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I. Introduction

S INCE some catastrophic faults or failures may be induced due to
the aging or damage of actuators and sensors during the mission

of a spacecraft, those faults would lead to performance degradation
of the spacecraft attitude control system or even result in the specified
aerospacemission failure. Therefore, fault tolerance of the spacecraft
attitude control system is one of the key issues that needs to be
addressed. With a view to tackle such a challenge, fault-tolerant
control (FTC) has received considerable attention in order to enhance
the spacecraft reliability and to guarantee the attitude control perfor-
mance [1–5]. In [5], an adaptive FTC is developed for the flexible
spacecraft attitude tracking system where the persistent bounded
disturbances, unknown inertia parameter, and even two types of
reaction wheel faults are successfully accommodated.

Indeed, the aforementioned approaches offer many attractive
conceptual features, but at the same time they are derived based on
the availability of direct and exact measurements of both the angular
velocity and the attitude orientation. It is important to note, however,
that when it comes to practical implementation, the angular velocity
measurements are not always available because of either cost limit-
ations or implementation constraints. Motivated from such a prac-
tical consideration, it is therefore highly desirable to develop partial
state feedback attitude control strategies with spacecraft angular
velocity measurements eliminated. The issue has been addressed in
the literature by using observer-based control [6,7], Lyapunov-based
control [8,9], and variable structure control [10] under normal
operation of spacecraft.

In this work, we provide solutions to two different problems of the
flexible spacecraft attitude control system. The first problem consists
of developing a control law to perform a attitude stabilization
maneuver without angular velocity magnitude. In contrast with the

velocity-free control schemes available in the literature, the
presented approach can guarantee the attitude control performance
be greatly robust to external disturbances and unknown inertia
parameters. The second problem solved is the casewhere both loss of
control effectiveness and additive fault occur in actuators simulta-
neously, but the attitude still requires stabilization with high
resolution. To the best knowledge of the authors, this study is the first
attempt to deal with fault-tolerant attitude stabilization control for
flexible spacecraft with the angular velocity magnitude eliminated.

The Note is organized as follows. Section II presents the mathe-
matical model and attitude control problems formation of a flexible
spacecraft under normal and faulty actuator conditions. Section III
presents the proposed fault-tolerant attitude stabilization controller
without velocity magnitude in the presence of two types of actuator
faults. Simulation results to demonstrate various features of the
proposed scheme are given in Sec. IV followed by conclusions in
Sec. V.

II. Mathematical Model of Flexible Spacecraft

A. Kinematics Equation

The unit quaternion is adopted to describe the kinematics equation
for its global rotation representation without singularity, and then the
kinematics differential equation is given by [3]

_q� 1
2
�q� � q0I3�! (1)

_q 0 ��1
2
qT! (2)

where ! 2 R3 is the angular velocity vector of the spacecraft with
respect to an inertial frame I and expressed in the body frame B,
Q� � q0 qT �T 2 R4 denotes the unit quaternion vector repre-
senting the attitude orientation of the spacecraft in B with respect to
I , In is the identity matrix of the nth order, and the notation q�

denotes the cross-product operator of q.

B. Flexible Spacecraft Dynamics

When all the actuators run normally, the dynamic equations of a
spacecraft with flexible appendages can be written under the
hypothesis of small elastic deformations [10]:

J _!�!��J!� � _�� � �T ��� u� d (3)

���C _��K�� � _!� 0 (4)

where J 2 R3�3 is the total inertia matrix of the spacecraft, u 2 R3

is the control torque input vector while d 2 R3 is the disturbance
torque vector, and � 2 RN is the modal coordinate vector relative
to the main body. In addition, � 2 RN�3 denotes the coupling
matrix between flexible and rigid dynamics, and K� diag�2�1�1;
. . . ; 2�N�N� and C� diag��2

1; . . . ;�
2
N� are the damping and

stiffness matrices (with N the number of elastic modes considered;
�i, i� 1; . . . ; N, the natural frequencies; and �i the associated
damping), respectively.

Now, consider the situation inwhich the additive and partial loss of
actuator effectiveness fault occurs. Then, the general nonlinear
spacecraft attitude dynamics model in Eq. (3) can be rewritten as

J _!�!��J!� � _�� � � ��� ��t�u� d� f�t;!;q� (5)

where��t� � diag��11�t�; �22�t�; �33�t�� represents the partial loss of
actuator effectiveness fault with 0<�0 	 �ii�t� 	 1, i� 1; 2; 3;
and f�t;!;q� denotes the actuator fault entering the spacecraft
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dynamics in an additive way and is subject to kf�t;!;q�k 	 �1�t�,
where �1�t� is a positive continuous function.

