent e!ort to restructure the system for fault
accommodation. The attempt to achieve the self-repairing feature in #ight control systems [8]



and recent developments on the fault tolerant control [9}12] are examples of the endeavor along
this direction. In Reference [8], the e!ect of impaired control surfaces is measured by the amount
of deviation of control e!ectiveness factors from their normal values. The deviation is estimated
so that the control action in the #ight control system can be adjusted accordingly. The remaining
authority of the impaired surfaces may have to be fully utilized. In this regard, the information
needed is often beyond the reach of many existing fault detection and isolation methods.

With the application of fault tolerant control in mind, the estimation of control e!ectiveness is
formulated in this paper as an augmented state Kalman "lter problem in which control
e!ectiveness factors are modelled as the augmented random bias states. The bias states enter the
original state-space model additively, and therefore preserves the linearity assumed for the
fault-free model. This is a property peculiar to the faults a!ecting the control e!ectiveness. For
historical reasons [13], the term bias will be abused to describe the control e!ectiveness in this
paper whenever convenient. To deal with the fact that abrupt changes in control e!ectiveness
factors are in fact not biases, but step functions of random magnitudes stepping down at random
times, an additive noise term is introduced in the bias state equation, and an individual forgetting
factor [14] is introduced for each e!ectiveness factor estimate. The purpose is to manifest the
change of the e!ectiveness factor in its estimate.

Since the additive noise introduced into the bias evolution equation bears no relation to either
the process noise or the measurement noise in the dynamic system model, the two-stage "ltering
algorithm by Keller and Darouach [15] can be applied with some modi"cation to obtain the bias
estimates. This algorithm takes advantage of the fact that noises enter di!erent equations are
uncorrelated, the augmented state Kalman "lter is decoupled into a modi"ed bias-free state
estimator, an optimal bias estimator, and a set of update equations dealing with the state-bias
coupling. The implication with regard to our control e!ectiveness estimation problem is that the
dimensions of the individual "lters are no greater than the larger dimension between the state
space and the input space. This two-stage "ltering algorithm however, is not designed for tracking
biases that are subject to abrupt changes at random times. We propose to insert forgetting factors
which are neither temporally nor spacially uniform into the decoupled bias estimator to ensure an
e!ective tracking of the changes in the control e!ectiveness factor. A hypothesis test using
weighted sum-squared bias estimates (WSSBE) is proposed to warrant the safety of the system in
case some severe loss of control e!ectiveness has been detected. It also serves to validate the bias
estimates because the estimates are to be used in on-line control law adaptation as soon as they
are obtained.

The above estimation problem was solved "rst in an open-loop setting in Reference [16]. It is
shown in this paper that the same solution applies in the closed-loop setting. A regulator problem
is considered in this paper which uses the state estimates as feedback variables. A version of the
separation principle is invoked to allow a separate regulator design process. As a result the
closed-loop system can be arranged to have the unity rank perturbation structure for which the
mapping theorem [17] can be applied to conclude the stability of the regulator. The control law is
designed to adapt to the change of the control e!ectiveness, and therefore provides fault tolerance.

The paper is organized as follows. In Section 2, the control e!ectiveness estimation is
formulated as an augmented state Kalman "lter problem, and the regulator design as a partial
estimate feedback problem. The estimation solution is presented in the form of the two-stage
Kalman "lter [15]. Section 3 is focused on the modi"cation of the two-stage Kalman "lter so that
changes in the control e!ectiveness factors can be tracked more rapidly. Section 4 discusses the
regulator design issues, in particular, the regulator stability subject to the control e!ectiveness
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estimation error. In Section 5, some simulations are carried out for the estimate of reduction of
control e!ectiveness and the accommodation of the control e!ectiveness loss through the
re-design of the feedback law. Section 6 gives a brief summary of the simulation results, and
a brief discussion of a few related issues.

