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Abstract

The performance of constrained optimization algorithms for control allocation with applications to aircraft
control was evaluated. Three control allocation algorithms were investigated: A pseudoinverse, a Fixed-
point, and a Direct Control Algorithm. The control allocation algorithms include a quadratic programming
method and a linear programming method. The algorithms was implemented in the Swedish developed
aircraft simulation model, ADMIRE. The aircraft model describes a single-engine delta-wing canard fighter
aircraft with 7 control surfaces. The algorithms were both evaluated in a free testing environment to
increase analysis clarity, and also in ADMIRE, in order to form a bridge to aircraft applications.

The test in the free environment showed quite different results from the algorithm. In general it was stated
that all the algorithms performed a solution to the commanded input. However, this was only an issue when
none of the output variables was saturated. In the case where some or all of the output variables were
saturated the algorithms has trouble achieving the desired moment. Some of them wouldn’t give enough
moment and other wouldn’t track the desired moment direction. This was also the issue when the
algorithms was tested in ADMIRE.
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1. Introduction

Control allocation is needed for control of overactuated systems, and deals with
distribution of the control effort among the actuators in the system. When using control
allocation, the actuator selection task is separated from the regulation task in the control
design. In many flight-control systems of the past ganging has been used to associate the
three dimensional movements of the aircraft to the control surfaces. For example, to
achieve a pitching moment, the left and right elevator deflection should move together
while a rolling moment can be produced by the differential movement of the ailerons. As
more advanced aircrafts are built, more unconventional control surfaces have been
introduced, such as canards, leading-edge flaps and elevons, ganging of these controls is
less obvious. This property of the development in aircraft design and also the interest in
reconfiguration after failures in flight control has given a solid foundation for the birth of
control allocation.

The aircraft controller usually outputs the desired moments to be produced in pitch, roll,
and yaw. In order to control the aircraft, a mapping from the commanded moments in
pitch, roll and yaw onto the control surface deflections needs to be calculated. Since
redundant control surfaces are available the solution to determine the deflection of each
control surface is not unique. The task of the control allocation algorithm is to provide an
optimal mapping based on certain criteria. Three control allocation algorithms have been
implemented and tested in the Swedish developed aircraft benchmark “ADMIRE”. These
allocation algorithms include a quadratic algorithm as well as a linear, and a fixed-point
algorithm. The simulation model, “ADMIRE”, uses a delta-wing canard single engine
fighter aircraft model and the aero data is supplied by the Saab AB developed Generic
Aerodata Model (GAM). The entire simulation model is implemented in
Matlab/Simulink.

2. Aerodynamics

In order to understand aircraft control and behavior, a brief introduction to aerodynamics
is essential. Any aircraft motion is determined by the moments and aerodynamic forces
acting on the aircraft. In the following the moments and forces acting on the particular
aircraft we are working on is examined. This section is based on L. Stevens, 2003 and
Harkegard 2003.

2.1. Coordinate frames

The two frames most frequently used for describing aircraft angles and forces are the
earth-fixed frame (7) and the body-fixed frame (b). In the earth-fixed frame the 3 axes are
pointing north, east and down. This frame is useful for describing the position and
orientation of the aircraft. In the body-fixed frame the 3 axes with origin point at the
aircraft centre of gravity are pointing forward, over the right wing and down. In this
frame the inertia matrix of the aircraft is fixed thus making the frame suitable for
describing angular motions.
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Figure 1 Earth-fixed frame (i) and body-fixed frame (b)

Another coordinate frame is the wind-axes frame (w). This frame derives its x-axis from
the velocity vector of the aircraft (V). The wind-axis frame is relative to the fixed-body
frame by the angle of attack (o)) and the angle of sideslip () as shown in Figure 1.
Given any vector:

Eq. 2-1 v=e,y, =€ Vv,

its component vectors in the first two frames are related by:

VW = wavb
Eq. 2-2 T
Vb = T;)wvw = wavw
where:
cosff sinff Ofcosa 0O singf cosacosff sinff  sinacosf
T,=|—-sinf cosf 0 0 I 0 =|—cosasinff cosf —singsinpf
0 0 1 |-sinae 0 cosa —sina 0 cosa

Page 6 of 154



UNy
<) b

0 *
Flight Control Allocation using Optimization Based Linear and Quadratic programming ({L :
P7 - project fall 2004
Aalborg Universitet Esbjerg €sajen®

pALE
L311°

Since the body-fixed frame is the most frequently used, the subscript b for component
vectors for this frame will not be used further. We will simply write v=e,v

Figure 2 Illustration of aircraft orientation angles (¢, 0, ) and angular rates (p,q,r)

2.2. Aircraft variables

Considering the aircraft as a rigid body its motion can be described by its position,
orientation, velocity and angular velocity over time.

2.2.1. Position

The position vector is given by:

Eq. 2-3 p:ei(pN Pk _h)T

In the earth-fixed frame where py = position north, pz = position east and / = altitude.

2.2.2. Orientation

The orientation of the aircraft can be represented by the Euler angles:

Eq.2-4 O=(p 0 v)
where ¢ = roll angle, § = pitch angle and y = yaw angle

These angles relate the body-fixed frame to the earth-fixed frame.

2.2.3. Velocity
The velocity vector (V) is given by:

Eq. 2-5 V=el =¢eV,
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where:

V= (u v W)T
and:

v,=(, 0 o)

in the body-fixed and in the wind-axes coordinate frames respectively. Here u =
longitudinal velocity, v = lateral velocity and w = normal velocity and V7= total velocity
(airspeed).

Eq.2-6 V=T,V,=Vs(cosacosf sinf sinacosp)
Conversely, we have that

Ve=~Nu’ +v +w’

w
o = arctan—
u

.V
[ = arcsin—
T

when B = ¢ = 0 the flight path angle is defined by:
Eq. 2-7 y=0-a
as illustrated in Figure 2.

2.2.4. Angular velocity

The angular velocity for vector ® is given by:

Eq. 2-8 w=e0=e0,
o=(p q r)

O)W: Wb('o:(pw qw rw)T

in the body-fixed and wind-axes coordinates respectively. p = roll rate, g = pitch rate and
r =yaw rate. The wind-axes roll rate p,, is also known as the velocity vector roll rate since
x,, 1s parallel to the velocity vector V (see Figure 1).
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2.3. Control variables

The control variables of an aircraft consist of the thrust produced from the engine
combined with the control surfaces of the aircraft such as rudder, aileron and elevator.
The deflection of the control surfaces produces aerodynamic forces when airflow is
forced across them. The engine produces the speed control while the movement in pitch,
yaw and roll is determined by the deflections in the control surfaces (0).

In modern aircraft the control surfaces include, but is not limited to, the elevator, aileron
and rudder. For both redundancy and performance concerns modern aircraft typically
implement more than three control surfaces, see Figure 3.

Using this setup, roll control is achieved by deflecting the elevons differentially. Pitch
control is achieved by combining symmetric elevon deflection which generate a non-

minimum phase response with deflection of the canards which produces a response in the
commanded direction immediately.

Rudder

Elevons /

~<— FEngine thrust

Leading-edge flaps

Canards \\

N

Figure 3 Modern delta canard fighter aircraft

A growing interest in higher angles of attack has founded the development of thrust
vectoring. By mounting deflectable vanes at the engine exhaust it is possible to direct the
exhaust to provide additional pitching or yawing moments.

Rigid body motion

Using the variables in the former section, let us now derive a model of the aircraft
dynamics. By considering the aircraft as a rigid body allows us to use Newton’s laws of
motion to investigate the effects of the external forces and moments acting on the aircraft.
In the earth-fixed frame (i), Newton’s second law states that:

Eq.2-9 F="—|(mV)
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dt|,

Where F = total force, T = total torque, m = aircraft mass and H = angular momentum of
the aircraft.

Using Figure 1 allows us to perform the differentiation in the body-fixed frame instead.

Eq.2-10 - (mV)+oxmV
dtl,
T=i H+oxH
dt|,

As this frame is relative to the aircraft, the inertia matrix 7 is constant. The angular
momentum can be expressed as:

Eq. 2-11 H=e,w
where:
IX 0 - Xz
I=| 0 Iy
- Xz O IZ

The zero-entries are a property of the aircraft symmetry around the xz-axis. Expressing
all vectors in the body-fixed frame gives the following standard equations for rigid body
motion in terms of velocity and angular velocity:
Eq.2-12 F=mV +oxV)

T=Ilo+oxlo

Pitch, yaw and roll angle dynamics during level flight are given by:

Eq. 2-13 ¢ =
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2.4. Forces and moments

In Eq. 2-9 F and T represent the sum of forces and moments acting on the aircraft at the
centre of gravity. These forces are a combination of three major forces; gravity, engine
thrust and aerodynamic effects. F and T can therefore be expressed as:
Eq. 2-14 F=F,+F,+F,

T=T,+T,

We will now briefly investigate these components.

2.4.1. Gravity

Gravity only gives a force contribution since it acts at the aircraft center of gravity. The
gravitational force mg is directed along the normal of the earth plane and is considered to
be independent of the altitude. This gives:

0 —siné g
F.=e¢|0 |=e,mg|singcosd |=e m| g,
mg cos@sin @ g,
where:
g = g(— cosa cos fsinf + sin fsingcosd + sina cos fcos@cos 6?)
Eq. 2-15 g = g(cos asin fsin @ + cos fsingcos @ —sinasin fcos@cos 6’)

g = g(sinasin 0+ cosacosgcos (9)

using rotation around the 3 axes in Figure 2.

2.4.2. Engine

The thrust force produced by the engine is denoted by F;. Assuming the engine is
positioned to produce a force parallel to the aircraft body axis gives:

Eq.2-16 F,=¢,0
0

Also assuming the engine is positioned so the thrust point lies in the xz-plane of the
body-fixed frame offset from the center of gravity by z7p along the z-axis gives a pitching
moment:
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Eq. 2-17 T, =e¢,| Frzpp
0

If thrust vectoring is used these expressions become different and depend also on the
engine nozzle deflections.

2.5. Aerodynamics

The aerodynamic forces and moments are generated by the interaction between the
aircraft body and the surrounding air. The size and direction of the moments are
determined by the amount of air diverted by the aircraft in different directions. The
amount of air directed by the aircraft is determined by:

e The speed and density of the airflow (Vr, p)

e The geometry of the aircraft: S (wing area), b (wing span), ¢ (mean aerodynamic
chord)

e The orientation of the aircraft relative to the airflow: a, £

e The control surface deflections: 0

X VA

Figure 4 Aerodynamic forces and moments in the body-fixed frame

The aerodynamic forces and moments also depend on other variables, such as angular
rates (p,q,r) and the time derivatives of the aerodynamic angles (&, ) but these effects

are not as prominent. This motivates a standard way of modeling scalar aerodynamic
forces and moments:
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Eq.2-18

Force =

gSC, (6.0, 8. p.q.r . ...

Moment = qSIC,, (5,a,ﬂ,p,q,r,d,ﬂ...)

where the aerodynamic pressure is given by:

Eq. 2-19

o
q=—phW;

2

The aerodynamic pressure captures the density dependence and most of the speed
dependence. The remaining aerodynamic effects are determined by the dimensionless
aerodynamic coefficients Crand C,,. These coefficients are difficult to determine
analytically but can be estimated empirically through wind tunnel experiments and actual
flight tests. Typically each coefficient is written as the sum of several components each
capturing the dependence of one or more of the variables involved. These components
can be represented in several ways. A common approach is to store them in look-up
tables and use interpolation to compute intermediate values. In other approaches one tries
to fit the data to some parameterized function.

In the body-fixed frame we introduce the components:

Eq. 2-20

Eq.2-21

X X =qSC,
Y | where Y= qScC,
Z Z=qSC,
L L =gShC, (rolling moment)

M | where M =gScC, (pitchingmoment)
N N =¢gSbC, (yawingmoment)

These are illustrated in Figure 4. The aerodynamic forces are often expressed in the wind-

axes coordinate frame:

Eq.2-22

-D D =¢gSC, (dragforce)

F,=e |Y where Y =¢gSC, (side force)

—-L L =¢qSC, (lift force)

The sign convention is such that the drag force acts along the negative x,-axis in Figure 1
while the lift force is directed upwards perpendicular to the velocity vector. Using Eq.
2-2 the force components in the two frames are related by:
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D =—-Xcosacos3—Y sin f—Zsinacos
Eq. 2-23 Y =—Xcosasin f+Y cos f— Zsinasin

L=Xsina—-Zcosa

The lift force (L) opposes gravity and prevents the aircraft from falling down. The lift
generated is mainly produced from the angle of attack («).

Lift force coefficient

-20 0 20 40 60
o (deg)

Figure 5 Lift coefficient as function of angle of attack in ADMIRE
Figure 5 shows the lift coefficient C; as a function of the angle of attack for the ADMIRE
model. An increase in angle of attack leads to an increase in lift coefficient up to an angle
of 32° where Cj reaches its maximum. Beyond this angle of attack, the lift decreases.

This point is called the stall angle, which civil aircraft wants to avoid during flight —
while military aircraft can draw advantage of higher angles of attack for tactical purposes.

2.6. Gathering the equations

The equations which describe the rigid body dynamics (section 0) and forces and
moments (section 2.4) can be gathered to describe the full motion of the aircraft.
Combining Eq. 2-12 with Eq. 2-14 yields :

Body-axes force equations:

X + F, —mgsin@ = m(ii + qw—rv)
Eq. 2-24 Y +mgsingcos@ = m(v+ru— pw)
Z +mgcosgcost =m(w+ pv—qu)

Body-axes moment equations:
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L=1p—17+(I. -1 )qr—1.pq
Eq.2-25 M+ Fyzp=1g+(I, ~1)pr+1.(p* - 1)
N= Izr'—leer(ly —Ix)pqﬂx:qr

The force equations can also be expressed in the wind-axes coordinate frame in terms of
Vr, a, B, @, which gives the following equations:

. 1
v, :;(—D+FT cosa cos 3+ mg,)

Eq. 2-26 a= ! q,+ 1 (- L - F,sina +mg,)
cos 3 mV,
: 1 .
B=-r,+——(Y - F,cosasin f +mg,)

mV,

In the absence of lateral motion, i.e when p = r = ¢ = = 0, the equations of motion in
the longitudinal direction are given by:

v, =i(—D+FT cosa —mgsiny)
m

. 1 .
a:q+—(—L—FTsma+mgcosy)

mV,
Eq. 2-27 V= 1 (L + F,sina —mgcosy)
mvy
O=q
'
q:]_(M+FTZTP)

y

2.7. Control objectives

Flight control systems can be designed for several types of control objectives. Let us first
consider general maneuvering. In the longitudinal direction the normal acceleration is
defined as:

Eq.2-28 n =——

The pitch rate (¢) can be selected as the controlled variable. The pitch rate is sometimes
referred to as the normal acceleration. The normal acceleration or load factor (this factor

is often used for the lift-to-weight ratio n = —) is the normalized aerodynamic force
mg
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along the negative body-fixed z-axis, expressed as a multiple of the gravitational
acceleration (g). The normal acceleration is closely coupled with the angle of attack ().
Since a appears naturally in the equations of motion (Eq. 2-27) angle of attack command
control is also common in particular for nonlinear approaches.

For lateral control, roll rate and sideslip command control is most often chosen. For roll-
control the body-fixed x-axis may be selected as the rotation axis and p as the controlled
variable. At high angles of attack however, this choice leads to a disadvantage from the
property of a rolling motion, which produces sideslip from the angle of attack. This
property quickly leads to problems since the largest sideslip during a rolling motion is in
the order of 3-5 degrees. To remove this effect the rotation axis can instead be selected as
the x-axis of the wind-axes frame which means p,, is the controlled variable. The
resulting maneuver is known as velocity vector roll.

2.8. Application of control allocation

In flight control applications control allocation means computing control surface
deflections such that the demanded aerodynamic moments are produced. This requires a
static relationship between the commanded control deflections and the resulting
moments, i.e. servo dynamics need to be neglected.