Assumption 1: The disturbanced considered in Eq. (5) is bounded;
that is, sup0	�	tkd���k exists and is bounded for 8 t 
 0.

The control objective to be achieved in this Note can be stated as
follows. Considering the faulty attitude control system given by
Eq. (5), design a control law to guarantee the attitude to be converged
to zero or an arbitrary small set containing the origin.Moreover, such
a control objective is to be achieved under the following conditions:
1) without angular velocity magnitude measurement, 2) in the
presence of uncertainties in spacecraft mass moment of inertia and
unknown bounded external disturbances, and 3) in the presence of
possible additive fault f�t;!;q� and partial loss of actuator effec-
tiveness fault ��t�.

III. Control Law Design

Before going to the specific control law design, we first introduce
the following variable:

� � _�� �! (6)

Define a new state variable  � � � T � T �T , then Eqs. (4) and (6)
can be summarized as

_ � 0 IN
�K �C

� �
 � ��

C�

� �
! (7)

In view of the faulty dynamics in Eq. (5), it follows that

J0 _!��!��J0!� ��’ � �!�� � �T�K C � 
� ��TC��!��T��!� �u� d� f (8)

where J0 � J � �T� denotes the main body inertia matrix.
Assumption 2: For a flexible spacecraft, the main body inertia

matrix J0 is positive definite symmetric and bounded but unknown
during the entire orbiting operation.

Remark 1: For Assumption 2, the structural parameters are
supposed to be poorly known, and they are constant or can vary
during spacecraft operations. In both cases, since their variation is
assumed to be slow with respect to the spacecraft dynamics, their
derivatives are or can be considered as zero.

Since the measurement of angular velocity ! is not exactly
available, a filter is introduced to generate auxiliary signal from
attitude quaternion measurement only. The auxiliary signal is the
output of the following first-order dynamics [9]:

_��t� � ���t� � 2kxq�t� � ki
Z
t

0

q��� d� (9)

To that end, we propose the following control law to perform the
attitude stabilization maneuver

u � uN � uF (10)

where uN is the normal controller, uF is the fault-tolerant controller
added in order to compensate for the possible actuator faults effect on
the system, and the following two items are developed as

uN ���kp � 2kx�kx � ki�q0�q �
�
ki
2
� kx

�
�q� � q0I3�T�

� ki
�
kx �

ki
2

�
�q� � q0I3�T

Z
t

0

q��� d� (11)

u F ��
�
1 � �0

�0

�kuNk � "0� �
1

�0

�1�t�
�
sign�!� (12)

where kp, "0, kx, and ki are positive control gains; and sign�!� is a
vector-valued sign function defined as

sign �!� � � sgn�!1� sgn�!2� sgn�!3� �T (13)

Now, we are ready to summarize the FTC solution to the underlying
attitude stabilization problem without angular velocity magnitude
measurement.

Theorem 1: Consider the faulty flexible spacecraft attitude control
system given by Eqs. (1), (2), (4), and (5) under partial loss of
actuator effectiveness and additive faults. With application of the
control law equation (10), suppose that the control parameters are
chosen such that kp � 0:5k2i > 0 and 2kx ≠ ki. Then, all of the
signals in the resulting closed-loop attitude system are bounded and
continuous, and global asymptotic stability is guaranteed in case of
d�t� � 0. That is, the attitude and the angular velocity converge to
zero; i.e.,

lim
t!1

q� 0

and

lim
t!1

!� 0

Proof: Consider the Lyapunov function candidate

V � 1
2
!TJ0!� kp��q0 � 1�2 � qTq� � 1

2
_�T _� � kiqT _�� 1

2
 TP 

(14)

where P is a positive definite matrix, and it is the solution of the
following Lyapunov equation:

P
0 IN
�K �C

� �
� 0 IN
�K �C

� �
PT ��2Q (15)

where Q is a positive definite symmetric matrix.
Defining

x � � �1 � q0� qT !T � _� � kiq�T  T �T

then V could be bounded by

�min�R�kxk2 	 V � xTRx 	 �max�R�kxk2 (16)

where

R � diag� kp; �kp � 0:5k2i �; 0:5J0; 0:5; 0:5P �

where �min��� and �max��� denote the minimal and maximal
eigenvalues of a positive matrix, respectively. Since the inequality
kp � 0:5k2i > 0 holds, R is positive definite that implies that V is
globally positive definite from Eq. (16).