2. BACKGROUND AND PROBLEM FORMULATION

In this section, a dynamic system subject to the reduction of control e!ectiveness is described by
a linear time-varying discrete state-space model augmented with a bias evolution equation. Then
the state and bias decoupled "ltering algorithm developed by Keller and Darouach [15] is
slightly modi"ed and applied to obtain an adaptive Kalman "lter solution. A further modi"cation
to the algorithm is made in the next section so that the estimate is more responsive to the changes
in the biases. The state estimate is then fed back to regulate the output of the system. The
discussion on the regulator design and stability analysis is deferred to a later section.

Consider a linear discrete model of the form
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or, more compactly,
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Since our ultimate goal is to gain the knowledge of the amount of loss in the control
e!ectiveness so that some adaptive control mechanism can ensue, estimates in a recursive form
are most desirable. In the absence of the knowledge on the evolution of the e!ectiveness factors,
a description in the form of a random bias with a large additive noise covariance is appropriate.
Thus

c
k`1
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k
#wc

k
(6)

The covariance for c
0

should be small because the e!ectiveness factors are assumed to start at the
normal values ("0), and the additive noise covariance should be large so that the monotonous
evolution of the bias state will largely be disregarded in the estimates. On the other hand, the
constant nature of the bias state, whenever it holds true, can help reduce the steady-state
estimation error if the covariance of the additive noise is su$ciently small. Therefore,
the covariance of wc

k
can play a signi"cant role as a design parameter in trading o! between the

convergence speed and the steady-state accuracy for the faulty parameter estimation. Since there
is no a priori information on the times when the e!ectiveness factors change, the noise covariance
is set to be time invariant and diagonal. When information is available with regard to the
probability of fault occurrence in each control channel, the corresponding variance in the additive
noise covariance matrix should be assigned proportionally. Further discussion on this covariance
as a design parameter is given in the next section in relation to the design of forgetting factors.

Thus the bias augmented model has the following form:
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where Qx'0, Qc'0, R'0 and d
kj

is the Kronecker delta. The initial states x
0

and c
0

are
assumed to be uncorrelated with the white noise processes wx

k
, wc

k
, and v

k
.

The minimum variance solution is obtained by a direct application of the two-stage Kalman
"lter algorithm [15], with constant coe$cient matrices in Reference [15] replaced by time-
varying matrices.
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Optimal bias estimator
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where the "lter residual and its covariance are given as
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And "nally the compensated state and error covariance estimates
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This last state estimate, instead of that given in (15), is the correct state estimate. It is used as the
feedback variable to regulate the output of the plant described by (7). One may recall the
separation principle and consider the control law of the form

u
k
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(26)
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The analysis of the closed-loop stability with the above control law involves non-linearity because
E
k

in (7) is dependent on the control input. Section 4 considers feeding back only the state
estimate (Fc

k
"0), i.e.,

u
k
"!Fx

k
x(
k Dk

(27)

In this case the regulator stability analysis becomes tractable with the aid of some existing results
on robust stability of interval systems. The details are given in Section 4.

3. ADAPTIVE ESTIMATION OF CONTROL EFFECTIVENESS FACTORS

In this section, a further measure is taken to modify the above "ltering algorithm so that the
estimates become more responsive to abrupt changes in the control e!ectiveness factors.

A well-known technique for estimating time-varying parameters is the use of forgetting factors.
The basic idea is to enable a recursive algorithm to discount the past information so that the "lter
is more apt to recognize the changes in the system. Since the time update of the bias estimate
governed by (9) is the dominant opposing force to acknowledge the abrupt changes in the biases,
forgetting factors introduced into the time-propagation equation (10) of the bias covariance is
likely to function most e!ectively.

In possibly the simplest consideration, a single constant forgetting factor is used, i.e.
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In this case the old information is discounted uniformly in time and in space. A main concern
with this technique is the possible &blow-up' of the estimation error covariance matrix. Some
alternatives for improvement have been proposed, and used in recursive least-squares-based
parameter identi"cation schemes, where the forgetting factor is non-uniform in time or in
space [18, 14].