For linear control allocation methods to be applicable the aerodynamic forces and
moments must be affine in the control deflections. In terms of the aerodynamic
coefficients in Eq. 2-18 this means:

Cr (5,x): ar (x)+ b, (x)5

Eq. 2-29 L (8.%)=a,, (x)+b, (x)

A

must hold, where x = (a,,b’, p,q,r...)

2.9. The ADMIRE model

To evaluate the designed control allocation algorithms produced in this project, the
ADMIRE model is used for simulation. The ADMIRE model consist of a single engine
delta-canard wing fighter aircraft model implemented in Matlab/Simulink and is
maintained by the Department of Autonomous Systems of the Swedish Research Agency
(FOI).
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Figure 6 ADMIRE control surface configuration

Further details about ADMIRE:

Dynamics: The dynamic model consists of the nonlinear rigid body equations
along with the corresponding equations for the position and orientation. Actuator
and sensor dynamics are included.

Aerodynamics: The aerodata model is based on the Generic Aerodata Model
(GAM) developed by Saab AB and was recently extended for high angles of
attack.

Control surfaces: The actuator suite consist of canards (left and right) leading-
edge flaps (left and right), elevons (inner, outer, right and left), a rudder and thrust
vectoring capabilities. In this project the leading edge flaps will not be used for
control allocation since these do not produce large aerodynamic moments. Thrust
vectoring will also not be used in this project as a cause of lacking documentation.
The remaining seven control surfaces are denoted in Figure 6. u denotes the
commanded deflection while ¢ represent the actual deflection.

Actuator models: The servo dynamics of the utilized control surfaces are given by
first order systems with a time constant of 0.05s, corresponding a bandwidth of 20
rad/sec. Actuator position and rate constraints are also included.Table 1 shows the
actual rate and position constraints for flight below Mach 0.5.

Flight envelope: The flight envelope covers Mach numbers up to 1.2 and altitudes
up to 6000m. Longitudinal aerodata exist up to an angle of attack of 90 degrees,
while lateral aerodata only exist for angles of attack up to 30 degrees.

Table 1 ADMIRE control surface limits below Mach 0.5

Control surface Min. deflection(deg) | Max deflection(deg) | Max. rate (deg/sec)
Canards -55 25 50
Elevons -30 30 150
Rudder -30 30 100
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3. Control allocation

As described earlier, control allocation is a mapping from the desired moments and forces
into deflections of the control surfaces. In a modern control system the control allocator
block is placed between the actuators and the designed controller. See Figure 7. The
algorithms implemented into this block must be chosen amongst many different
constrained optimization based algorithms. These include but are not limited to: least-
squares, linear programming and quadratic programming.

—L+ Control v .| Control U_,) Actuators 9 System A

law allocator dynamics
’( X _‘

Figure 7 Control allocation block diagram

y

The simplest control allocation method is based on the unconstrained least squares
algorithm with small modifications to consider position limits of the actuators. More
complex methods are derived from the constrained least squares optimization to solve the
control allocation problem. Until recently it was believed that control allocation was too
complex and computational intensive for real world use in flight control cases. However,
the recent dramatic change in computer speed and the development of more efficient
algorithms have changed the situation considerably.

In this project a few of the algorithms for control allocation are tested in the ADMIRE
Matlab/Simulink model. The ADMIRE model used is the linear model, to provide for a
brief overview of the aspect of control allocation with respect to applications of flight
control.

3.1. Control allocation - background

To introduce the ideas behind control allocation, consider the system:
Eq. 3-1 X=u,+u,

Where x is a scalar state variable, and u; and u;, are control inputs. x can be affected by
two actuators. Assume that to accelerate the object, the net force v = 1 is to be produced.
There are several ways to achieve this. We can choose to utilize only the first actuator
and select u; = 1, u; = 0, or to gang the actuators and use u; = u; = 0.5.

In linear control theory, there is a wide range of control design methods, like LQ design,
which perform control allocation and regulation in one step (Harkegérd 2003). Thus, the
usefulness of control allocation for linear systems is not so obvious. There are however
other, more practical reason to use a separate control allocation module, even for linear
system. One benefit is that actuator constraints can be taken into account. If one or more
actuator saturates, and fail to produce its nominal control effect, another actuator may be
used to make up the difference.
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3.1.1. Linear equations

The linear equations can be divided in to three groups:
/i (xj ) =0
Where

f;ER’md ,xjeRnxl

e Under-determined system m < n (fewer equations than unknowns)
e Over-determined system m > n (more equations than unknowns)
e Exact-determined system m = n (same number of equations and unknowns)

Under-determined system m <n

An underdetermined system (m < n) does not have a unique solution, it can be consistent
with infinitely many solutions or inconsistent, with no solution. If underdetermined
system has infinite number of solutions, then we can not find the solution by x = A"b =
AT(AA")'b. Then it gives minimum - norm solution with smallest ||x]|.

Over-determined system m > n
In this case there is more equations than unknowns (m > n) in the system and it is usually
inconsistent and does not have any solutions.

Exact-determined system m =n
In this case is the system consistent and there is only one solution.

3.1.2. Optimization — mathematical Background

An optimization problem can generally be described as determining values of
independent variables that correspond to a “best” or optimal solution of a function.
Chapra (2002, p. 336) defines optimization as; find x; which minimizes or maximizes f(x)
subject to:

d(x)
€ (X) =

where x is an n — dimensional design vector, f{(x) is the objective function, dj(x) are
inequality constraints, e;(x) are equality constraints, and a; and b; are constraints.

IA

a; i=12,---,m
Eq. 3-2

Optimization problems can be classified on basis of the form of f(x):

e [ff(x) and the constraints are linear we have linear programming.
e If f(x) is quadratic and the constraints are linear, we have quadratic programming.
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e Iff(x) is not linear or quadratic and the constraints are nonlinear, we have
nonlinear programming.

The constraints considered in the control allocation problems, relate only to position
constraints in the actuator suite of the aircraft. These constraints are regarded as equality
constraints in the implemented methods. Given a virtual control command v, determine a
feasible control input u such that Bu=v. this can be considered in the following way:

e If there are several solutions, pick the best.
e [fthere is no solution, determine u such that Bu approximates v as possible.

1, — norm can be used when we want to analyze how good the measured solution or
approximation is. The 1, — norm of a vector u € R" is defined as,

1
" P
Eq.33 i, - (guir’j for 1< poo
i=1
and the optimal control input is given by the solution to a two — step optimization
problem given as,

u =arg rgg”wu (u—u, )”p

Q=arg min ||wv (B-u —vmp

Umin SUSU

Interpretation:

Given Q, the set of feasible control inputs that minimize Bu-v (weighted by wy), pick the
control input that minimizes u-u4 (weighted by wy)

uq4 — desired control input

wy, Wy — weighting matrix

3.2. Control allocation problem formulation

Before beginning to examine control allocation in more detail, the initial problem must
first be defined. Consider the state-space model:

X = Ax+ Bu
Eq. 34
y =Cx

where xe R™, y e R”™ ,ue R™ are all vectors. For control of the aircraft the state

vector x can include the angle of attack, the angle of sideslip and the pitch rate. The
output vector y might contain the pitch rate, roll rate and yaw rate. The control input
vector u contains the actuator position deflections if the actuator dynamics are neglected.
If the control surfaces are ganged the number of control variables can be as small as 3,
otherwise the number of control variables (p) are usually in the range from 5 to 20.
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Model reference control laws rely on a reference model which represents the desired
dynamics of the closed-loop system. Consider the following reference model:

Eq. 3-5 Yy =A,y, +B,r,

where ry is a reference input vector, in this case the commands from the pilot and ym
represents the desired output of the system. Because the derivative of y is given by:

Eq. 3-6 y =CAx+Bu
the objective can be achieved by setting:
Eq. 3-7 u=B‘1(—CAx+AMy+BMrM)

Model matching follows if the matrix B is square and invertible and if the original system
1s minimum phase (Bodson 2002, p. 704).

If the matrix B is not square but full row rank (has more columns than rows, as in the
case with redundant actuators), the same model reference control law can be used if one
defines the desired control effect vector (v) as:

Eq. 3-8 v=-CAx+A,y+B,r,
and a control input u such that:
Eq.3-9 (Blu=v

To obtain u from Eq. 3-9 one must solve a system of linear equations with more
unknowns than equations. Although this might seem like an easy task, the vector u is
constrained. The limits generally have the form:

Eq. 3-10 u <u,<u for i=1,..,p

These constrains originate from the actuator position or rate limitations of the physical
system. Given the limits, an exact solution might not exist, despite of the redundancy.
Further, even if an exact solution exists, it cannot be assumed to be unique. Finding a
solution to Eq. 3-9 within the constraints from Eq. 3-10 is defined as the control
allocation problem.

In the light of this problem formulation, the control allocation can be further formulated
into 4 categories using mathematical formulations. These formulations all take into
consideration that a solution is not unique and might not exist.
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3.2.1. Direct allocation problem

Given a matrix B, find a real number ¢ and a vector u; such that J = ¢ is maximized,
subject to:

Eq.3-11 (B)u, = av

and u_, <u<u
Ifa>1,let:

max *

u .
u=—L_ Otherwise let u =u,
a

An advantage of direct allocation includes the straightforwardness of the allocation
problem. No design variables must be selected, since the solution to the problem is
determined by the control effectiveness matrix (B) and the constraints. When a>1 no
element in u will be saturated. A method of implementing direct allocation is by using
linear programming.

3.3. Direct control allocation discussion

The objective of direct control allocation is to find a control vector u which gives the best
approximation of v in the given direction. Thus direct control allocation weighs
directionality over moment generation, which is an important characteristic especially for
applications such as flight control. In a special case of the matrix B direct allocation
provides a unique solution to the problem. The condition for this property is that any ¢
rows of B must be linearly independent, where ¢ is the number of rows in B (Bodson,
2002). In flight control the case is most often that the rows in B are 3. In this case the
three components of v in the model reference control law is the accelerations in p, ¢ and r
as outputs are three rotational accelerations. The columns of B represent the contributions
of the various control surfaces to each of the three rotational accelerations.

3.4. Constrained optimization using linear programming

Linear programming (LP) is an optimization approach that deals with meeting a desired
objective such as minimizing cost in the presence of linear constraints such as limited
resources.

Standard form:
The basic linear programming problem, consist of two major parts:

e The objective function, and
e A set of constraints

The maximization problem, the objective function expressed as:
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maxZ =cx, +c,x, +c;x; +-+-+C, X,

Where ¢; = payoff of each unit of the j’h activity that is undertaken and x; = magnitude of
the /™ activity.
The constraints can be considered as:

a, X, +a,x, +a,x;-a,x, <b,

where a; = amount of the /" resource that is consumed for each unit of the j* activity and
b; = amount of the i resource that is available. That is, the resource is limited. The
second general type of constraint specifies that all activities must have a positive value.

x. >0

1

Together, the objective function and the constraints specify the linear programming
problem.

3.5. Cascaded generalized pseudoinverse method

Most existing methods for control allocation can be classified as pseudoinverse methods.

If we disregard the actuator constraints, these methods can be reduced from the algorithm
(Harkegérd 2003, p. 123):

u =arg ruriiglzlnwu(u -u, Mp

Q=arg min ”WV(BH - V)”p

Unin SUSU

to

min”(u —u, mz
u

Subject to Bu=v

Which has an explicit solution given by

Eq. 3-12 u=B"v
Where B+=B'(BB")-1
is the pseudo inverse of B.

The I, — norm is the most frequently used method because it can be beneficial to use on
the behave of it is a linear program which is much faster than a quadratic program.
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As stated above, the psoudoinverse solution Eq. 3-12 will not be feasible for all
attainable virtual control inputs v. various ways to accommodate to the constraints have
been proposed. The simplest alternative is to truncate Eq. 3-12 by clipping those
components that violate some constraint. However, since this typically causes only a few
control inputs to saturate, is seems natural to use the remaining control inputs to make up
the difference.

Virnig and Bodden (Héarkegard 2003, p. 124) propose a Redistributed Pseudolnverse
(RPI) scheme, in which all control inputs that violate their bounds in the pseudoinverse
solution are saturated and removed from the optimization. Then, the control allocation
problem is resolved with only the remaining control inputs as free variables. Bordignon
(Harkegard 2003, p. 124) proposes an iterative variant of RPI. Instead of only
redistributing the control effect once, the author proposes to keep redistributing the inputs
as they become saturated. This is known as the Cascaded Generalized Inverse (CGI)
approach.

The method of CGI arises from the idea that if a generalized inverse commands a control
to exceed a position limit, then that control should be set at the exceeded limit, and the
rest of the controls redistributed to achieve the desired moment. This procedure can be
used with either pseudoinverse, or generalized inverse weighted with a diagonal matrix.
Initially, a generalized inverse is computed using either:

Eq.3-13 B =B’(BB )’
or
Eq.3-14 B =N(BN) (BN(BN) |

This matrix is used to allocate the controls given in response to some desired moment.
Eq. 3-15 u=B"v

If none of the elements in the solution is saturated, then the desired moment lies within
the limits of the constraints. If any of the elements in the solutions exceeds their
constraints, the element is set equal to its constraint, and their effects at saturation are
subtracted from the desired moment. The effect of a saturated control is equivalent to the
control position multiplied by the column of the B matrix which corresponds to that
control. The resulting moment is the part of the moment demand that must be satisfied by
the remaining controls which is denoted u,. For example, if the i control saturates:

Eq. 3-16 Uy = U0 u, —Buy

Sat)

Next, the saturated controls are removed from the problem. When a pseudoinverse is
used, this is done by removing the corresponding column, B;, from B. The reduced B
matrix is denoted B*. The new pseudoinverse is then computed by plugging B* into Eq.
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3-13 or Eq. 3-14 to get B*". Now the new solution is once again checked for saturation.
If there is saturated elements, the algorithm runs one more time according to the above
method.

Ultimately, either no new control will be saturated, or all the remaining controls are
saturated, or the reduced B will have n or fewer columns. When no new controls are
saturated, an admissible solution is found. If all the controls are saturated, the controls are
set to their limits and the moment is unattainable using this method.

In the following we will try to demonstrate the concept of the CGI through an example.

3.5.1. An example

Take the case where:

The initial values for uq is given by:
u,=[0 of

The pseudoinverse solution is given by:

u, . 0.4 1.4
=B"-v= 3.5=
U, 0.2 0.7
u 1s infeasible since this control saturates at #; = 1. The control allocation problem is

resolved with only u; as free variable. Replacing the original B matrix byINB = [0 1] the
virtual control input that should be produced by u, is given by

And the solution is then given by:
u,=B"-v=1.15=15

which is feasible since v=2-1+1.5=3.5 and the algorithm stops. In this case, Cascade
Generalized Inverse (CGI) was successful since the output:
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u, 1
u= =
u, 1.5

is the true solution, though this is not always true.

0 »

1 2
0 u;

Figure 8 Successful case

An example where the algorithm fails to find the optimal solution could be if the

constrains in the above example was set to

0<u, <1
1<u,<2

Running the algorithm with this constrains will after the first iteration set «; = 1.4 and u,

=0.7

L

which is an incorrect result.

2
Uz 1 uw "
0 ul
0 1 2
Uj

Figure 9 Failing case

Using CGI it is not guaranteed that the optimal solution is found.

And after the constraints are inserted u;= u, = 1 this will give the result
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3.6. Linear programming method

Bodson re-formulated direct control allocation as a linear programming problem by e-
mail the 27" November 2004, and based on this definition, we can derive the following
linear programming problem.

When re-defining the control allocation problem to fit into linear programming
formulation, a standard form must be followed. Linear programming implies this standard
form:

Eq. 3-17 Ax<b
subject to:
Eq. 3-18 Xppin SXS X0

In our optimization problem, we must find a vector x which minimizes:

Eq. 3-19 J=c'x
subject to:
Eq. 3-20 0<x<h, Ax=b

To obtain a linear programming problem in its standard form from the control allocation
problem, a matrix M must be defined. The largest element of v must be identified
beforehand. The largest element in v is denoted v, while the two remaining elements
of v are defined as v; and v,. According to the position of the largest element in v, M is
defined. The index of M corresponds to the position of the largest element in v. The
matrix M is then defined as one of three cases:

- Vmax 0 V] - Vmax vl 0 V2 - Vmax 0
Eq.3-21M, = M, = » M, =
0 “Vox Vs 0 v, =V, v, 0 —v

max

Using this M matrix, we can define the linear programming problem in standard form, by
defining the matrix A, the vectors b, h and ¢'. We proceed by defining A:

Eq. 3-22 A=M*B
We need A to define b, which is then defined as:
Eq. 3-23 b=-A-x__

Proceeding to define h, we have:
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Eq. 3-24 h=x__ —-x_.