In the case of d�t� � 0, the time derivative of the Lyapunov
function equation (14) along the faulty spacecraft dynamics
equation (5) can be calculated as

_V �!TJ0 _!� kp�2�q0 � 1� _q0 � 2qT _q� � _�T �� � ki _qT _� � kiqT ��
� TP _ �!Tf�u� �T�K C � � kpq� � _� � kiq�T

� � _� � kiq� � 2kx�q� � q0I3�T
�
��� �2kx � ki�q

� ki
Z
t

0

q��� d�
�
� ki

2
�q� � q0I3�T

�
��� 2kxq

� ki
Z
t

0

q��� d�
��
� �TC�!� f� TP

0 IN

�K �C

 !
 

� TP
��
C�

 !
! (17)

Substituting the controller equation (10) into Eq. (17) yields
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_V �!T
�
��
�
1 � �0

�0

�kuNk � "0� �
1

�0

�1�t�
�
sign�!�

� � _� � kiq�T� _� � kiq� � f� �T�K C � � �TC�!
�

� �I3 � ��uN � TP
0 IN

�K �C

 !
 � TP

��
C�

 !
!

	 �1 � �0�k!kkuNk � �1 � �0��kuNk � "0�k!k

� � _� � kiq�T� _� � kiq� � �!T  T ��
!

 

 !

	 ��1 � �0�"0k!k � k _� � kiqk2 � �!T  T ��
!

 

 !
(18)

where � is given by

� � �TC�
�T

�
K � P C�CP

�
2�

K � P C�CP
�
T

�

2
Q

0
BB@

1
CCA (19)

By using the Schur complement lemma [11], and for the appropriate
choice of matrix Q, � could be a positive definite matrix. With
�0 < 1, it is easily obtained from Eq. (18) that

_V 	 �k _� � kiqk2 	 0 (20)

implying that

lim
t!1

V�t� � V�1�

exists; it can be further concluded that V 2 L1, and then q0, q,
! 2 L1. Thus, we have _q 2 L1 from Eqs. (1) and (2). By

integrating _V from 0 to1, one has

lim
t!1
k _� � kiqk2 	 V�0� � V�1� (21)

Because the term on the right-hand side of inequality equation (21) is
bounded, it follows that _� � kiq 2 L2. From Eq. (9), we have
���� _�� 2kx _q� kiq, which together with _q 2 L1 implies that

�� � ki _q��� _� � kiq� � �2kx � ki� _qL1

Hence, we have _� � kiq 2 L2 \ L1 and �� � ki _q 2 L1. Using the
Barbalat’s lemma, it follows that

lim
t!1
� _� � kiq� � 0 (22)

Now, consider another variable

y �t�≜ � � ki
Z
t

o

q��� d�

which is uniformly bounded, and then we conclude the uniform
continuity of �y. Furthermore, due to _y ! 0 as t!1, it follows

lim
t!1

Z
t

0

�y��� d� � _y�0� � 0 (23)

By virtue of the alternate statement of Barbalat’s lemma [12],
together with the uniform continuity of �y, it leads to �y ! 0 as
t!1. Note that when �y ��� _� � kiq� � �2kx � ki� _q, we have

lim
t!1

_q�t� � 0

whenever

lim
t!1
� _� � kiq� � 0

and 2kx ≠ ki.

With

lim
t!1

_q�t� � 0

according to the result of [9], it has

lim
t!1

q�t� � 0; lim
t!1

!�t� � 0 (24)

for any initial attitude and angular velocity. Thereby, the globally
asymptotic stability of the closed-loop system can be concluded.
Here, the proof is completed. □

When we take external disturbances d into consideration, the
stability analysis of the closed-loop system can be stated by the
following corollary.

Corollary 1: Let the control parameters be chosen such that
kp � 0:5k2i > 0 and 2kx ≠ ki; the system in Eqs. (1), (2), (4), and (5)
in the closed loop with the control law equation (10) is then
ultimately uniformly bounded (UUB) in the presence of partial loss
of actuator effectiveness and additive faults as well as external
disturbances d�t�.

Proof: In the case when the spacecraft attitude system is affected
by external disturbances, calculating the time derivative of V in
Eq. (14) gives

_V �!Tf�u� �T�K C � � �TC�!� f� dg � TP _ 

� kp�2�q0 � 1� _q0 � 2qT _q� � _�T �� � ki _qT _� � kiqT �� (25)

Substituting Eq. (10) into Eq. (25) with the same derivation as in
Theorem 1, it follows that

_V 	 !Td � �!T � _� � kiq�T  T �T�
!