Assume that covariance Pc
k Dk

adequately describes the bias estimation error along both
temporal and spacial directions under the normal system operation condition. Then this
covariance provides a basis for the selection of forgetting factors. The bias estimates should be
prevented from being impetuous (Pc

k Dk
too large), as well as from being indi!erent (Pc

k Dk
to small)

to the changes shown in the measurements. A technique suggested in Reference [14] amounts to
select forgetting factors that would force the adjusted covariance in (10) to stay within some
prescribed bounds
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where a1
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Following the argument in Reference [14], the forgetting factor ji
k
can be chosen as a decreasing

function of the amount of information received in the direction ei
k
. Since eigenvalue ai
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This selection of forgetting factors guarantees that the lower bound in (29) is satis"ed. Under
the condition that Qc

k
"0, ∀k, the upper bound in (29) is also satis"ed. This condition however,

contradicts our conclusion drawn from the previous section that Qc
k
ought to be su$ciently large

in order to weaken the bias evolution constraint described in (5). In fact, the forgetting factors
introduced in (32) can be thought of as a way of adding a noise term with a varying covariance.
Let Q1 c
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be the equivalent noise covariance. QM c
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relates to the forgetting factors through the

following relation:
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In comparison with the "ltering algorithm described in the previous section, the modi"ed
algorithm is given by (9)}(23) with (10) replaced by (31) and (32). With the insertion of forgetting
factors, the "lter algorithm described in the previous section loses its optimality in the steady-
state-bias accuracy. But our goal to render the estimates more responsive to changes in control
e!ectiveness is achieved. It was observed in Reference [19] that in general a reinitialization is
necessary in order for a "ltering algorithm to correctly estimate parameters that characterize
a subsequent fault. By using the above forgetting factor technique, this reinitialization issue can
be avoided.

The rest of the section is devoted to the discussion of handling faulty situations that necessitate
dramatic measures, such as the recon"guration of the control law. Such situations need to
be evaluated with great care. Our discussion is con"ned to the case of possible loss of
control e!ectiveness in a system. Based on the bias estimates, statistical variables can be
constructed for hypothesis tests. Under the normal condition, the ith component c( i

k Dk
of the bias

estimate c(
k Dk

is a zero mean Gaussian variable. De"ne the weighted sum-squared bias estimate
(WSSBE) as
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where Pci
k Dk

is the ith diagonal element of Pc
k Dk

. di
k
is small until there is a reduction of e!ectiveness

in the ith control input channel. Therefore the following hypothesis test can be used:
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should be captured in the selection of thresholds e

i
, i"1,2, l. The threshold determination is

beyond the scope of discussion in this paper.
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random variable with ¸ degrees of freedom, where ¸ denotes the data window length. With the
aid of a chi-square distribution table, it is possible to determine the probability that a fault of
a certain severity has occurred, as a function of the window length ¸ and the decision threshold e

i
.

The selection of window length and decision threshold is a trade-o! between the probability P
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of false alarm (declares H
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) and the probability P
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of a missed detection (declares H
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4. ADAPTIVE REGULATION AND ROBUSTNESS ANALYSIS

Following up the discussion at the end of Section 2, the control law of the form
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The stability of the system described in (37) is de"ned by the boundedness of its response to any
bounded inputs. x

k
!x(

k Dk
can be regarded as a part of the input, provided that it can be shown to

be a bounded signal for all k regardless of the choice of F
x
. We appeal to the separation principle

in dealing with a feedback structure that involves the combination of an estimate feedback
control law and a state estimator, so that the regulator stability analysis can be divided into two
steps.