The objective function (¢") must also be defined according to the problem. We define ¢"
as:

Eq. 3-25 ¢ =-B'v

The equations are then set up in a standard linear programming tableau, and the linear
programming problem is then solved. In our implementation the MATLAB function
“linprog” is used. The solution vector (x) must then be scaled according to the scaling
factor (a). According to the value of the scaling factor, a logical choice is made to
determine whether or not the solution vector should be scaled. If the scaling factor is
larger than one, the solution vector should be.

The scaling factor is calculated as:

Eq.3-26 a=

3.6.1. An example

Using the data from the example from the pseudoinverse method, we have:

12 0 1 00O
Eq. 3-27 v={v,|[=|9|, B=|{0 1 01
v, 0 00111
-5 5
-10 10
Where <u<
-2 2
-1 1

We proceed by defining M. Since the largest element of v is vy,

M is defined as:

-9 0 O
Eq.3-28 M=
0 0 -9

Following the procedure described above and using Eq. 3-22, we define A:
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1 00O
-9 0 O -9 0 0 O
Eq. 3-29 A:[ }0 1 00 :[ }
0 0 -9 0 0 0 O
0011
Using Eq. 3-23 we define b:
-5
9 0 0 0 ||-10 —45
Eq. 3-30 b= . -
009 9 ||-2 -27
-1
Using Eq. 3-24 we define h:
5 -5 10
10| |-10] |20
Eq. 3-31 h= — =
2 -2 4
-1 2

Using Eq. 3-25 we define the objective function (c").

-1 0 O 0
0 -1 0 0 9
Eq. 3-32 ¢ = 19|=
0 0 -1 0
0
0 -1 -1 -9

Writing the linear programming tableau, we define the following:

X4 X2 X3 X4 b

c 0 -9 0 -9 0
R4 -9 0 0 0 -45
R, 0 0 -9 -9 =27

Where row c is the objective function and R; and R, are the rows of A.

Looking at the objective function, it can be seen that we must increase X, and X4 to
obtain a better value of the objective function. To do this, both X, and X4 is driven to
their saturated values. X, =20, X4 = 2.

We obtain the following tableau:
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X X3 b
c 0 0 0
Rj -9 0 -45
Ry 0 -9 -9

This gives an easy solution for both X; and X3. X; =5 and X5 =1

The x vector then becomes:

Eq.3-33 |

Before we arrive at the final solution, we must first return from the linear programming
problem definition, and obtain a formulation for use with the control allocation problem.

Continuing to use Bodson’s formulation, we calculate:

Eq.3-34
-1

At last, the scaling factor must be calculated and applied to the solution if appropriate.

Using the following formula, the scaling factor is calculated:

(Bu)'v 99
Eq. 3-35 = m = a

Since a>1, all elements of u must be divided by a to complete the calculations. This gives

a final solution of:
0
8.1818
Eq. 3-36 u=
-0.8181
0.8181

In order to find out whether this solution produces the right moment in the right direction,

we can calculate:
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0

1 00O 0
8.1818

Eq. 3-37 v=Bu=|{0 1 0 1] =9
-0.8181

0 011 0
0.8181

This calculation concludes that the solution found using linear programming is correct.

3.7. Fixed-point method

The fixed-point algorithm is simple. Many of the computations need to be performed
only once before iterations starts. Remarkably, the algorithm also provides an exact
solution to the optimization problem, and it is guaranteed to converge. Its drawback is
that convergence of the algorithm can be very slow and strongly dependant on the
problem. (The number of iterations required can vary by orders of magnitude depending
on the desired vector.) In addition, the choice of the parameter ¢ is delicate, as affects the
objectives, as well as the convergence of the algorithm. Bodson (2002). The fixed-point
method is based upon the mixed allocation problem.

This section is based on Hirkegérd (2003).

The fixed-point method finds the control input vector u that minimizes:
Eq. 3-38 J= (1 - 8)||Bu - V”z + 8”11”2

subject t0 Umin < U < Umax

In this case we use /;, — norm and consider the initial value ug = 0. The algorithm
becomes:

u,, = sat[(l - g)nBTV - (nM - I)uk]

Eq. 3-39 _(Fv—Gn,)
where:
Eq. 3-40 M=(1-¢)B" +él
and:
Eq. 3-41 n= L

M,

Sat () is the saturation function that clips the components of the vector u to their
allowable value.
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u; U, <u,
Eq. 3-42 sat,(u) =4 u, u, <u; <u; i=123,...
Ui, u; > Ui

This algorithm provides an exact solution to the optimisation problem, and guaranteed to
converge.

The convergence can though be very slow. Therefore is it very essential to find a proper
value €. There is a trade-off; a large value speeds up the convergence but makes it hard
for the algorithm to find the exact solution. A small value for ¢ leads to slightly slower
convergence but the algorithm converges closer to its optimal solution.

The fixed-point algorithm can be interpreted as a gradient search method where the
iterations are clipped to satisfy the constraints.

3.71.

Consider the following:

An example

v=3

B=[2 1]
umin:[_l _I]T
U =[1 1]
£ =0.001

u= (umin +umax) = u=
2 2

To compute the output we use:

Eq. 3-43 u,, =(Fv-Gu,)
where:
Fv=(1-¢)n-B v
2
=(1—0.001)~0.2002~H-3
[1.1998
10.5999
and:
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G=n-M-1

3.9970 1.9980| |1 O
=0.2002- -

1.9980 1.0000| [0 1

_[-0.2000  0.3999
1 0.3999 -0.7998

where:
1
n=-——
M,
B 1
3.9970 1.9980
1.9980 1.0000 ,
=0.2002
where:

M = (0-:c)B"B )+ sl
@-0.001 Y2 1T[2 1]+ o.o01 “) ﬂ

3.9970 1.9980
1.9980 1.0000

Inserting the above F and G matrices into Eq. 3-43 gives:
1.1998 3.9970 1.9980 0 1.1998
u, = — =
" 10.5999 | [1.9980 1.0000 | 0 0.5999

The next thing is to check if any element in u; exceed the saturation limit. This is done
according to:

u;, U <u
sat,(w) =qu,, u, <u, <u; i=12
Ui, U, >ui

If one of the outputs exceeds the constraints it will be set equal to the constraint.
This gives a new u;:
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_[1.0000
" 10.5999

|

Now we are ready to do the next iteration. In the following table the results of the
iterations are given with the initial guess of uy = 0:

Table 2: results from each iteration

Iteration no. |ul u2 error for ul error for u2
0 0,0000 0.0000 {100.000 100.000
1 1.0000 |0.5999 [0.000 40.010
2 1.0000 |0.6798 [0.000 32.020
3 1.0000 |0.7437 [0.000 25.630
4 1.0000 |0.7948 [0.000 20.520
5 1.0000 |0.8357 [0.000 16.430
6 1.0000 |0.8683 [0.000 13.170
7 1.0000 |0.8945 [0.000 10.550
8 1.0000 |0.9154 [0.000 8.460

9 1.0000 |0.9321 [0.000 6.790
10 1.0000 |0.9455 [0.000 5.450

Of course it is necessary to do more iterations to achieve the correct solution in this
example, but it can be seen clearly that u converges to the optimal solution. In this
calculated example, the correct solution was achieved after 98 iterations.

From this example it can be concluded that the fixed-point algorithm works properly. Of
curse it should be kept in mind that this algorithm is slow. The reason for this is the
relatively high number of iterations required before a solution can be found.
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4. Mathematical simulation

After implementing the algorithms in MATLAB a preliminary test was conducted in
order to test the algorithms with a pre-determined input. Since ADMIRE contains a
controller, the input to the allocation algorithms are determined by the controller, and not
directly by the input given. In order to test the algorithms in a fully controllable
environment a small simulation model was setup.

4.1. Test of algorithm

In the following section, a test of the three implemented algorithms will be described and
carried out. The algorithms included in this test is; Fixed-point (FIX); Pseudoinverse also
called Cascading Generalized Inverse (Pinv); and Direct Control Allocation using linear
programming (DCA). The algorithms are set up in a simulink model where they can be
tested simultaneously.

:I setpoint :I output from Pinv.
From - '\'fﬁ;rcl{lpo\f 4 p| Bb*u ]
Workspace1
Pinv Achieved moment
1 output from FIX  sub B1 in P,Q and R
From > MATLlAB A ol Bor 0 [
Workspace2 Function
FIX_point Achieved moment
b B2 i
] output from DCA su in P,Q and R1
From MATLAB A —
Workspace3 > > *
sp "] Function P BbTu
DCA Achieved moment
sub B3 in P,Q and R2

Figure 10: Simple simulations model

The algorithm will be tested with a number of different input, step input, ramp input and
parabola input created by the m. file input_simple. The outcome of the various tests will
be plotted with help from the m. file plot _simple ADMIRE. The tests will be run for 5

sec, used the ODE 4 (Runge Kutta) with a fixed step size at 0.08 method from simulink.

The test section is divided into three parts: Step input, ramp input and parabola input.

4.2. Step input

The step input tests are conducted by giving the input vector equal magnitude in each
element, hence p=g=r for each test. The test sequence is given by the following table:

Table 3 Step input sequence

Test: Step magnitude
1 Zero input
2 50N
3 -50N
4 100N
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5 -100N

6 200N

7 -200N

8 300N

9 -300N

10 400N

11 -400N

4.2.1. 1%'test run, zero input
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Figure 11: 1* test run, desired moment and achieved moment

As it can be seen the input set point for P, Q, and R equals zero. The results from Pinv
and DCA lies exactly on top of the curve representing the input signal. The achieved
moment for FIX gives for P approximately 5.1 and for Q approximately -0.078 and last R
approximately -13.5. This is not preferable because it commands the actuators to produce
a moment which does not correspond the input.
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Figure 12: 1* test run, deflections for Right inner and outer elevon and Left inner and outer elevon

The graph in the top shows the desired deflection for the right outer elevon. As it can be

seen the curves for Pinv and DCA tracks at zero. The curve for Fix lies at approximately

3.3.

The second graph shows the desired deflection for the right inner elevon. The curves for
Pinv and DCA again tracks zero. The curve for FIX follows at -5.4.
A look at the last two graphs will reveal that they are identical with the two first. The

moment produced differs from the commanded moment when using FIX, while both Pinv
and DCA tracks the commanded moment properly.
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Figure 13: 1* test run, deflections for Right and Left canard and the rudder
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The graph in the top shows the desired deflection for the left canard. As it can be seen
both Pinv and DCA tracks at zero. The curve for FIX lies at approximately -11.5.

The second graph shows the desired deflection for the left canard. Both Pinv and DCA
tracks at zero. The curve for Fix lies at approximately -11.5.

The bottom graph shows the desired deflection for the rudder. Pinv and DCA tracks at
zero. The curve for FIX lies at approximately 0.0034.

1.1.1.1. Summary

From this first test run it can be stated that the algorithm for Pinv and DCA tracks the
desired input quite good. The FIX algorithm has an offset according to the desired input.
The reason for this is that it in the start of the algorithm finds an initial start value.
However, because there isn’t any contribution from the desired input, the outputs are set
to the initial value. This property has the negative effect that it commands the actuators to
produce some moment while zero moment is commanded.
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4.2.2. 2" test run, step input
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Figure 14: 2" test run, desired moment and achieved moment

As it can be seen the input set point equals a step input of 50 at one sec. delay for P, Q,
and R. The results from Pinv, DCA, and FIX lies on top of the commanded input and
tracks it fine.
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Figure 15: 2" test run, deflections for Right inner and outer elevon and Left inner and outer elevon

The graph in the top shows the deflection for the right outer elevon. As it can be seen the
curves goes for Pinv approximately to -2.4 and DCA goes to -4.6 after the step input. The
curve for Fix goes approximately to -3.6 from an initial point at -3.3.

The second graph shows the deflection for the right inner elevon. As it can be seen the
curves for Pinv goes approximately to -4.2 and DCA goes to -4.6 after the step input. The
curve for Fix goes approximately to -9.8 from an initial point at -5.3.

The third graph shows the deflection for the left outer elevon. As it can be seen goes the
curves for Pinv approximately to -0.4 and DCA goes to -4.6 after the step input. The
curve for Fix goes approximately to -3.6 from an initial point at -3.3.

The graph at the bottom shows the deflection for the left inner elevon. As it can be seen
the curves stabilizes for Pinv around zero and DCA goes to 2 after the step input. The
curve for Fix is almost stable at approximately -5.2.
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Figure 16: 2" test run, deflection for Right and Left canard and the rudder

The graph in the top shows the deflection for the left canard. As it can be seen the curves
for Pinv goes to 2.5 and DCA goes to 4. The curve for Fix goes approximately to -8.5
from an initial value at -12.

The second graph shows the desired deflection for the left canard. As it can be seen the
curves for Pinv goes to 0.5 and DCA goes to -4.4. The curve for Fix goes approximately
to -11.4 from an initial value at -11.6.

The bottom graph shows the desired deflection for the rudder. As it can be seen the
curves for Pinv goes to -4.8 and DCA goes also to -4.8. The curve for FIX goes
approximately to -6.2.

Page 41 of 155



UNy
<) b

0 *
Flight Control Allocation using Optimization Based Linear and Quadratic programming ({L |
P7 - project fall 2004 /

Aalborg Universitet Esbjerg €sajen®

pALE
L311°

Moment Directions
PN

[ — Pinv

- —— DCA

~ o —— Desired

50

40

30

20

< OS5 WO~ A 22—

-10
50

Moment, Q, (N)

Moment, P, (N)

Figure 17: 2" test run, the vector of moment shoving the direction of the desired and achieved
moment

The above figure shows the tracking of the desired moment and its direction. And as it
can be seen from the figure, all the other curves lie on top of each other and all algorithms
track the desired moment fine.

1.1.1.2. Summary

In this test run can it be seen that all three algorithms track the desired input moment. A
look at the deflections of the control surfaces reveals that the deflections demanded by
the FIX algorithm is lager then for the two other algorithms.
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4.2.3. 3" test run, step input
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Figure 18: 3™ test run, desired moment and achieved moment

As it can be seen the input set point equals a step input of -50 at one sec. delay for P, Q,
and R. The result from Pinv, DCA and FIX lies under the desired input and tracks it.
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Figure 19: 3" test run, deflection for Right inner and outer elevon and Left inner and outer elevon
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The graph in the top shows the deflection for the right outer elevon. As it can be seen the
curves for Pinv goes approximately to 2.4 and DCA goes to 4.6 after the step input. The
curve for Fix goes approximately to 1 from an initial point at -3.2.

The second graph shows the deflection for the right inner elevon. As it can be seen the
curves for Pinv goes approximately to 4.2 and DCA goes to 4.6 after the step input. The
curve for Fix goes to approximately -1 from an initial point at -5.3.

The third graph shows the deflection for the left outer elevon. As it can be seen the curves
for Pinv goes approximately to -0.4 and DCA goes to -4 after the step input. The curve
for Fix goes approximately to -3.3 from an initial point at -3.6.

The bottom graph shows the deflection for the left inner elevon. As it can be seen is the
curve for Pinv stable around zero and DCA goes to -3.3 after the entrees of the step. The
curve for Fix is almost stable at approximately -5.2.
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Figure 20: 3" test run, deflection for Right and Left canard and the rudder

The graph at the top shows the deflection for the left canard. As it can be seen the curves
for Pinv goes to -2.5 and DCA goes to 7.5. The curve for Fix goes approximately to -14
from an initial value at -12.

The second graph shows the deflection for the left canard. As it can be seen the curves
for Pinv goes to -0.5 and DCA goes to 3.5. The curve for Fix goes approximately to -11.6
from an initial value at -11.4.