_� � kiq
 

0
@

1
A (26)

where � is defined by

� �
�TC� 0

�T �K � P C�CP �
2

0 I3 0
�K � P C�CP �T�

2
0 Q

0
B@

1
CA
(27)

Also, by using the Schur complement lemma [11], � can be
guaranteed to be positive definite in the event of the appropriate
choice ofQ. SinceqTq� q20 � 1 results in j1 � q0j2 	 �1 � q0� and
kqk2 	 kqk, we can easily obtain that

kxk2 � k� �1 � q0� qT !T � _� � kiq�T  T �Tk2

	 �1 � q0� � kqk � k�!T � _� � kiq�T  T �k2 (28)

Then

_V 	 ��kxk2 � k!k sup
0	�	t
kd���k � ���1 � q0� � kqk�

	 ��kxk2 � kxk�2�� sup
0	�	t
kd���k� (29)

where �� �min��� has been introduced. Let 0< � < 1, and then
Eq. (29) can be rewritten as

_V 	 ���kxk2 � kxk��2�� sup
0	�	t
kd���k� � �1 � ���kxk� (30)

Clearly, if

kxk > �� sup0	�	tkd���k
�1 � ���

we obtain

_V < ���kxk2 	 � ��

�max�R�
V (31)

Therefore, the state is bounded ultimately by
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kx�t�k 	 max

																	
�max�R�
�min�R�

s

�

8<
:2kx�0�ke����=�max�R��t; 2

�2�� sup
0	�	t
kd���k�

�1 � ���

9=
; (32)

which is a small set containing the origin x� 0. From Eqs. (10) and
(32), using the boundedness theorem [13], it can be concluded that
�1 � q0�, qT , !T , � _� � kiq�T ,  T , and u are UUB. Thus, all signals
in the closed-loop system are UUB. This completes the proof. □

Remark 2: It is worth mentioning that, although the proposed
control law in Eq. (10) is independent on the magnitude mea-
surements of spacecraft angular velocity, uF in Eq. (10) requires the
knowledge on the direction of the angular velocity. As a result, the
spacecraft still needs low-cost gyroscopes to obtain the direction
information of the angular velocity. In addition to this hardware-
based scheme, there exists an alternative analytical methodology to
determine the sign of ! without any rate sensors. Actually, in
practical aerospace engineering, the controller is implemented with a
digital computer; hence, the value of _q in the time of �k� 1�T can be
approximately estimated by using one-step previous information
from attitude sensors as follows:

_q��k� 1�T� � q��k� 1�T� � q�kT�
T

(33)

where T is the sampling time. From Eq. (1), one has

!1

!2

!3

0
@

1
A� 2

T

q0;k �q3;k q2;k
q3;k q0;k �q1;k
�q2;k q1;k q0;k

0
@

1
A�1 q1;k�1 � q1;k

q2;k�1 � q2;k
q3;k�1 � q3;k

0
@

1
A (34)

where qi;k and qi;k�1 (i� 0; 1; 2; 3) are, respectively, the ith item of
Q in the time of kT and �k� 1�T. Based on Eq. (34), the sign of !
can be derived.

Remark 3: It is worth mentioning that the chattering effect may be
caused by the sign function of the controller equation (10). However,
in practice, once the orbit and the target are determined, the direction
of angular velocity would not vary and the positive direction of
angular velocity is decided; in some sense, the sign of angular
velocity will not change. Consequently, the proposed controller
equation (10) is continuous; thus, vibration or instability will not be
induced. This will be discussed further in the simulation study.

Remark 4: Note that when actuators are fault free, we have�0 � 1
and �1�t� � 0. Thus, u� uN can be obtained for the controller
equation (10); that is to say, the system can be stabilized by controller
equation (10).

Remark 5: The inequality equation (32) establishes the
relationship between the control parameters and the attitude control
accuracies q and !. It is clear from Eq. (32) that the larger �min�R�
and smaller � are, the better attitude control accuracy can be obtained.

IV. Numerical Simulations

To verify the effectiveness and performance of the proposed
control scheme in this Note, numerical simulations have been carried
out using theflexible spacecraft system equations (1), (2), (4), and (5)
with the developed control law equation (10). The same physical
parameters as considered in [10] are used, which are given by

J�
350 3 4

3 270 10

4 10 190

0
B@

1
CA kg �m2

��
6:45637 1:27814 2:15629

�1:25819 0:91756 �1:67264
1:11687 2:48901 �0:83674

0
B@

1
CA kg1=2 �m=s2

The natural frequencies are �1 � 0:7681, �2 � 1:1038, and
�3 � 1:8733 rad=s; and the damping ratios are �1 � 0:0056,
�2 � 0:0086, and �3 � 0:013. Moreover, bounded external distur-
bance d� � 0:2 0:1 �0:1 �T is also considered.