Step 1: The conditions that ensure the boundedness of x
k
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k Dk
∀k are "rst stated. The

algorithm presented in Section 2 gives the optimal estimates for both x(
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and c(
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accurately describes the process under consideration. In this case, the expectations of the
estimation errors are tr(Pc) for c
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and to tr(P) for x

k
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, where Pc and P are given by

(13) and (25), respectively. The boundedness of the traces requires that the system described in (7)
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is uniformly completely controllable from wx
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and wc
k
, and uniformly completely reconstructible

[20]. These conditions for the special problem considered in this paper can be translated into the
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is the transition matrix of the system described in (7) with ;
k
given in (5), and U(i, i)"I. From

a di!erent perspective it is seen that the presence of the noise term in the bias equation is
necessary in order to satisfy the condition of uniformly completely controllable from wc

k
. Note

that the expression of U (i
1
, i

0
) in (38) contains a matrix of control signals. As a consequence, the

boundedness and non-singularity of several of the above matrices depend on the control signals
being persistently exciting. The feedback structure guarantees that whenever an observable fault
occurs, the control signal would attempt to counteract its e!ect, and therefore becomes exciting.

Step 2: The selection of F
k
to guarantee the stability of (37) is now discussed with the focus on

the e!ect of replacing C
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of control e!ectiveness, they can be reasonably assumed to change only a "nite number of times
during the course of a single system operation. If in addition, the duration between any
consecutive changes in control e!ectiveness is longer than the time required for a transient to
settle, the design of F

k
can be much simpli"ed. Let us name the above assumptions as the

infrequent control impairment assumptions. Under these assumptions, F
k
can be made adaptive
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to the change in C
k
by ensuring that A!B(I#C

k
)F

k
a stability matrix for all k. As a side remark,

it can be seen that the recovery of the system performance is impossible when (A, B#BC
k
)

becomes uncontrollable. Therefore, failures can be tolerated at most to the extent manageable by
the redundant control authority.

On the other hand, though A and B are known, C
k
is not. Only an estimate C)

k
of C

k
is available

at any given time. Therefore, the design of F
k
can only be based on the knowledge of C)

k
, besides

that of A and B. To see the e!ect of replacing C
k

by C)
k
, (37) is rewritten as

x
k`1

"[A!B (I#C)
k
)F

k
#B(C)

k
!C

k
)F

k
]x

k
#B (I#C

k
)F

k
(x

k
!x(

k Dk
)#wx

k
(39)

Let

kcik"c( i
k Dk

!ci
k

for the ith control e!ectiveness factor at instant k, and write B and F
k
in terms of their columns

and rows, respectively, as

B"[b
1

b
2
2b

l
], F

k
"

f1
k
f2
k
F
f l
k

De"ne

E i
k
"b

i
f i
k
, i"1, . . . , l (40)

M(C
k
)"A!B (I#C

k
)F

k
(41)

M(C)
k
)"A!B (I#C)

k
)F

k
(42)

*M(C)
k
, *C

k
)"B (C)

k
!C)F

k
(43)

Then *M can be expressed as

*M(C)
k
, *C

k
)"

l
+
i/1

kcikE
i
k

(44)

Suppose the FDI scheme has a decision mechanism, such as that given in (34), that sends
a current value of C)

k
to the controller whenever the hypothesis test has con"rmed a signi"cant

change in the value of ci
k
for some i at some k. F

k
is then re-calculated based on this C)

k
.

It has been shown [17] that if

rank(E i
k
)"1, ∀i, k (45)

which holds by de"nition (40), the coe$cients of the characteristic polynomial of M(C
k
) are

multilinear functions of c1
k
,2 , cl

k
. In this case, the Mapping Theorem can be applied to derive
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a procedure [17 (Chapter 12, p. 512)] that determines the maximum e
k

so that matrix M(C
k
)

remains stable under all perturbations ranging over

c( i
k Dk

!ui
k
e
k
)ci

k
)c( i

k Dk
#ui

k
e
k
, i"1,2 , l (46)

for predetermined weights ui
k
.