The bottom graph shows the deflection for the rudder. As it can be seen the curves for
Pinv and DCA goes to 4. The curve for FIX goes approximately to 6.2.
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Figure 21: 3" test run, the vector of moment shoving the direction of the desired and achieved

moment

The above figure shows the detection of the desired moment. And as it can be seen all the

curves lie on top of each other.

1.1.1.3. Summary

In this test run can it be seen that the entire three algorithm tracks the desired input
moment. A look at the desired output deflection of the control surfaces can reveal that
deflection demanded by the FIX algorithm is lager then for the two other algorithms.
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Figure 22: 4" test run, desired moment and achieved moment

As it can be seen the input set point equals a step input of 100 at one sec. delay for P, Q,
and R. The result from Pinv, DCA and FIX lies under the desired input and tracks it
fine.
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Figure 23: 4™ test run, deflection for Right inner and outer elevon and Left inner and outer elevon

The graph at the top shows the deflection for the right outer elevon. As it can be seen the
curves for Pinv goes approximately to -4.8 and DCA goes to -9.5 after the step input. The
curve for Fix goes approximately to -8.1 from an initial point at -3.3.

The second graph shows the deflection for the right inner elevon. As it can be seen the
curves for Pinv goes approximately to -8 and DCA goes to -8.5 after the step input. The
curve for Fix goes approximately to -14 from an initial point at -5.3.

The third graph shows the deflection for the left outer elevon. As it can be seen the curves
for Pinv goes approximately to -0.4 and DCA goes to -9.2 after the step input. The curve
for Fix goes approximately to -4 from an initial point at -3.3.

The bottom graph shows the deflection for the left inner elevon. As it can be seen the
curves stabilizes for Pinv around zero and DCA goes to 4 after the step input. The curve
for Fix is almost stable at approximately -5.2.
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Figure 24: 4™ test run, deflection for Right and Left canard and the rudder

The top graph shows the deflection for the left canard. As it can be seen the curves for
Pinv goes to 5.1 and DCA goes to 7.5. The curve for Fix goes approximately to -6.5 from
an initial value at -12.

The second graph shows the deflection for the left canard. As it can be seen the curves
for Pinv goes to 0.5 and DCA goes to -9. The curve for Fix goes approximately to -11
from an initial value at -11.5.

The bottom graph shows the deflection for the rudder. As it can be seen the curves for
Pinv and DCA goes to -8. The curve for FIX goes approximately to -12.
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Figure 25: 4™ test run, the vector of moment shoving the direction of the desired and achieved
moment

The above figure shows the tracking of the desired moment. And as it can be seen all the
curves lie on top of each other.

1.1.1.4. Summary

In this test run can it be seen that the entire tree algorithm tracks the desired input
moment. A look at the desired output deflection of the control surfaces can reveal that
deflection demanded by the FIX algorithm is larger than for the two other algorithms.
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Figure 26: 5" test run, desired moment and achieved moment

As it can be seen the input set point equals a step input of -100 at one sec. delay for P, Q,
and R. The result from Pinv, DCA and FIX lies under the desired input and tracks it
fine.
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Figure 27: 5" test run, deflections for Right inner and outer elevon and Left inner and outer elevon

The top graph shows the deflections for the right outer elevon. As it can be seen the
curves for Pinv goes approximately to 4.8 and DCA goes to -7 after the step input. The
curve for Fix goes approximately to 1.5 from an initial point at -3.3.

The second graph shows the deflections for the right inner elevon. As it can be seen the
curves for Pinv goes approximately to 8 and DCA goes to 7.5 after the step input. The
curve for Fix goes approximately to 3.5 from an initial point at -5.3.

The third graph shows the deflections for the left outer elevon. As it can be seen the
curves for Pinv goes approximately to 0.4 and DCA goes to 8 after the step input. The
curve for Fix goes approximately to -2.8 from an initial point at -3.3.

The bottom graph shows the deflections for the left inner elevon. As it can be seen are the
curves for Pinv stable around zero and DCA goes to -6.5 after the step input. The curve
for Fix is almost stable at approximately -5.2.
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Figure 28: 5™ test run, deflections for Right and Left canard and the rudder

The top graph shows the deflections for the left canard. As it can be seen the curves for
Pinv goes to -5.1 and DCA goes to -14.9. The curve for Fix goes approximately to -17
from an initial value at -12.

The second graph shows the deflections for the left canard. As it can be seen the curves
for Pinv goes to -0.5 and DCA goes to 7. The curve for Fix goes approximately to -12
from an initial value at -11.

The third graph shows the deflections for the rudder. As it can be seen the curves for Pinv
goes to 8 and DCA goes to also to 8. The curve for FIX goes approximately to 12.5.
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Figure 29: 5™ test run, the vector of moment shoving the direction of the desired
moment

and achieved

The above figure shows the tracking of the desired moment. And as it can be seen all the

curves lie on top of each other.

1.1.1.5. Summary

In this test run can it be seen that all three algorithms track the desired input moment. A
look at the desired output deflection of the control surfaces reveal that the deflections

demanded by the FIX algorithm is larger than for the two other algorithms.
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Figure 30: 6" test run, desired moment and achieved moment

As it can be seen the input set point equals a step input of 200 at one sec. delay for P, Q,
and R. The result from Pinv, DCA and FIX lies under the desired input and tracks it fine.
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Figure 31: 6" test run, deflection for Right inner and outer elevon and Left inner and outer elevon
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The top graph shows the deflection for the right outer elevon. As it can be seen the curves
for Pinv goes approximately to -9.5 and DCA goes to -18 after the step input. The curve
for Fix goes approximately to -14 from an initial point at -3.3.

The second graph shows the deflection for the right inner elevon. As it can be seen the
curves for Pinv goes approximately to -17.5 and DCA goes to -18 after the step input.
The curve for Fix goes approximately to -23 from an initial point at -5.3.

The third graph shows the deflection for the left outer elevon. As it can be seen the curves
for Pinv goes approximately to -2 and DCA goes to -18 after the step input. The curve for
Fix goes approximately to -4.8 from an initial point at -3.3.

The bottom graph shows the deflection for then left inner elevon. As it can be seen the
curves for Pinv stabilizes around zero and DCA goes to 8 after the step input. The curve
for Fix is almost stable at approximately -5.2.
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Figure 32: 6" test run, deflection for Right and Left canard and the rudder

The top graph shows the deflection for the left canard. As it can be seen the curves for
Pinv goes to 10.1 and DCA goes to 15.1. The curve for Fix goes approximately to -1
form an initial value at -12.

The second graph shows the deflection for the left canard. As it can be seen the curves
for Pinv goes to1.5 and DCA goes to -17.5. The curve for Fix goes approximately to -
10.4 from an initial value at -12.

The bottom graph shows the deflection for the rudder. As it can be seen the curves for
Pinv goes to -18 and DCA goes to also to -18. The curve for FIX goes approximately to -
25.
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Figure 33: 6" test run, the vector of moment shoving the direction of the desired and achieved
moment

The above figure shows the tracking of the desired moment. And as it can be seen all the
curves lie on top of each other.

1.1.1.6. Summary

In this test run can it be seen that the entire three algorithm tracks the desired input
moment. A look at the desired output deflection of the control surfaces can reveal that
deflection demanded by the FIX algorithm is lager then for the two other algorithms.
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Figure 34: 7" test run, desired moment and achieved moment

5

As it can be seen the input set point equals a step input of -200 at one sec. delay for P, Q,
and R. The result from Pinv, DCA and FIX lies under the desired input and tracks it fine.
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Figure 35: 7™ test run, deflection for Right inner and outer elevon and Left inner and outer elevon

The top graph shows the deflection for the right outer elevon. As it can be seen the curves
for Pinv goes approximately to 9.6 and DCA goes to 14 after the step input. The curve for
Fix goes approximately to 6.5 from an initial point at -3.3.

The second graph shows the deflection for the right inner elevon. As it can be seen the
curves for Pinv goes approximately to 17.5 and DCA goes to 16 after the step input. The
curve for Fix goes approximately to 12.5 from an initial point at -5.3.

The third graph shows the deflection for the left outer elevon. As it can be seen the curves
for Pinv goes approximately to 2 and DCA goes to 17 after the step input. The curve for
Fix goes approximately to -2.3 from an initial point at -3.3.

The bottom graph shows the deflection for the left inner elevon. As it can be seen the
curves for Pinv stabilizes around zero and DCA goes to -13 after the step input. The
curve for Fix is almost stable at approximately -5.2.
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Figure 36: 7™ test run, deflection for Right and Left canard and the rudder

The top graph shows the deflection for the left canard. As it can be seen the curves for
Pinv goes to -10.1 and DCA goes to -29. The curve for Fix goes approximately to -1 form
an initial value at -22.

The second graph shows the deflection for the left canard. As it can be seen the curves
for Pinv goes to -1.5 and DCA goes to 13.5. The curve for Fix goes approximately to -
12.5 from an initial value at -11.

The bottom graph shows the deflection for the rudder. As it can be seen the curves for
Pinv and DCA goes to 17. The curve for FIX goes to at approximately 25.
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Figure 37: 7™ test run, the vector of moment shoving the direction of the desired and achieved

moment

The above figure shows the tracking of the desired moment. And as it can be seen all the

curves lie on top of each other.

4.2.8. Summary

In this test run can it be seen that all three algorithm track the desired input moment. A
look at the desired output deflection of the control surfaces can reveal that deflection
demanded by the FIX algorithm is larger than for the two other algorithms.
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Figure 38: 8" test run, desired moment and achieved moment

As it can be seen the input set point equals a step input of 300 at one sec. delay for P, Q,
and R. In the top graph, the curve for Pinv goes approximately to -190, and the curve for
DCA goes approximately to 300 and the curve for FIX lays under the curve for DCA.

In the middle graph, the curve for Pinv goes approximately to 250, and the curve for
DCA goes approximately to 300 and the curve for FIX lays under the curve for DCA.

In the bottom graph, the curve for Pinv goes approximately to 160, and the curve for
DCA goes approximately to 300 and the curve for FIX lays nearly under the curve for

DCA.
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Figure 39: 8" test run, deflection for Right inner and outer elevon and Left inner and outer elevon

The top graph shows the deflection for the right outer elevon. As it can be seen the curves
for Pinv goes approximately to 30 (saturated) and DCA goes to -28 after the step input.
The curve for Fix goes to -19 from an initial point at -3.3.

The second graph shows the desired deflection for the right inner elevon. As it can be
seen the curves for Pinv goes approximately to -26 and DCA goes to -26 after the step
input. The curve for Fix goes to -30 (saturated) from an initial point at -5.3.

The third graph shows the deflection for the left outer elevon. As it can be seen the curves
for Pinv goes approximately to 30 (saturated) and DCA goes to -28 after the step input.
The curve for Fix goes approximately -28 from an initial point at -3.3.

The bottom graph shows the deflection for the left inner elevon. As it can be seen the
curves for Pinv goes to -30 (saturated) and DCA goes to 12 after the step input. The curve
for Fix goes to 2.5 from the initial point -5.3.
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Figure 40: 10™ test run, desired deflection for Right and Left canard and the rudder

The top graph shows the deflection for the left canard. As it can be seen the curves for
Pinv stays at zero and DCA goes to 25 (saturated). The curve for Fix goes to 25
(saturated) from an initial value at -12.

The second graph shows the deflection for the left canard. As it can be seen the curves
for Pinv goes to 25 (saturated) and DCA goes to -27. The curve for Fix goes to
approximately -22 from an initial value at -11.5.

The bottom graph shows the deflection for the rudder. As it can be seen the curves for
Pinv goes to -27.5 (saturated) and DCA goes to -27.5 the curve for Fix goes to at
approximately -30(saturated) from an initial value at 0.
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Figure 41: 10™ test run, the vector of moment shoving the direction of the desired and achieved
moment

The above figure shows the tracking of the desired moment. The curves for Pinv can not
track the desired moment direction. DCA and FIX tracks the desired moment direction
quite good.

1.1.1.7. Summary

In this test run can it be seen that only the FIX and DCA algorithms track the desired
input moment. The Pinv algorithm can’t track the desired input. The Pinv algorithm also
produces a wrong direction of the moment generated by the control surface deflections.
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Figure 42: 9" test run, desired moment and achieved moment

As it can be seen the input set point equals a step input of 300 at one sec. delay for P, Q,
and R. In the top graph, the curve for Pinv goes approximately to 120, and the curve for
DCA goes approximately to -300 and the curve for FIX lies under the curve for DCA.
In the middle graph, the curve for Pinv goes approximately to -360, and the curve for
DCA goes approximately to -300 and the curve for FIX lies under the curve for DCA.
In the bottom graph, the curve for Pinv goes approximately to 120, and the curve for
DCA goes approximately to 300 and the curve for FIX lies nearly under the curve for

DCA.
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Figure 43: 9™ test run, deflection for Right inner and outer elevon and Left inner and outer elevon

The top graph shows the deflection for the right outer elevon. As it can be seen the curves
for Pinv goes approximately to -30 (saturated) and DCA goes to 21 after the step input.
The curve for Fix goes to 5 from an initial point at -3.3.

The second graph shows the deflection for the right inner elevon. As it can be seen the
curves for Pinv goes approximately to 30 (saturated) and DCA goes to 24 after the step
input. The curve for Fix goes to 28 from an initial point at -5.3.

The third graph shows the deflection for the left outer elevon. As it can be seen the curves
for Pinv goes approximately to -30 (saturated) and DCA goes to 24 after the step input.
The curve for Fix goes approximately to 5 from an initial point at -3.3.

The bottom graph shows the deflection for the left inner elevon. As it can be seen the
curves for Pinv goes to 30 (saturated) and DCA goes to -19 after the step input. The curve
for Fix goes to -12.5 from the initial point -5.3
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Figure 44: 9" test run, deflection for Right and Left canard and the rudder

The top graph shows the deflection for the left canard. As it can be seen the curves for
Pinv stays around zero and DCA goes to -50. The curve for Fix goes to -40 from an initial

value at -12.

The second graph shows the deflection for the left canard. As it can be seen the curves
for Pinv goes to -55 (saturated) and DCA goes to 20. The curve for Fix goes

approximately to 0 from an initial value at -11.5.

The bottom graph shows the deflection for the rudder. As it can be seen the curves for
Pinv goes to 30 (saturated) and DCA goes to -24. The curve for Fix goes to at

approximately -30(saturated) from an initial value at 0.
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Figure 45: 9™ test run, the vector of moment shoving the direction of the desired and achieved
moment

The above figure shows the detection of the desired moment. The curves for Pinv can not
track the desired moment direction. DCA and FIX tracks the desired moment direction
quite good.

1.1.1.8. Summary

In this test run it can be seen that only the algorithm for FIX and DCA tracks the desired
input moment. The Pinv algorithm can’t track the desired input. Many actuators reach
saturation when using the Pinv algorithm, hence it becomes difficult to keep
directionality. The direction of the moment for Pinv algorithm is off track.
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Figure 46: 10™ test run, desired moment and achieved moment

As it can be seen the input set point equals a step input of 400 at one sec. delay for P, Q,
and R. In the top graph, the curve for Pinv goes approximately to -180, and the curve for
DCA goes approximately to 320 and the curve for FIX lies under the curve for DCA.

In the middle graph, the curve for Pinv goes approximately to 250, and the curve for
DCA goes approximately to 320 and the curve for FIX goes approximately to 370.

In the bottom graph, the curve for Pinv goes approximately to 160, and the curve for
DCA goes approximately to 320 and the curve for FIX goes approximately to 330.

As it can be seen, none of the achieved moments track the desired moments.
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Figure 47: 10™ test run, deflection for Right inner and outer elevon and Left inner and outer elevon

The top graph shows the deflection for then right outer elevon. As it can be seen the
curves for Pinv goes approximately to 30 (saturated) and DCA goes to -30 (saturated)
after the step input. The curve for Fix goes to -30 (saturated) from an initial point at -3.3.
The second graph shows the deflection for then right inner elevon. As it can be seen the
curves for Pinv goes approximately to -30 (saturated) and DCA goes to -30 (saturated)
after the step input. The curve for Fix goes to -30 (saturated) from an initial point at -5.3.
The third graph shows the deflection for then left outer elevon. As it can be seen the
curves for Pinv goes approximately to 30 (saturated) and DCA goes to -30 (saturated)
after the step input. The curve for Fix goes approximately to -28 from an initial point at -
3.3.