In the context of simulation, the following actuator fault scenario is
considered. At t� 40 s, each actuator undergoes a partial loss of
effectiveness, while at t� 100 s, these actuators experience also an
additive fault induced by a stuck type of actuator fault, and the
following nonlinearity summarized from [2,3,14] is used to generate
the actuator faults scenario:

�i�t� �
�
1; t < 40 s

0:25� 0:05 sin�2�t�; t 
 40 s

fi�t� �
�
0; t < 100 s

0:35� 0:15 sin�10t�; t 
 100 s

(35)

To implement the controller, the design parameters in Eq. (11) are
chosen as kx � 6, ki � 0:1, kp � 3, �0 � 0:15, �1 � 1, and "0 �
0:25 in Eq. (12). At time t� 0, the orientation of the spacecraft is set
to be q�0� � ��0:5 �0:26 0:79 �T with a zero initial body
angular velocity and initial modal displacements 	i�0� � 0:001, as
well as its time derivative _	i�0� � 0:0005.

A. Response with Normal Controller

The fault scenario equation (35) was implemented in the case
when the spacecraft attitude is governed by the normal controller
equation (11). Because of the slowly time-varying additive fault and
constant external disturbance, it is clear to see from Fig. 1 that the
overall attitude system is stable. However, its attitude pointing
accuracy is quite low, and it could not satisfy the requirement of the
mission since such a controller does not have a mechanism to
accommodate the actuator faults. This is due to the fact that once the
actuators undergo partial loss of control effectiveness after 40 s,
especially after the occurrence of additive fault in 100 s, the static
value of control input, as shown in Fig. 2 (dashed line), is not big
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 q

Time(s)
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Fault f Introduced

Fault α  Introduced

Fig. 1 Time response of attitude and angular velocity under normal controller equation (11) with the fault equation (35).
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enough to compensate the fault. Therefore, it can be concluded that a
FTC design is greatly needed to accommodate the effect of actuator
faults.

B. Response with Quaternion Feedback Fault-Tolerant
Controller

In this case, we demonstrate the performance of the proposed
strategy when the actuator faults equation (35) occurs in the system.
When the designed controller equation (10) is implemented to the
flexible spacecraft in the actuator faults case, the quaternion and
angular velocity responses of the attitude system are presented in
Fig. 3. As expected, we can see clearly that the control law equ-
ation (10) managed to compensate for the additive fault and partial
loss of effectiveness, so that the closed-loop system is still stabilized
within 150 s, and acceptable performance is also met despite of
severe external disturbances. This is achieved by introducing the
extra term uF in Eq. (12). However, compared with the control input
in case 1, a larger control effort is needed, as illustrated in Fig. 2 (solid
line). Indeed, this is due to the fact that the fault-tolerant controlleruF
is always active whenever the actuator undergoes faults or not.
Moreover, as shown in Fig. 3b, the sign of angular velocity in each
axis is invariable throughout the attitude maneuver. This further
verified the analysis in Remark 3.

Summarizing the results from Figs. 1 and 3, the fault tolerance
capability of Eq. (12) could be seen clearly. If the controller
equation (10) is implemented without the uF in Eq. (12), then the
fault could not be accommodated, as shown in Fig. 1. Otherwise, the
actuator faults and external disturbances can be successfully
compensated, as shown in Fig. 3.

V. Conclusions

This Note proposed a novel FTC scheme for flexible spacecraft
attitude stabilization in the presence of external disturbances,
uncertain inertia matrix, and even two types of actuator faults. By
using a first-order differentiation filter to account for the unmeasured
magnitude of the angular velocity, the control law was derived with

quaternion feedback and the knowledge on direction of the body
angular velocity only. It is further shown that the developed control
scheme does not involve any adaptive learning on system uncer-
tainties or unknown bound; hence, the controller is more compu-
tationally favorable and practical for applications. Numerical
simulations are also carried out to demonstrate the effectiveness of
the proposed control structure. However, the drawback of the scheme
remains its dependence on the availability of angular velocity
direction. Extension of the proposed controller with consideration of
control input constraints and elimination of the requirement of rate
sensors will be carried out in the futurework. Furthermore, extension
to the fault-tolerant tracking control will also be carried out, in which
the unknown inertia matrix is the main problem that needs to be
addressed due to the extra item in the open-loop tracking error system
in comparison with the attitude stabilization system.
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