Although the determination of such perturbation boundaries does not result in a robust
stabilization because our estimation algorithm is probabilistic rather than deterministic, it can
assist through simulations to determine what level of accuracy in the control e!ectiveness
estimates can be expected, and how long it takes for the estimates to converge to values
su$ciently close to the true values, so that a re-design of F

k
can allow the recovery of the

closed-loop performance.
In the following development, the infrequent control impairment assumptions hold. F

k
is

obtained and updated as the steady-state LQ solution of a "ctitious LQG problem [21] which
minimizes

J" lim
N?=

1

N G
N~1
+
k/0

(yTk Q
c
y
k
#uT

k
R

c
uk )H (47)

subject to the constraint

x
k`1

"Ax
k
#B (I#C) )u

k
#wx

k (48)

y
k
"Cx

k
#v

k

where Q
c

is a positive-semi-de"nite weighting matrix, and R
c

is a positive-de"nite weighting
matrix. The FDI unit is responsible for updating C) and activating the re-design of F

k
when

necessary. The current control law, given the validated control e!ectiveness estimate C) , is

u
k
"!F

k
x(
k

where x(
k
is estimated using the two-stage adaptive Kalman estimator given in Section 2, and

F
k
"(R

c
#(I#C) )BTP

c
B(I#C) ))~1(I#C) )BTP

c
A (49)

where P
c
satis"es the algebraic Riccati equation

P
c
"CTQ

c
C#(A!B(I#C) )F

k
)TP

c
(A!B (I#C) )F

k
)#FT

k
R

c
F
k

Note that the "ctitious system in (48) is di!erent from the bias augmented system (7) upon which
the estimator is built. Therefore, the control gain F

k
is not optimal in the LQG sense in either

situation. Nevertheless, the analysis in this section has shown that as long as the estimates are
su$ciently accurate, so that the true values of the control e!ectiveness factors fall within the
bounds given by (46), the regulator stability is guaranteed.
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Figure 1. Regulator con"guration.

A further consideration on how to maintain the closed-loop performance in the face of the
reduction of control e!ectiveness can be to adjust the values of Q

c
and R

c
in the process of

updating F
k
. As suggested in Reference [22], the automatic redesign can be done by "xing the

state weighting matrix Q
c
and choosing a new value for R

c
in an appropriate manner to o!set the

e!ect of control e!ectiveness reduction whenever it occurs. Figure 1 depicts the con"guration of
the proposed scheme.

5. EXAMPLES AND SIMULATION RESULTS

The e!ectiveness of the "ltering algorithm and the correctness of the regulator design approach
presented in earlier sections are demonstrated in this section through two examples. In the "rst
example, a longitudinal aircraft model [23] is used mainly to demonstrate that the control
e!ectiveness estimator can work e!ectively in the closed-loop setting. The reader is referred to
Reference [16] for open-loop simulation results with the same model and the same test scenarios.
The second example is taken from [24] where it was used to evaluate a reliable linear-quadratic
state-feedback control method. The intention here is to show that the control e!ectiveness
accommodation mechanism developed in this paper can work successfully.

5.1. Example 1

In this example, "ve scenarios involving reduction of control e!ectiveness are simulated. The
example considers longitudinal dynamics only, which is taken to be decoupled from the lateral-
directional dynamics. The aircraft model has four states: forward velocity, u, angle of attack, a,
pitch rate, q, and pitch angle, h; two control inputs: elevon, d

%
and canard d

#
; two outputs: angle of

attack and pitch angle. The system, control and measurement matrices, A, B and C, in the
state-space description at a given #ight condition are given as follows:

x
k`1

"Ax
k
#Bu

k
#wx

k

y
k
"Cx

k
#v

k
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Table I. Test scenarios

Time of e!ectiveness change
% of Control

Scenarios e!ectiveness 0 5.1 10.1 12.6 20

1 Elevon 100 25 25 25 25
Canard 100 100 100 100 100

2 Elevon 100 50 0 0 0
Canard 100 100 100 100 100

3 Elevon 100 50 50 50 50
Canard 100 100 100 50 50

4 Elevon 100 50 10 10 10
Canard 100 100 100 50 50

5 Elevon 100 503!.1 10 10 10
Canard 100 100 100 50 50

where

x"[u a q h]T, u"[d
%

d
#
]T, y"[a h]T

A"