The bottom graph shows the deflection for then left inner elevon. As it can be seen the
curves for Pinv goes to -30 (saturated) and DCA goes to 13 after the step input. The curve
for Fix goes to 15 from the initial point -5.3.
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Figure 48: 10™ test run, deflection for Right and Left canard and the rudder

The top graph shows the deflection for the left canard. As it can be seen the curves for
Pinv stays around zero and DCA goes to 25 (saturated). The curve for Fix goes to 25
(saturated) from an initial value at -12.

The second graph shows the deflection for the left canard. As it can be seen the curves
for Pinv goes to 25 (saturated) and DCA goes to -28. The curve for Fix goes
approximately to -12.5 from an initial value at -11.

The bottom graph shows the deflection for the rudder. As it can be seen all the curves go
to -30 (saturated).
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Figure 49: 10™ test run, the vector of moment shoving the direction of the desired and achieved
moment

The above figure shows the detection of the desired moment. The curves for Pinv and Fix
can not track the desired moment direction. The only curve which can do that is the curve
for DCA.

1.1.1.9. Summary

In this test run can it be seen that only the algorithm for DCA tracks the desired input
moment. The algorithm for Pinv and FIX can’t track the desired input. Many actuators
reach saturation when using the Pinv algorithm, hence it becomes difficult to keep
directionality. The direction of the moment for Pinv algorithm is off track. FIX comes
closer to the commanded moment direction, but still only DCA is able to track the
direction of the moment.
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Figure 50: 11™ test run, desired moment and achieved moment

As it can be seen the input set point equals a step input of -400 at one sec.

and R.

delay for P, Q,

In the top graph, the curve for Pinv goes approximately to 210, and the curve for DCA
goes approximately to -360 and the curve for FIX lies under the curve for DCA.

In the middle graph, the curve for Pinv goes approximately to -150, and the curve for
DCA goes approximately to -360 and the curve for FIX goes approximately to -390.
In the bottom graph, the curve for Pinv goes approximately to -180, and the curve for
DCA goes approximately to -360 and the curve for FIX goes approximately to -360.
As it can be seen none of the achieved moments track the desired moments.
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Figure 51: 11™ test run, deflection for Right inner and outer elevon and Left inner and outer elevon

The top graph shows the deflection for the right outer elevon. As it can be seen the curves
for Pinv goes approximately to -30 (saturated) and DCA goes to 25 after the step input.
The curve for Fix goes to 29 from an initial point at -3.3.

The second graph shows the deflection for the right inner elevon. As it can be seen the
curves for Pinv goes approximately to 30 (saturated) and DCA goes to 30 (saturated)
after the step input. The curve for Fix goes to 30 (saturated) from an initial point at -5.3.
The third graph shows the deflection for the left outer elevon. As it can be seen the curves
for Pinv goes approximately to -30 (saturated) and DCA goes to 30 (saturated) after the
step input. The curve for Fix goes approximately to 30 (saturated) from an initial point at
-3.3.

The bottom graph shows the deflection for the left inner elevon. As it can be seen the
curves for Pinv goes to 30 (saturated) and DCA goes to -24 after the step input. The curve
for Fix goes to -22 from the initial point -5.3.
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Figure 52: 11™ test run, deflection for Right and Left canard and the rudder

The top graph shows the deflection for the left canard. As it can be seen the curves for
Pinv stays around zero and DCA goes to -55 (saturated). The curve for Fix goes to -55
(saturated) from an initial value at -12.

The second graph shows the deflection for the left canard. As it can be seen the curves
for Pinv stays around zero and DCA goes to 25 (saturated). The curve for Fix goes
approximately to 22.5 from an initial value at -11.5.

The bottom graph shows the deflection for the rudder. As it can be seen all the curves go
to 30 (saturated).
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Figure 53: 9" test run, the vector of moment shoving the direction of the desired and achieved
moment

The above figure shows the detection of the desired moment. The curves for Pinv can not
track the desired moment direction. DCA and FIX tracks the desired moment direction
quite good.

1.1.1.11. Summary

In this test run can it be seen that only the algorithm for FIX and DCA tracks the desired
input moment. The algorithm for Pinv can’t track the desired input. Many actuators reach
saturation when using the Pinv algorithm, hence it becomes difficult to keep
directionality. The direction of the moment for Pinv algorithm is off track. Both FIX and
DCA is able to track the direction of the moment.

4.3. Ramp input

The ramp input tests are conducted by giving the input vector equal magnitude in each
element, hence p=g=r for each test. The test sequence is given by the following table:

Table 4 Ramp input sequence

Test: Slope
12 100N/second
13 -100N/second
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4.3.1. 12" test run, ramp input.
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Figure 54: 12 test run, desired moment and achieved moment

As it can be seen the input set point equals a ramp input with a slope of 100 units per
second for P, Q, and R.

In the top graph, the curve for Pinv follows the desired moment until it reaches 290 where
it drops to approximately -190. Here it stays until the desired input reaches 440 where the
curve for Pinv goes to 580 where it stops. For DCA the curve tracks the ramp input up to
approximately 310, where it clips the moment generation. The curve for FIX keeps on
tracking the desired input.

In the middle graph, the curve for Pinv follows the desired moment until it reaches 290,
here it drops to approximately 180, and shortly afterwards it rises a little, approximately
to 230. It stays at this value until the desired input reaches 440, where the curve for Pinv
goes down in two steps until it reaches 10. The curve for DCA goes approximately to
310. The curve for FIX follows the desired input until it reaches 270 where it clips the
moment generation and falls a little back.

In the bottom graph, the curve for Pinv follows the desired moment until it reaches 290,
here it drops to approximately 180, where it stays until the desired input reaches 440
where the curve for Pinv goes up to 400 shortly and the settles at approximately 380. FIX
and DCA tracks the desired input until it reaches 310, at this point it almost settles.
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Figure 55: 14™ test run, deflection for Right inner and outer elevon and Left inner and outer elevon

The top graph shows the deflection for the right outer elevon. At the start the Pinv curve
drops by 5 per sec until it reaches -12.5. at this point it start rising at 5 per sec. at the
mark 2.8 sec the curve rises to 30 (saturated) here it settles until mark 4.6 sec. At this
time point it drops to -30 (saturated). DCA drops following a slope given by -9 per sec.
until it reaches -30 (saturated). FIX starts at -3.3 and drops to -30.

The second graph shows the deflection for the right inner elevon. The curves for Pinv and
DCA drops along a -11 per sec. slope until it reaches -30 (saturated). The curve for FIX
drops along the same slope but it reaches -30 (saturated) approximately a half sec. before
the two other curves. The reason for this is that it starts from an initial position of -5.6.
The third graph shows the deflection for the left outer elevon. A look at the curve for
Pinv shows that there is not much activity before mark 2.5 sec. after this mark the curve
drops to -5 and shortly after rises to 30 (saturated). Here it settles until the 4.6 sec mark
where it drops to -30 (saturated). Here it settles. The curve for FIX doesn’t change much
before the 2.5 sec mark. After this point it drops to -30 (saturated) over a 1.5sec period.
The curve for DCA drops from zero to -30 (saturated) over a period of 3.2 sec where it
settles.

The bottom graph shows the deflection for the left inner elevon. The curve for Pinv is
settled at zero at until 2.5 sec mark, at this mark raises the curve slightly until 5 and then
drops to -30 (saturated). At the 2.8 sec mark the curve settles until the 4.6 sec mark where
it reaches to 30 (saturated). At this point it settles. The curve for FIX is stabilized at -5.6
until the 2.5 sec mark. After this point it raises to 20 over 2.5 sec. the curve for DCA rises
over 3.2 sec to 12 where it settles.
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Figure 56: 12™ test run, desired deflection for Right and Left canard and the rudder

The top graph shows the deflection for the left canard. The Pinv curve has some huge
fluctuations over time and finally settles at zero deflection. DCA goes to 25 (saturated).
The curve for Fix goes also to 25 (saturated) from an initial value at -12.

The second graph shows the deflection for the left canard. The Pinv curve has some huge
fluctuations along with time and ends out at -55 (saturated). DCA goes to -30 and settles
at 3.2sec mark. The curve for Fix makes a drop to -30 and the goes to 10 from an initial
value at -11.5.

The bottom graph shows the deflection for the rudder. As it can be seen goes the curves
for Pinv, FIX and DCA all to 30 (saturated), the curve for Pinv and FIX at the 2.4 sec
mark and the curve for DCA at 3.3 sec mark.
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Figure 57: 14™ test run, the vector of moment shoving the direction of the desired and achieved

moment

The above figure shows the detection of the desired moment. The curves for Pinv and
FIX can not track the desired moment direction. DCA tracks the desired moment

direction quite good.

1.1.1.12. Summary

In this test run it can be seen that only the algorithm for DCA tracks the desired input
moment. The algorithm for Pinv and FIX can’t track the desired input. The reason for this
is that both algorithms has problems when they violate the constraints. DCA scales its
output vector, and preserves directionality while both FIX and Pinv attempts to keep up

with the moment demand.
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4.3.2. 13" test run, ramp input
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Figure 58: 13" test run, desired moment and achieved moment

As it can be seen the input set point equals a ramp input with a slope of -100 units per
second for P, Q, and R. In the top graph, the curve for Pinv follows the desired moment
until it reaches -290, here it rises to approximately 120 where it stays until the desired
input reaches 340. The curve for Pinv goes to -340 at this time point. At the 3.6 sec mark
the curve rises to 120 and shortly after rises further to 210 where it settles. At 4.7 sec
mark the curve makes a spike followed by a drop to -520 where it settles. For DCA the
curve tracks the input until it saturates at approximately -350 and the curve for FIX keep
on tracking the desired input.

In the middle graph, the curve for Pinv follows the desired moment until it reaches -290,
here it drops to approximately -350, after 0.5 sec it rises a little approximately to -320.
here it stays until the desired input reaches -350 here the curve for Pinv rises to it rashes -
150 where it settles for approximately 1 sec. at 4.7 sec mark a spike occurs followed by a
drop to -350 two where it settles.

The curve for DCA goes to approximately -350 and settles. The curve for FIX follows the
desired input until it reacts 270 where it slag’s of a little.

In the bottom graph, the curve for Pinv follows the desired moment until it reaches -290,
here it rises to approximately -150, here it stays until the desired input reaches -330
where the curve for Pinv goes dawn to -330 shortly and the ain rises to -150 for a short
period followed by a small drop to -190. Hire it settles for approximately 1 sec followed
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by a drop to -390 and settles. FIX and DCA tracks the desired input until it reaches -350,
at this point it almost settles.
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Figure 59: 13™ test run, deflection for Right inner and outer elevon and Left inner and outer elevon

The top graph shows the deflection for the right outer elevon. At the start the Pinv curve
rises by 5 per sec until it reaches 12.5. at this point it starts dropping at 5 per sec. at the
mark 2.8sec the curve drops to 30 (saturated) here it settle until mark 3.3 sec where it
makes a spikes for a period of 0.2 sec and at 4.6sec at this deflection it rises to
30(saturated). DCA rises following a slope given by 7 per sec. until it reaches 26. FIX
starts at -3.3 and rises to 30.

The second graph shows the deflection for the right inner elevon. The curves for Pinv and
DCA rises approximately along a 9 per sec. slope until it reaches 30 (saturated). The
curve for FIX rises also along the same slope but it reaches 30 (saturated) approximately
a half sec. before DCA.

The third graph shows the deflection for the left outer elevon. A look at the curve for
Pinv shows that there isn’t much activity before mark 2.5 sec. after this mark rises the
curve to 5 and shortly after drops to -30 (saturated). Here it settles until the 3.3 sec mark
where it makes a spike to 15 and at the 4.6 sec mark rises to 30 (saturated). Here it settles.
The curve for FIX doesn’t vitiate much before the 2.5 sec mark. After this point it rises to
30 (saturated) over a 1.5sec period. The curve for DCA rises from zero to 30 (saturated)
over a period of 3.5 sec where it settles.

The bottom graph shows the desired deflection for the left inner elevon. The curve for
Pinv is settled at zero at until 2.5 sec mark, at this mark the curve drops slightly until 5
and then rises to 30 (saturated). At the 2.8 sec mark the curve settles until the 3.3 sec
mark where it makes a spike followed by a drop at the 4.6 sec mark where it settles at -30
(saturated). The curve for FIX is stabilized at -5.6 until the 2.5 sec mark. After this point
it rises to 20 over 2.5 sec. The curve for DCA rises during 3.2 sec to 12 where it settles.
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Figure 60: 13™ test run, deflection for Right and Left canard and the rudder

The top graph shows the deflection for the left canard. The Pinv curve has some huge
fluctuations along with time and ends out at -55 (saturated). DCA goes to -55 (saturated).
The curve for Fix goes also to -55 (saturated) from an initial value at -12.

The second graph shows the deflection for the right canard. The Pinv curve has some
huge fluctuations along with time and ends out at 25 (saturated). DCA goes to 25 and
settles at 3.2sec mark. The curve for Fix makes a rise to 25 and the goes against zero,
from an initial value at -11.5.

The bottom graph shows the deflection for the rudder. As it can be seen the curves for
Pinv, FIX and DCA all goes to 30 (saturated), the curve for Pinv and FIX at the 2.4 sec
mark and the curve for DCA at 3.6 sec mark.
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Figure 61: 13™ test run, the vector of moment shoving the direction of the desired and achieved
moment

The above figure shows the detection of the desired moment. The curves for Pinv can not
track the desired moment direction. DCA and FIX tracks the desired moment direction
quite good.

1.1.1.13. Summary

In this test run it can be seen that only the DCA algorithm can track the desired input
moment direction. The algorithms Pinv and FIX can’t track the desired input. The desired
moment is not attainable, and both algorithms try to produce as much moment as
possible, while sacrificing directionality. FIX is nearly capable of following the moment
direction, while Pinv seems to produce erratic results.

4.4. Parabola input

The parabola input tests are conducted by giving the input vector equal magnitude in each
element, hence p=g=r for each test. The test sequence is given by the following table:

Table 5 Parabola input sequence

Test

14 10x° N/sec

15 -10x*> N/sec
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4.41. 14" test run, parabola input
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Figure 62: 14™ test run, desired moment and achieved moment

As it can be seen the input set point is a parabola input with the formula 10-x* for P, Q,
and R.

The three graphs show the curves for Pinv, FIX and DCA. As it can be seen the curves
track the input just fine.
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Figure 63: 14™ test run, deflection for Right inner and outer elevon and Left inner and outer elevon

The top graph shows the deflection for the right outer elevon. The curves for Pinv, FIX,
and DCA follow some parabola curve.

The second graph shows the deflection for the right inner elevon. The curves for Pinv,
FIX, and DCA follow some parabola curve.

The third graph shows the deflection for the left outer elevon. The curve for Pinv has a
drop at approximately 2 over a 5 sec. period. The curve for FIX has drop at
approximately 2 over a 5 sec period with a start from an initial value at 3. The curve for
DCA follows a parabola curve.

The bottom graph shows the deflection for the left inner elevon. The Pinv curve follows
zero deflection for 5 sec. The curve for FIX is almost settled at -5.1. The curve for DCA
follows a parabola and ends at 10 after 5 sec.
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Figure 64: 14™ test run, deflection for Right and Left canard and the rudder

The top graph shows the deflection for the left canard. The curves for Pinv, FIX and
DCA follow a parabola. The curve for Pinv starts at zero and ends at 15. The curve for
DCA starts at zero and ends at 20. The curve FIX starts at -12 and ends at 3.

The second graph shows the deflection for the right canard. The curve for Pinv rise a little
at time but ends at zero. The curve for FIX starts at -12, rises a little with time but end out
at -12. The curve for DCA follows a parabola and ends out at -22.