!0.0226 !36.6 !18.9 !32.1
0.0 !1.9 0.983 0.0
0.0123 !11.7 !2.63 0.0
0.0 0.0 1.0 0.0

, B"

0.0 0.0
!0.414 0.0

!77.8 22.4
0.0 0.0

, C"C
0 1 0 0
0 0 0 1D

Other parameters used in the simulation are given as follows. Qx"diagM0.012, 0.012, 0.012,
0.012N, R"diagM0.12, 0.12N, Qc"diagM0.0012, 0.0012N, x

0
"[50 0.05 5 0.06]T c

0
"[0 0]T. Initial

parameters of "lter are x8
0
"x

0
, c(

0
"c

0
, P3

0
"10I, Pc

0
"10I. For the output and control

weighting matrices are chosen as Q
c
"diagM10, 50N and R

#
"diagM10, 10N for all k. The window

length in (33) is ¸"3 and the threshold in (34) is chosen as e"[5 5]T.
The reduction of control e!ectiveness is due to the actuator malfunction or the control surface

impairment, such as stuck, #oating, or partially missing elevons and/or canards. The "ve
simulated fault scenarios are summarized in Table I. These scenarios include a reduction of
control e!ectiveness in a single surface, two consecutive reductions of control e!ectiveness in
a single surface, asynchronous reductions of control e!ectiveness in both surfaces, two consecu-
tive reductions of control e!ectiveness in one surface followed by a reduction in the second
surface, and an abrupt reduction and sequentially a gradual reduction in one surface, and
followed by a reduction of control e!ectiveness in the second surface. In each case, the two-stage
Kalman "lter presented in Section 2 is used to obtain estimates of the control e!ectiveness, but
"rst without forgetting factors (WFF), and then with the "lter modi"ed by inserting a constant
forgetting factor (CFF), and "nally with the "lter modi"ed by a set of time-varying forgetting
factors (VFF) discussed in the previous section. The simulation results for all scenarios
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Figure 3. E!ectiveness estimates for incipient and multiple channel occurrences: (a) e!ectiveness estimate for
scenario 5 (closed-loop), (b) e!ectiveness estimate for scenario 5 (closed-loop).

b
Figure 2. E!ectiveness estimates and WSSBE for a single fault occurrence: (a) e!ectiveness estimate for
scenario 1 (closed-loop), (b) WSSBE for scenario 1 (closed-loop), (c) control inputs in closed-loop with

constant external input for scenario 1.

demonstrate favourably on the optimal two-stage Kalman "lter with variable forgetting factors.
Figures 2}4 display the simulation results for selected test scenarios (1 and 5).

ACCOMMODATION OF LOSS OF CONTROL EFFECTIVENESS 789

Int. J. Adapt. Control Signal Process. 2000; 14:775}795Copyright ( 2000 John Wiley & Sons, Ltd.



Figure 4. Regulated system response with elevon e!ectiveness reduction at t"5 s: (a) closed-loop
response of angle of attack with and without recon"guration, (b) closed-loop response of pitch

angle with and without recon"guration.

5.2. Example 2

The state-space parameters of the model [24] are as follows:

A"

0 1 1 2
!1 !1 1 0

2 2 0 1
0 1 0 0

, B"

0 0
2 0
0 0
0 1

, C"

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Note that the plate is open-loop unstable and there is a lightly damped oscillatory mode. The
control weighting matrices and the initial state for this example are chosen according to Reference
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Figure 5. Regulator response with e!ectiveness loss in the "rst control channel at t"5 s: (a)
closed-loop response of the "rst state variable without recon"guration, (b) closed-loop response of

the third state variable without recon"guration.

[24] as Q
c
"diagM1, 0, 1, 0N, R

c
"diagM1, 1N, x

0
"[1 0 1 0]T. Process and measurement noises

are added with Qx"diagM0.012, 0.012, 0.012, 0.012N, R"diagM0.12, 0.12N, Qc"diagM0.0012,
0.0012N, c

0
"[0 0]T.