The bottom graph shows the deflection for the rudder. The curves for Pinv and Fix follow
a parabola curve and ends out at -30(saturated) at 4.9 sec. The curves for DCA follow a
parabola curve and ends out at -23.
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Figure 65: 14™ test run, the vector of moment shoving the direction of the desired and achieved
moment

The above figure shows the detection of the desired moment. All algorithms track the
desired moment direction.

1.1.1.14. Summary

In this test run, the algorithm tracks the desired moment just fine. The cheapest algorithm
to use in this case is the Pinv. This algorithm is the one who deflects the control surfaces
the least.
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Figure 66: 15™ test run, desired moment and achieved moment

As it can be seen the input set point is a parabola input with the formula 10-x* for P, Q,
and R.

The three graphs show the curves for Pinv, FIX and DCA. As it can be seen the curves
tracks the input just fine.
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Figure 67: 15™ test run, deflection for Right inner and outer elevon and Left inner and outer elevon

The top graph shows the deflection for the right outer elevon. The curves for Pinv, FIX,
and DCA follow some parabola curve.

The second graph shows the deflection for the right inner elevon. The curves for Pinv,
FIX, and DCA follow some parabola curve.

The third graph shows the deflection for the left outer elevon. The curve for Pinv rises
approximately 2 over a 5 sec period. The curve for FIX has rises approximately 2 over a
5 sec period with a start from an initial value at 3. The curve for DCA follows a parabola
curves.

The bottom graph shows the desired deflection for the left inner elevon. The Pinv curve is
almost stationer at zero. The curve for FIX is almost stationer at -5.1. The curve for DCA
follows a parabola and ends at -17 after 5 sec.
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Figure 68: 15™ test run, deflection for Right and Left canard and the rudder

The top graph shows the deflection for the left canard. The curves for Pinv, FIX and
DCA follow a parabola. The curve for Pinv starts at zero and ends at -15. The curve for
DCA starts at zero and ends at -36. The curve FIX starts at -12 and ends at -26.

The second graph shows the deflection for the right canard. The curve for Pinv drops a
little at time but ends at zero. The curve for FIX starts at -12, drops a little with time but
end out at -12. The curve for DCA follows a parabola and ends out at 18.

The bottom graph shows the deflection for the rudder. The curves for Pinv and Fix follow
a parabola curve and ends out at 30(saturated) at 4.9 sec. The curves for DCA follow a
parabola curve and ends out at 20.
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Figure 69: 15™ test run, the vector of moment shoving the direction of the desired and achieved
moment

The above figure shows the detection of the desired moment. Pinv, DCA and FIX track
the desired moment direction quite good.

1.1.1.15. Summary

In this test run, the algorithm tracks the desired moment just fine. The cheapest algorithm
to use in this case is the Pinv. This algorithm is the one who deflects the control surfaces
the least.

4.5. Conclusion of mathematical simulation

From the first test run, it can be concluded that the Pinv and DCA algorithms track the
desired input quite good. The FIX algorithm has an offset according to the desired input.
The reason for this is that when the algorithm starts to run it finds an initial non-zero start
value dependent on the constraints. However, because the desired input is zero, the
outputs are set to the initial value. This contribution then has the negative effect that it
deflects the actuators which produce a moment when no moment is commanded.

When the input becomes a step input, the algorithms should immediately find a solution
to the desired moment. A look at the desired output deflection of the control surfaces
reveals that the deflection commanded by the FIX algorithm is larger than for both Pinv
and DCA. In the non-saturated case, Pinv proves to provide the best solution, since this
algorithm commands the smallest actuator deflection.
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When the input becomes large the algorithm begins to saturate the actuators. If the input
is too large all of the actuators become saturated and the algorithms can’t deliver the
desired moment. In the saturated case, DCA is the only algorithm which produces the
correct moment direction. The deflections produced by Pinv become very erratic at times,
and these large fluctuations will wear the actuators, as is also the case with the FIX
algorithm and its larger deflections. In the saturated case DCA provides better actuator
utilization from a control effort minimization perspective.

In the case of a ramp input the same observations can be made. As long as the amplitude
of the desired moment lies within the attainable moment space both DCA and Pinv
provides good solutions, with Pinv being the best. When some of the actuators become
saturated the Pinv and FIX algorithms try to compensate for the lost moment by
commanding some of the non-saturated actuators to make up the difference. However,
this has the effect that both Pinv and FIX algorithms saturate other actuators and in the
end produce a moment with a different direction than the desired. In the border-case
scenario when some actuators are saturated, the FIX algorithm provides better
directionality than the Pinv algorithm. The DCA algorithm always tracks the desired
moment direction.

Finally, from a general point of view it can be said that the DCA algorithm is always able
to track the moment direction. Moreover, the Pinv algorithm is the algorithm where it in
the most cases saves most power by commanding the smallest deflection of the actuators.
While the Pinv algorithm doesn’t provide the correct moment direction in the saturated
case, it provides the most optimal solution in the non-saturated case. The algorithm that
performs the worst is the FIX algorithm. This algorithm should always find the optimal
solution but it is also the algorithm which wastes most actuator power. It commands the
largest deflections of the control surfaces and it can’t track the desired moment direction
when some of the output variable is saturated.
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Figure 70 ADMIRE linear model overview

5.1. Start the simulation

To start the simulation, first start MATLAB and point the directory to the location where
you have extracted ADMIRE and type

>>gtart

This command will open the following files:

e startup.m

e admtrim sl.m

e adm lin.m

e Bbare B.m

e admire linear G771.mdl

e admire linear G771 FIX.mdl
e admire linear G771 DCA.mdl
e admire linear G771 Pinv.mdl
e admire linear mix_plot.m

e Input For Test.m

e Plotter for Admire.m

e Plotter for simpel modle.m
e simpel ADMIRE.m
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5.1.1. Startup.m
This file sets up the Matlab path and references the different parts in ADMIRE.

5.1.2. admtrim_sl.m

The Matlab file admtrim_sl.m calls the functions in setup ratelims.m and uncertainty.m.
These .m files set up the necessary parameters used in the simulation, such as the
uncertainties and the rate and position limits for the actuators.

5.1.3. adm_lin.m

adm_lin.m creates the matrices for the two state space models in the linear model by
calling two files, linmod nnt.m and admire bare lin.mdl. These matrices describe the
linearized aircraft model at the given flight condition.

5.1.4. linmod_nnt.m

This is a modified model of the Matlab function linmod. Simulink provides the linmod
functions to extract linear models in the form of state-space matrices A, B, C, and D.
This file is called by the file adm_lin.m. State-spaces matrices describe the linear input-
output relationship as:

Xx=Ax+Bu
Eq. 5-1
y=Cx+Du

where x, u, and y are state, input, and output vectors, respectively.

5.1.5. admire_bare_lin.mdI

This file is called by the file adm_lin.m. This model is a quite complex simulink model
which is used for configuration of the dynamic aerodynamic aircraft model.

5.1.6. Bbare_B.m

This file makes a sub-matrix from the Bbare matrix in the dynamic system of the
airplane.

The sub-matrix (B) is used to convert the output, P, Q and Beta, from the controller and
map those into the angular accelerations in pitch, roll and yaw. Information of the desired
moment is the essence of control allocation in applications of flight control. The B matrix
defined by this .m file is the control effectiveness matrix.

5.1.7. admire_linear_G771.mdl

This file is the linear simulink model, which is the main file for simulating the aircraft
dynamics with control law and control selector modules. This file is the original
ADMIRE linearized model. After it appears the simulation can be run.
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Use the pull-down menu simulation and press start to run the simulation. The time step
for the simulation is set to 0.008 s. Such a short time step is required for the padé
approximations of the time delays to work properly. More about this later.

5.1.8. admire_linear_G771_FIX.mdI

This file is the linear simulink model, which is the main file for simulating the aircraft
dynamics with control law and the Fixed-point algorithm implemented as the control
allocater. After it appears the simulation can be run.

Use the pull-down menu simulation and press start to run the simulation. The time step
for the simulation is set to 0.008 s. Such a short time step is required for the padé
approximations of the time delays to work properly.

5.1.9. admire_linear_G771_DCA.mdlI

This file is the linear simulink model, which is the main file for simulating the aircraft
dynamics with control law and the Direct Control Allocation algorithm implemented as
the control allocater. After it appears the simulation can be run.

Use the pull-down menu simulation and press start to run the simulation. The time step
for the simulation is set to 0.008 s. Such a short time step is required for the padé
approximations of the time delays to work properly.

5.1.10. admire_linear_G771_Pinv.mdlI

This file is the linear simulink model, which is the main file for simulating the aircraft
dynamics with control law and the Pseudoinverse algorithm implemented as the control
allocater. After it appears the simulation can be run.

Use the pull-down menu simulation and press start to run the simulation. The time step
for the simulation is set to 0.008 s. Such a short time step is required for the padé
approximations of the time delays to work properly.

5.1.11. admire_linear_mix_plot.m

This file can be used to plot the simulated results of the aircraft response. After the
simulation has been rune this file can be run. This file will then plot the result from the
simulation. However, it should be mention that it only works with the simulation in
admire linear G771.mdl.

5.1.12. Input_For_Test

This file sets up all the input variables for the test. Within this file can the different input
bee manipulated.

5.1.13. Plotter_for_Admire.m

This file can be rune when all the fore simulations have been run. It will then plot the
results from the simulations, in a way where it is easy to compeer the results from the
different simulations.
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5.1.14. Plotter_for_simpel_modle.m

This file can be rune when the simulations in the simple ADMIRE.mdl file has been run.
It will the plot the results from the simulation, in a way where it is easy to compeer the
results from the simulation.

5.1.15. simple_ADMIRE.mdI

This file is a simulation environment set up for testing the three different algorithms
simultaneous. There are a number of different possibilities for setting the input. This
explained in the model.

5.2. Description of admire_linear_G771_xxx.mdlI

First, all the inputs and outputs for this block will be explained and afterwards the sub
blocks will be described in detail.

The model is described by the ADMIRE team as “mainly linear” which describes the
dynamics of a small generic fighter aircraft with one engine. This aircraft is a bit larger
than the JAS39 and with a lower wing loading. The model is implemented as several c-
mex-files in order to fit into the Simulink environment. It is based on GAM (Generic
Aerodata Model) developed by Saab AB, Sweden.

The simulink model admire linear.mdl will be described in detail in the following
section. First, all the input and outputs for the block will be explained, and then each sub-
block will be described.

5.2.1. ADMIRE_fcs_Linear

The first block, “ADMIRE fcs Linear”, has 10 inputs and 12 outputs, se the explanation
in Table 1.

Table 1 input and output variables for the block ADMIRE fcs Linear

Input Explanation

dFes Longitudinal stick deflection

dVt Airspeed

dFas Lateral stick deflection

dFrp Rudder pedal deflection

dle in Leading-edge flap angle

ldg in Landing gear

dty in Engine nozzle-deflection in the xy-plan

dtz_in Engine nozzle-deflection in the xz-plan

Disturbance 4 input u_dist, v_dist, w_dist and p _dist

Feedback 27 input from feedback (State space model in the block
ADMIRE bare Linear)

QOutput

p Roll angular rate

q Pitch angular rate
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beta Sideslip angle

dle Leading-edge flap angle

tss Throttle setting

1dg Landing gear

dty Engine nozzle-deflection in xy-plan
dtz Engine nozzle-deflection in xz-plan
u dist Turbulence in x axis

v_dist Turbulence in y axis

w_dist Turbulence in z axis

p dist Turbulence around roll axis

ADMIRE fes_linear is a sub block containing a 10 to 1 multiplexer and a 1 to 12 de-
multiplexer. Furthermore it includes a state-space block which has the following four
matrices: Afes (dim 4x4), Bfes (dim 4x40), Cfes (dim 12x4) and Dfes (dim 12x40). This
state space model acts as the controller for the aircraft. Its input and output is described

above in Table 1.

p,q and beta are the first three outputs and these connect to the input of the “control

selector block™.

The next two output, dle and tss, is connected to the “Saturators, Rate limiters and
Actuators” block.
The last seven outputs, 1dg, dty, dtz, u_dist, v_dist, w_dist, and p_dist are connected
directly to the last block, “ADMIRE bare Linear”.

5.2.2. Control Selector

The control selector is a sub-block contains the block, “FCS cs” which has 5 inputs and 7
outputs. The description of the inputs and outputs can be seen in Table 2.

Table 2 input and output variables for the control selector block

Input Explanation

p Roll angular rate
q Pitch angular rate
beta Sideslip angle

Alt+dalt err

Altitude + difference in the altitude error

Mach+dMach err | Speed (mach) + difference in the speed error

Output

drc Right canard angle deflection

dlc Left canard angle deflection

droe Right outer elevon angle deflection
drie Right inner elevon angle deflection
dlie Left inner elevon angle deflection
dloe Left outer elevon angle deflection
dr Rudder angle deflection
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5.2.3. FCS_cs

The block FCS_cs is a sub-block located in Control Selector and contains a sub-block
named FCS cs_table and a number of summations elements, a multiplexer and four de-
multiplexers.

The multiplexer joins 21 outputs from the FCS cs_table block into a single vector. After
combining the inputs, the vector of 21 elements is split up in to three vectors: One
containing the first 7 elements, the second containing the next 7 elements and last the
third containing the last 7 elements.

After splitting the vectors into smaller vectors, these are multiplied by p, q, and beta. The
first vector is multiplied by p, the second by q and the third by beta. Each of the three
vectors are then de-multiplexed into 21 signals. The signals are then summed together in
the following way: Signal one from vector one is summed with signal one from the
second and third vector, the second signal from each array is summed together the same
way as the remaining five signals. These calculations produce the 7 signals which are the
outputs from this block. These output signals represent the control signals sent to the
actuators. See Figure 71 for reference.

Demux
Demux1

P
— B[ >
—>|
—>| ]
FCS_cs_Altitude —> v
> P '@
s
> P> K Fos os dr
>
FCS_cs_table > »— 9 N 4\ )"(—3__) A rcs_cs_dic
—» X > p > P> @D X Fos_os_dro
>, )—V(Bl FCS_cs_drie]
>
>4 )"(D A Fcs_cs_diid
(. )"(D & Fcs_cs_dlo
A rCs cs ar
FCS_cs_Mach —>|
—>|
p]  beta
—>1 X P
FCS_cs_table Mux
- Denmux3
FCS_cs_p

FCS_cs

Q

FCS_cs_beta

Figure 71 An overview of the sub-block FCS_cs

FCS cs table contains the block ‘fcsselector’ and a demultiplexer. The demultiplexer
splits the signals from the S-function ‘fcsselector’ into 21 single signals (see Figure 71).
fcsselector

This block contains an S-Function called ‘fcsselector’. This S-function is made from a c-
file, which decides what weighting the 21 outputs should have according to the altitude
and Mach number. The S-Function delivers its output vector to a de-multiplexer which
splits the vector up into 21 single signals. These 21 outputs then represent how to weigh
P, q and beta from the controller and map these onto the control surfaces of the aircraft.
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This is the simple control allocation block of ADMIRE. The calculations in this block
determine the outputs for the seven control surfaces. The input and output can be seen in
Table 3.