Figure 5 shows the "rst and third state variables of the system with a loss of "rst control
e!ectiveness at t"5 s. Without the control law adaptation after the loss of control e!ectiveness,
the system becomes unstable. With an on-line re-design however, the regulator eventually settles
down after a transient period as shown in Figure 6. Figure 7 shows the time history of WSSBE.
The WSSBE of the system with an adaptive control law is more indicative of the change in the
e!ectiveness of the "rst control. Figure 8 shows the e!ectiveness estimates in both control
channels. More accurate estimates are obtained when the control law is adaptive.
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Figure 6. Regulator response with e!ectiveness loss in the "rst control channel at t"5 s: (a)
closed-loop response of "rst state variable with recon"guration, (b) closed-loop response of third

state variable with recon"guration.

6. DISCUSSION AND CONCLUSIONS

An adaptive two-stage Kalman "lter for the estimation and change detection of the control
e!ectiveness has been developed for closed-loop feedback control systems. The algorithm is
capable of simultaneously estimating the state and an unknown constant entering the state
equation additively. Since it is the changes in the control e!ectiveness factors that are to be
estimated, our development has been focused on sensitizing the "lter estimates speci"cally to
these changes. The objective has been achieved by introducing selective forgetting factors into the
decoupled e!ectiveness factor estimator. Both abrupt and incipient reduction of control e!ec-
tiveness in dynamic systems have been considered. Simulation results from Example 1 have
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Figure 7. WSSBE with e!ectiveness loss in the "rst control channel at t"5 s.

illustrated the e!ectiveness and superiority of our algorithm over the optimal two-stage Kalman
"lters without the forgetting factors. The feedback control law is solved in a "ctitious LQG
setting. The state estimate is fed back to regulate the system output, while the control e!ectiveness
estimate is used to tune the gain in the control law. Tolerance of the control law to bias estimation
error is analyzed. Simulation results from Example 2 have demonstrated the fault tolerance of the
adaptive control law. Example 2 has also shown that, due to the more responsive control signal
generated through the use of an adaptive control law, more pronounced detection results and
more accurate estimation results have been produced.

One may wonder why is not the dual problem of sensor e!ectiveness factor estimation
considered in this paper. It turns out that modeling the sensor e!ectiveness generates a bilinear
term between the state and the bias in the output equation. One may start with one of the existing
adaptive estimation schemes [25], and seek to improve the speed and accuracy of the estimates by
exploiting the special structure of the non-linear model.

One of the most widely used fault detection and diagnosis approach for stochastic systems is
the generalized likelihood ratio (GLR) approach originated in Reference [7] and modi"ed in
Reference [1]. The proposed two-stage adaptive Kalman "lter is similar to the GLR approach in
that it uses one single Kalman "lter to not only detect a fault, it estimates the fault magnitude and
identi"es the fault occurrence time as well. In this paper, faults are detected and identi"ed using
a variable built upon the estimated fault parameters (control e!ectiveness factors), not on the
Kalman innovations. The major advantage of our approach is that it gives accurate fault severity
estimates, including sequential faults, without requiring any "lter reinitialization.

A side issue which requires an equal attention is the issue of input scaling. Since the control
e!ectiveness factors are directly attached to the control input vector, the signal (change in control
e!ectiveness) to noise ratios are a!ected by both the magnitude and the direction of the input
vector. As a result, estimates along some directions of input space at some time can have much
poorer quality than estimates along other directions at the same time. Similarly, estimates along
some directions of input space at some time can have much poorer quality than estimates along
the same input direction but at a di!erent time. Therefore, a focused e!ort is necessary in
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Figure 8. Control e!ectiveness estimates with e!ectiveness loss in the "rst control channel at t"5 s.

developing an input scaling scheme that equalizes the quality of bias estimates along temporal
and input-spacial directions whenever there are input excitations.
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