Table 3 Input and output from the block FCS cs_table

Input Explanation
(1) FCS cs table Altitude Altitude

(2) FCS cs table Mach Mach number
Output

(1) FCS cs table p drc

(2) FCS cs table p dlc

(3) FCS cs table p droe

(4) FCS cs table p drie

(5) FCS cs table p dlie

(6) FCS cs table p dloe

(7) FCS cs table p dr

(8) FCS cs table q drc

(9) FCS cs table q dlc

(10) FCS cs table q droe

(11) FCS cs table q drie

(12) FCS cs table q dlie

(13) FCS cs table q dloe

(14) FCS cs table q dr

(15) FCS cs table beta drc

(16) FCS cs table beta dlc

(17) FCS cs table beta droe

(18) FCS cs table beta drie

(19) FCS cs table beta dlie

(20) FCS cs table beta dloe

(21) FCS cs table beta dr

5.2.4. New implementation

The block ‘New implementation’ is a new block. This block is the place for our
implementation of a control allocator. The input to this block comes from the Controller
block, and it sends its output to the block total computer delay. In our implementation, a
mapping must be made from the desired moments commanded by the controller, into
control surface deflections of the aircraft. The dynamic response of the aircraft after using
our new control allocator should be very close to the response of the aircraft when using
ADMIRE’s own built-in allocator. Depending on the choice of algorithm for performing
control allocation the aircraft response will differ slightly under some conditions. As
mentioned in former chapters, the direct allocation implemented using linear
programming provides directionality by sacrificing moment generation, while the control
minimization is implemented using the cascaded generalized inverse sacrifices
directionality while attempting to preserve moment generation.
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5.2.5. Total computer delay

The block, ‘Total computer delay’ is a sub-system containing a delay element for each of
the seven input signals. The delay is produced by a second order filter. Each of the seven
inputs is routed through this block with a delay of 20 milliseconds. The seven inputs are
taken from the FCS_cs block. The output is sent to the ‘saturators, rate limiters and
actuators’ block.

5.2.6. Saturators, rate limiters and actuators

The block ‘saturators, rate limiters and actuators’ provide the system with information on
the actuator’s limitations in both position and angular rate. These limitations are functions
of the Mach number and the altitude. The work done in this block is to test if the
actuators are saturated in either rate or position. The position limitation checking is
performed by the S-Function ‘act pos lim’, which simply compares the actual value with
the saturation value. If any input is exceeding saturation limits, this function clips the
output to the actuator to the saturated values for the corresponding actuator, thereby
simulating real world actuators which have their saturation limits. The block has ten
inputs and nine outputs see Table 4.

Table 4: Input and output from the block ’saturators, rate limiters and actuators’

Input

Explanation

FCS ae 1l drc

Right canard angle

FCS ae 1l dlc

Left canard angle

FCS ae 1l droe

Right inboard elevon angle

FCS ae rl drie

Right outboard elevon angle

FCS ae 1l dlie

Left outboard elevon angle

FCS ae rl dloe

Left inboard elevon angle

FCS ae 1l dr

Rudder angle

FCS ae 1l dle

Leading-edge flap angle

FCS ae 1l tss

Throttle setting

Mach

Mach number

QOutput

FCS ae rl drc out

Right canard angle

FCS ae rl dlc out

Left canard angle

FCS ae 1l droe out

Right inboard elevon angle

FCS ae rl drie out

Right outboard elevon angle

FCS ae 1l dlie out

Left outboard elevon angle

FCS ae 1l dloe out

Left inboard elevon angle

FCS ae rl dr out

Rudder angle

FCS ae 1l dle out

Leading-edge flap angle

FCS ae 1l tss out

Throttle setting

The subsystem contains a rate limitation block, see Table 5. The rate limitations of the
actuators are determined by a first order system. Each first order system is dependant of
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an initial value, except for the first order system related to the engine. The engine rate
limiter is determined with a specific first order system.

Table 5: Sub-system name

System name File name

FCS ae 1l rc Admire linear/FCS ae rl/FCS ae 1l rc
FCS ae 1l Ic Admire linear/FCS ae rl/FCS ae 1l Ic
FCS ae 1l roe Admire linear/FCS ae rl/FCS ae rl roe
FCS ae 1l rie Admire linear/FCS ae rl/FCS ae 1l rie
FCS ae 1l lie Admire linear/FCS ae rl/FCS ae 1l lie
FCS ae 1l loe Admire linear/FCS ae rl/FCS ae 1l loe
FCS ae 1l r Admire linear/FCS ae rl/FCS ae rl r
FCS ae 1l le Admire linear/FCS ae rl/FCS ae 1l le

5.2.7. ADMIRE_bare_Linear

The block ‘ADMIRE bare Linear’ is a subsystem containing a state-space model. This
model has 16 inputs and 59 outputs. The matrices in this block is: Abare (dim 28 x 28),
Bbare (dim 28 x 16), Cbare (dim 59 x 28) and Dbare,(dim 59 x 16). These four matrices
describe the state-space model which represents the linearized aircraft dynamics under
certain flight conditions described by the Mach number and the altitude of the aircraft.
The 16 inputs consist of the following variables, as can be seen in Table 5.

Table 6: Input for ADMIRE bare Linear

Input Explanation

drc Right canard angle

dlc Left canard angle

droe Right outboard elevon angle

drie Right inboard elevon angle

dlie Left inboard elevon angle

dloe Left outboard elevon angle

dr Rudder angle

dle Leading-edge flap angle

1dg Landing gear

tss Throttle setting

dty Engine nozzle-deflection in the xy-plane
dtz Engine nozzle-deflection in the xz-plane
u dist Turbulence in X axis

v_dist Turbulence in y axis

w_dist Turbulence in z axis

p dist Turbulence around roll axis

Since the output variables from the block containing both output and state variables, it
has to be sorted. This is done by selecting the first 31 variables for output and another
block for retrieving the last 27 state variables. The first 31 variables are summed together
with the first 31 variables in the imported array, yObare, and it is then sent to the output
port 1 which is the output representing the aircraft current state.

Page 102 of 155




Flight Control Allocation using Optimization Based Linear and Quadratic programming

P7 - project fall 2004

Aalborg Universitet Esbjerg Ssajen®
These 31 variables can be found in Table 7.

Table 7 Output for ADMIRE bare Linear

Output Explanation unit
(1) Vt Airspeed m/s
(2) alpha Angle of attack rad
(3) beta Angle of sideslip rad
(4) pb Roll angular rate rad/s
(5) qp Pitch angular rate rad/s
(6) b Yaw angular rate rad/s
(7) psi Euler angles (azimuth) rad
(8) theta Euler angles (elevation) rad
(9) phi Euler angles (bank) rad
(10) x X position in Fv m
1)y y position in Fv m
(12)z z position in Fv m
(13) ub Velocity in x-axis m/s
(14) vb Velocity in y-axis m/s
(15) wb Velocity in z-axis m/s
(16) uv Velocity in earth parallel x-axis m/s
(17) vv Velocity in earth parallel y-axis m/s
(18) wv Velocity in earth parallel z-axis m/s
(19) nz Normal acceleration of c.g. “g”
(20) ny Side acceleration of c.g. “g”
(21) mach Mach number -
(22) gamma Climb angle rad
(23) cd Drag coefficient -
(24) cl Lift coefficient -
(25) cc Side force coefficient -
(26) crm Roll coefficient -
(27) cpm Pitch coefficient -
(28) cym Yaw coefficient -
(29) not defined -
(30) not defined -
(31) not defined -

The 27 state variables are sent to a memory block and then used for feedback to the
block, ’ADMIRE fcs_linear’. The signals have the same denomination as the first 27
elements in the 31 output variables.
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5.2.8. disturbParam

The block ‘disturbParam’ is a subsystem containing four inputs giving on four channel
output. The four inputs, see Table 8, are multiplexed to become a vector and then output
as ‘dist’.

Table 8: Input and output to the block DisturbParam.

Indput Explanation

u dist Turbulence in x axis

v_dist Turbulence in y axis

w_dist Turbulence in z axis

p dist Turbulence around roll axis
QOutput

dist \ Input to ADMIRE fcs Linear

6. Implementation in ADMIRE

The control selector box in ADMIRE works as most existing ganging methods. However,
the control selector in ADMIRE also takes into account the Mach number and the
altitude. The controller of ADMIRE has 3 control outputs. P, Q and R. In conventional
aircraft terminology, these variables determine the roll-rate, yaw-rate respectively. In the
control selector box these 3 input variables are used to produce the control signals for the
7 actuators. In this project we require the 3 commanded moments in the rolling, pitching
and yawing direction. To obtain the control vector (v) it’s necessary to “roll back™ the 7
actuator control signals from the control selector box. This is done by picking out the
columns and rows in the B-matrix of the state-space model describing the linearized
dynamics of the actuators in the ADMIRE model. Ola Hérkegéard confirmed on e-mail the
14™ of October 2004 that we should define the control effectiveness matrix (B) as:

Eq. 6-1 B =Bbare(4:6,1:7)

Since p, q and r are states 4, 5, 6 and since there’s seven control surfaces. This operation
defines a new matrix B, which is our control effectiveness matrix for the aircraft at the
specified flight condition. Multiplying the output of the control selector by B we obtain
the angular accelerations in roll, pitch and yaw. Using this vector as input to our control
allocation algorithm, we need to make some approximations of the aircraft model.

e Ignoring actuator dynamics
e Viewing control surfaces as moment generators
e Consider only position constraints

These approximations make it possible to consider the control allocation problem much
simpler. By ignoring actuator dynamics, we assume that the actuators are capable of
moving indefinitely fast and without offset problems. The actuator rate limitations will
only pose a problem when the input to the control allocator changes instantly with a large
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magnitude. Since the input to the control allocator is described by the output of the
controller, the input should not change instantly. Further, by viewing the control surfaces
as moment generators, we can obtain a direct coherency between an exact actuator
position and a generated acrodynamic moment. While the actuators both have position
and rate limits, the easiest part to consider are the position constraints. It’s not impossible
to also include rate constraints, but in this project we will focus only on position
constraints. The methods used in this project are implemented only to consider position
limitations. Using other methods and algorithms it’s possible to consider actuator rate
constraints as well.

6.1. Flight conditions

During the testing of an aircraft response, it’s important to settle on a given flight
condition, since flight as a general case is highly non-linear, one must decide which flight
conditions are feasible for a test scenario in order to keep the test size down. At each
flight condition, the dynamics of the aircraft are slightly changed, if each flight condition
should be tested, the test itself would be a project on its own. The two most significant
variables to be determined beforehand are the Mach number and the altitude of the flight.
In our testing scenario, the group settled for a Mach number of 0.5 and an altitude of
1000m.
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7. ADMIRE simulation

The real simulation of the algorithms will be conducted in the aircraft benchmark
ADMIRE. As described in previous chapters, the model used in ADMIRE is the linear
model, which is trimmed at a certain flight condition.

The ADMIRE test section is divided into 4 tests. The first two tests consist of step inputs.
The last two tests consist of 2 ramp inputs. Ola Hirkegérd confirmed on e-mail 2™ of
november that the inputs Fes, Fas, and Frp are all limited to a range of possible inputs.
These ranges are:

Table 6 Input limitations

Input Positive limit Negative limit
Fes 80 -40
Fas 80 -80
Frp 200 -200
7.1.Test1

The first test gives a step input to the ADMIRE model, using the following values:

Input Step magnitude
Fes 50
Fas 50
Frp 120

The step is given after 1 second simulation.
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Figure 72: Testl - commanded and achieved moment for p
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As it can be seen from the figure, the commanded and achieved moments for p for all
three algorithms match.

Desired moment Q
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Figure 73: Test 1 - commanded and achieved moment for g

In this test it can be seen that the commanded and achieved moment for q for all three
algorithms match. Notice how the commanded moment for FIX is different from both
DCA and Pinv. This is a property of a closed-loop test, the controller influences the
commanded moment according to the aircraft response.
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Figure 74: Test 1 - commanded and achieved moment for r

In this test it can be seen that the commanded and achieved moment for r for all three
algorithms match. Notice how the commanded moment for FIX is different from both
DCA and Pinv. This is a property of a closed-loop test, the controller influences the
commanded moment according to the aircraft response.
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Figure 75: Test 1 - Right canard and left canard deflection

The upper graph shows the right canard deflection while the bottom graph shows the left
canard deflection. The FIX algorithm commands a larger deflection of both canards,
while DCA comes in at second place with a little less deflection. Pinv commands the
least deflection of the three. None of the algorithms saturate either of the canards.
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Figure 76: Test 1 - Right outer and inner elevon deflection

The upper graph shows the right outer elevon deflection, while the lower graph shows the
right inner elevon deflection. All three algorithms show a similar curve shape, while the
FIX algorithm commands the largest deflection, DCA comes second and Pinv commands
the least deflection. None of the algorithms saturate either right elevon.
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Figure 77: Test 1 - Left outer and inner elevon deflection

The upper graph shows the left outer elevon deflection, while the lower graph shows the
left inner elevon deflection. All three algorithms show a similar curve shape, but in this
case the FIX algorithm commands the smallest deflection. DCA comes second while Pinv
comes in last with the largest deflection. None of the algorithms saturate either of the left
elevons.

Actuator output signal dr
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FIX

O DCA

—— ADMIRE
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Figure 78: Test 1 - Rudder deflection

The graph shows the rudder deflection. All three algorithms show a similar curve shape,
while DCA commands the largest deflection, Pinv commands less deflection and the FIX
algorithm commands the smallest deflection of the rudder. None of the algorithms
saturate the rudder.
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Figure 79: Test 1 - Aircraft X-Y-Z movement

This figure shows the aircraft movement in the X-Y-Z directions. Notice how the
representation of the aircraft movement is according to its trimmed altitude and Mach
number. The position of the aircraft is given without including the integral of its trimmed
velocity. Especially this can be seen in the x-plot, where the position of the aircraft
should increase with time according to the speed of 0.5 Mach. Instead we can see a
decrease in position. This merely means that the aircraft velocity is decreasing through

the simulation.

By inspection, the middle graph and the lower graph show all three algorithms behave
identical. The upper graph, however, shows some difference between the three. Pinv
tracks the ADMIRE trajectory without error, while DCA comes very close. The FIX

algorithm is a little more off than both DCA and Pinv.

7.2. Test 2

The second test gives a step input to the ADMIRE model, using the following values:

Input Step magnitude
Fes -30

Fas -50

Frp -120
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The step is given after 1 second simulation.
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Figure 80: Test 2 - commanded and achieved moment for p

As it can be seen from the figure, the commanded and achieved moments for p for all

three algorithms match.
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Figure 81: Test 2 - commanded and achieved moment for q

In this test it can be seen that the commanded and achieved moment for q for all three
algorithms match. Notice how the commanded moment for FIX is different from both
DCA and Pinv. This is a property of a closed-loop test, the controller influences the

commanded moment according to the aircraft response.
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Figure 82: Test 2 - commanded and achieved moment for r

In this test it can be seen that the commanded and achieved moment for r for all three
algorithms match. Notice how the commanded moment for FIX is different from both
DCA and Pinv. This is a property of a closed-loop test, the controller influences the
commanded moment according to the aircraft response.
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Figure 83: Test 2 - Right canard and left canard deflection

The upper graph shows the right canard deflection while the bottom graph shows the left
canard deflection. The FIX algorithm commands a larger deflection of both canards,
while DCA comes in at second place with a little less deflection. Pinv commands the
least deflection of the three. None of the algorithms saturate either of the canards.
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Figure 84: Test 2 - Right outer and inner elevon deflection

The upper graph shows the right outer elevon deflection, while the lower graph shows the
right inner elevon deflection. All three algorithms show a similar curve shape, while the
FIX algorithm commands the smallest deflection, Pinv comes second and DCA
commands the largest deflection. None of the algorithms saturate either right elevon.
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Figure 85: Test 2 - Left outer and inner elevon deflection

The upper graph shows the left outer elevon deflection, while the lower graph shows the
left inner elevon deflection. All three algorithms show a similar curve shape. In this case
the FIX algorithm commands the largest deflection. DCA comes second while Pinv
comes in last with the smallest deflection. None of the algorithms saturate either of the
left elevons.
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Figure 86 Test 2 - Rudder deflection

The graph shows the rudder deflection. All three algorithms show a similar curve shape,
while DCA commands the largest deflection, Pinv commands less deflection and the FIX
algorithm commands the smallest deflection of the rudder. None of the algorithms
saturate the rudder.
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Figure 87: Test 2 - Aircraft X-Y-Z movement

As mentioned in test 1, the graphs represent the aircraft movement in X-Y-Z directions
without the integral of the trimmed velocity.

By inspection, the middle graph and the lower graph show all three algorithms behave
identical. The upper graph, however, shows some difference between the three. Pinv
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tracks the ADMIRE trajectory without error, while DCA comes very close. The FIX
algorithm is a little more off than both DCA and Pinv.

7.3. Test3

The third test gives a ramp input to the ADMIRE model, using the following values:

Input Ramp slope
Fes 40/sec
Fas 40/sec
Frp 100/sec

The ramp is given after 1 second simulation.
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Figure 88: Test 3 - commanded and achieved moment for p

As it can be seen from the figure, the commanded and achieved moments for p for all
three algorithms aren’t equal. Pinv produce some fluctuations in both commanded and
achieved moment while both DCA and FIX produce steady moments.
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Figure 89: Test 3 - commanded and achieved moment for g

As it can be seen from the figure, the commanded and achieved moments for q for all
three algorithms aren’t equal, although the achieved moment comes closer to the

commanded moment than for p. Pinv produce some fluctuations in both commanded and
achieved moment while both DCA and FIX produce steady moments.
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Figure 90: Test 3 - commanded and achieved moment for r

As it can be seen from the figure, the commanded and achieved moments for p for all
three algorithms aren’t equal. Pinv produce some fluctuations in both commanded and
achieved moment while DCA produce steady moments. The FIX algorithm stops

producing moment in the end of the simulation and backs off.
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Figure 91: Test 3 — Right canard and left canard deflection

The upper graph shows the right canard deflection while the bottom graph shows the left
canard deflection. Pinv commands the least deflection of the three, until at timepoint 6.5
sec. where Pinv commands erratic deflections for both canards. DCA commands the
largest deflections of the left canard over time. FIX commands the largest deflection of
the right canard. DCA saturates the left canard in the negative deflection, and Pinv
saturates both canards in its erratic period. The FIX algorithm doesn’t saturate either
canard.
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Figure 92: Test 3 - Right outer and inner elevon deflection

The upper graph shows the right outer elevon deflection while the lower graph shows the
right inner elevon deflection. All 3 algorithms follow the same curve shape until time
point 7 sec. where Pinv commands erratic deflections. Both FIX and DCA follows the
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same curve shape through the entire simulation. Pinv commands the least deflection, until
time point 7 sec. where it shows erratic behavior and saturates both elevons in the upper
and lower position in turn. All algorithms saturate both elevons.
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Figure 93: Test 3 - Left outer and inner elevon deflection

In the upper graph the left outer elevon deflection is shown, while the lower graph shows
the left inner elevon deflection. All 3 algorithms command the same actuator deflection,
within a very small margin. All 3 algorithms saturate both elevons in the positive

position.
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Figure 94: Test 3 - Rudder deflection

The graph shows the rudder deflection. All three algorithms show a similar curve shape
up until time point 6.5 sec. where Pinv commands erratic deflections. While DCA
commands the largest deflection before this time point, Pinv commands the largest
deflection after the time point. Over time the FIX algorithm commands the smallest
deflection of the rudder. Only the Pinv algorithm saturates the rudder.
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Figure 95: Test 3 - Aircraft X-Y-Z movement

As mentioned in the other tests, the graphs represent the aircraft movement in X-Y-Z
directions without the integral of the trimmed velocity.

By inspection, the middle graph and the lower graph show all three algorithms behave
identical. The upper graph, however, shows some difference between the three. Pinv
tracks the ADMIRE trajectory without error, while DCA comes very close. The FIX
algorithm is a little more off than both DCA and Pinv.

7.4. Test4

The fourth test gives a ramp input to the ADMIRE model, using the following values:

Input Ramp slope
Fes -20/sec
Fas -40/sec
Frp -100/sec

The ramp is given after 1 second simulation.
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Figure 96: Test 4 - commanded and achieved moment for p

As it can be seen from the figure, the commanded and achieved moments for p for all
three algorithms aren’t equal. Pinv produce some fluctuations in both commanded and
achieved moment while both DCA and FIX produce steady moments.
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Figure 97: Test 4 - commanded and achieved moment for g

As it can be seen from the figure, the commanded and achieved moments for q for all
three algorithms aren’t equal. Pinv produce some fluctuations in both commanded and
achieved moment while both DCA and FIX produce steady moments. None of the

algorithms can fully track the commanded moment.
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Figure 98: Test 4 - commanded and achieved moment for r

As it can be seen from the figure, the commanded and achieved moments for p for all
three algorithms aren’t equal. Pinv produce some fluctuations in both commanded and
achieved moment while DCA produce steady moments. The FIX algorithm stops
producing moment in the end of the simulation and backs off while the commanded
moment increases accordingly.
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Figure 99: Test 4 - Right and left canard deflection

The upper graph shows the right canard deflection while the bottom graph shows the left
canard deflection. Pinv commands the least deflection of the three, until at time point 7
sec. where Pinv commands erratic deflections for both canards. FIX commands the
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positive deflection, and Pinv saturates both canards in its erratic period. The FIX
algorithm saturates both canards.
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Figure 100: Test 4 - Right outer and inner elevon deflection

The upper graph shows the right outer elevon deflection while the lower graph shows the
right inner elevon deflection. All 3 algorithms follow the same curve shape until time
point 7 sec. where Pinv commands erratic deflections. Both FIX and DCA follows the
same curve shape through the entire simulation. FIX commands the least deflection. Pinv
commands a steady deflection until time point 7 sec. where it shows erratic behavior and
saturates both elevons in the upper and lower position in turn. All algorithms saturate
both elevons.
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Figure 101: Test 4 - Left outer and inner elevon deflection

In the upper graph the left outer elevon deflection is shown, while the lower graph shows
the left inner elevon deflection. All 3 algorithms command the same actuator deflection,
within a very small margin. All 3 algorithms saturate both elevons in the negative

position.
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Figure 102: Test 4 - Rudder deflection

The graph shows the rudder deflection. All three algorithms show a similar curve shape
up until time point 7 sec. where Pinv commands erratic deflections. While DCA
commands the largest deflection before this time point, Pinv commands the largest
deflection after the time point. Over time the FIX algorithm commands the smallest
deflection of the rudder. Only the Pinv algorithm saturates the rudder.
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Figure 103: Test 3 - Aircraft X-Y-Z movement

As mentioned in the other tests, the graphs represent the aircraft movement in X-Y-Z
directions without the integral of the trimmed velocity.

By inspection, the middle graph and the lower graph show all three algorithms behave
identical. The upper graph, however, shows some difference between the three. Pinv
tracks the ADMIRE trajectory without error, while DCA comes very close. The FIX
algorithm is a little more off than both DCA and Pinv.
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8. Conclusion

During the test of the three algorithms in ADMIRE and in the mathematical simulation, it
is hard to come to precise conclusions on which algorithm is the best. Each algorithm has
its strong side and weak side, as both the mathematical simulation and the ADMIRE
simulations showed. However, general comments can be made on the subject if we divide
the objective of the algorithms into 3 categories:

e FError minimization
e Control minimization
e Directionality preservation

Error minimization can be described as an attempt to provide a moment as close to the
commanded as possible. In this case only the amplitude of the moments generated is
considered. This objective may very well sacrifice directionality.

Control minimization can be described as an attempt to minimize the control surface
deflections for any given commanded moment. This objective may very well sacrifice
moment generation.

Directionality preservation is an attempt to provide the correct direction of the achieved
moment according to the commanded moment. This objective may very well sacrifice
moment generation.

8.1. Error minimization

All three algorithms are able to provide a solution with minimal error under the condition
that no actuators are saturated. In the case that some actuators come near saturation DCA
proves to be the worst algorithm for error minimization. The commanded deflections in
this case obtained from the DCA algorithm are all scaled according to the scaling factor
providing the control surfaces with smaller signals thus generating larger moment errors.

The two remaining algorithms both try to minimize moment error, and their performance
comes very close to each other. However, in the mathematical test it can be concluded
that the FIX algorithm provides moments with larger amplitude when some of the
actuators become saturated. The FIX algorithm is therefore considered to be the
algorithm with the best error minimization performance.

8.2. Control minimization

In this category the algorithms spread a little more. In the case of no saturation, it is very
clear that the Pinv algorithm provides the best control minimization, where FIX gives the
largest control surface deflection in many cases. DCA lies in the middle ground and
provides solutions with average control minimization.
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In the saturated case, however, the tables turn, and the Pinv algorithm becomes the worst
algorithm. The remaining two algorithms both do a good job of control minimization.
The FIX algorithm provides a more balanced stance on control minimization, and DCA,
as a property of the built-in scaling, comes in as the winner of control minimization in the
saturated case.

8.3. Directionality preservation

In this category all algorithms provide the correct direction of the moments in the non-
saturated case. No real winner can be announced when no actuators are saturated.

In the saturated case, however, there is a tendency for the Pinv algorithm to loose grip on
directionality, and especially the mathematical simulation showed the weak side of the
Pinv algorithm. At times the direction of the generated moment was the opposite of the
commanded moment direction. The FIX algorithm provides a good middle ground for
directionality preservation, as many of the mathematical tests showed, this algorithm was
able to provide a large moment and still produce a moment with the correct direction.
However, in extreme saturation cases the FIX algorithm looses directionality and
attempts to preserve moment generation. The clear winner in the directionality category is
the DCA algorithm which was able to provide the correct moment direction in any case.
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9. Control designs for actuator redundancy system

In this chapter we have investigated two design methods for over actuated systems. An
over actuated system is a system which is underdetermined and has more inputs than
outputs (m>p).

In design 1, we will describe how to design a control law for an over actuated system
with more inputs than outputs. In terms of control input u directly go to the control
surface then the control surface gives the signals to the system.

r A

—| Control u System

law ™ (AB)
i .

Figure 104: Control law for over actuated system

In design 2, first we will focus on the design of a control law in terms of a virtual input v,
and then map this into . The benefits of design 2, is that the constraints can be taken
into consideration.

r
—| Control |4 Control u System
Allocator (A,B)

law
|_> X

Figure 105: Control law and control allocation for over actuator system

Y,

The objective of both designs are that the plant output y tracks the given constant
reference signal » asymptotically, which means after specific time, the response of the
system settles in its original steady-state level, such that the outputs match the input

signals, (y =r).

There are many choices to designs these two methods, e.g. optimal LQ control. In this
worksheet we restrict our discussion to optimal LQ control. Before we design these
methods, let us consider the properties of the standard Linear Quadratic Regulator (LQR).

9.1. Linear Quadratic Regulation with state-feedback

A system can be expressed in a state-space model as

X =Ax+Bu

with x(t)e R" , u(t)e R™. The initial condition is x(0). We assume here that all the states

are measurable, so that full state information is available and seek to find a state variable
feedback control such that,
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u(t)=-Kx(t)+r(t)

This gives the desirable closed-loop properties. The closed-loop system using this control
becomes as:

x=(A-BK)x+Br=A x+Br
With A, the closed-loop system matrix and 7(t) is the reference or command input.

First, we assume the reference signal 7(t) is equal to zero, and only consider the internal
stability of the closed-loop system.

The objective of optimal design in the linear quadratic regulation problem is to select the
state feedback control law that minimizes the performance index J.

The performance index also called cost function or integrated loss function , we can
interpret this function as how much we pay to move the state x(t) to the desired point. Or
we can interpret this as an energy function, where we should make the cost function small
and keep it small according to the total energy of the closed-loop system. Both state x(t)
and control input u(t) are weighted in the performance index J, so that if the scalar
performance index J is small, then either x(t) or u(t) can’t be too large.

If J is minimized, then it is certainly finite, and since it is infinite of x(t), this implies that
x(t) goes to zero as time goes to infinity. This guarantees that the stability of the closed-
loop system will be stable.

The two weighting matrices Q" *" and R™*™ are real symmetric (Hermitian) positive
semi-definite and positive definite matrices respectively. Depending on how these design
parameters are selected, the closed-loop system matrix A-BK gives a different response.
Generally, selecting Q large, to keep the J minimized, means that the state x(t) must then
be smaller. Conversely, selecting R large means that the control input u(t) must be
smaller to keep J small. This means that large values of Q results in the poles of the
closed-loop system matrix Ac = A-BK goes further to the left-hand side of the S-plane,
so the system becomes more stable and state x(t) decays faster to zero. When selecting R
large means that less control effort is used, resulting in larger values of the state x(t).

Generally, we say Q is positive semi-definite and R is positive definite. This means that
the scalar x” Qx is always positive or zero at each time for all functions x(t), and the

scalar u” Ru is always positive at each time for all values of u(t). The eigenvalues of Q
should be non-negative and the eigenvalues of R should be positive. If both matrices are
selected as diagonal, this means that all the entries of R must be positive and all the
entries of Q should be positive, with possibly some zeros on its diagonal. Note that R is
invertible.
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Since the system is linear and the performance index is quadratic, the problem of
determining state feedback control law K is to minimize J. This is called the Linear
Quadratic Regulator (LQR).

To find the optimal K we have to follow some procedure. In following gives a brief

description of the procedure will be given.
To find an optimal feedback K a constant matrix P should exist such that:

Eq. 9-1 %(XTPX)Z —x"(Q+K'RK)x

Substitute into the following performance index or cost function:

Eq.9-2 J= Tj'(xT Qx + u"Ru i = J. "(Q + K'RK Judr

then the equation becomes as:
Eq.9-3 =— j (x"Px i = —x" (0)Px(0)

If we look at Eq. 9-3 the integration and differentiation cancels each other. We assumed
the closed-loop system is stable and that x(t) goes to zero as time goes to infinite. It can
be seen in Eq. 9-3 that J is independent of K. It is a constant that dependent only on the
matrix P and the initial conditions.

Now we can find the state feedback control gain K. Differentiate Eq. 9-1 and the
substitute from the closed-loop state equation x = (A —BK)x to se that equation Eq. 9-1

is equivalent to:
¥"Px+x"Px+x K'RKx=0
x" (A-BK) Px+x"P(A-BK)x+x'Qx +x'K'RKx = 0
x"((A-BK)P+P(A-BK)+Q+K'RK x =0

It is remarkable that the last equation has to hold for every x(t). Therefore, the term in the
parentheses is identically equal to zero. Then:

(A-BK) P+P(A-BK)+Q+K'RK =0

Eq. 9-4 A"P+PA+Q+K'RK-K'B"P-PBK =0
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The above equation is a matrix quadratic equation. We select:
Eq.9-5 K=R"'B'P

Then the results of equation Eq. 9-4 becomes:
A'T+PA+Q+(R'B’Pf R(R"'B"P)-(R'B"P) B’P-PB(R'B"P)=0
Eq. 9-6 A'’P+PA+Q-PBR'B'P=0

Eq. 9-6 is called; algebraic Riccati equation (ARE). It is a quadratic matrix equation that
can be solved for the P given (A,B,Q,R). Then the optimal full-state feedback gain K can
be calculated using Eq. 9-6. The minimum value of performance index is given by Eq.
9-3, which is only dependent on the initial value condition. This means that the cost of
using the full state feedback Eq. 9-5 can be computed from initial conditions before the
control is ever applied to the system.

The Riccati equation can be solved and K exists, provided that the state-space realization
is completely stabilizable or controllable. A state-space realization is completely
controllable if there for arbitrary states X, X; and arbitrary times 7, <7, exists a control

strategy capable of moving the system from state X, at time 7; to state X, at time7|
(Anderson, 1990).This is guaranteed if and only if the controllability matrix:

T.=[BABA’B....A"'B]

has rank n (or full rank), n being the order of the system.
The regulator design can be illustrated as in figure 1, where the state space description
has been transformed into a time domain block diagram.

() x(t)

u(?) K
Figure 106: Standard Regulator design

When we are going to design an optimal regulator, we will follow the criteria as
mentioned below:

e Solve Eq. 9-6 for the matrix P. (if a positive-definite matrix P exists, the system is
stable).
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e Substitute the matrix P into Eq. 9-5. The resulting matrix K is the optimal matrix.
If the matrix A-BK is stable, the present methods give the correct result.

9.1.1. Solving Quadratic Regulator Problem with Matlab

We use the MATLAB Iqr(A,B,Q,R) command to solve the continuous-time, linear
quadratic regulator problem and the Riccati equation.

This command calculates the optimal feedback gain matrix K such that the feedback
control law:

u(t) = —-Kx(¢)

that minimizes the performance index:

T

J=

00

(xTQx + uTRu)it
0

—

T

Subject to the constrained equation:
X = Ax+Bu
The other command in matlab is:
[K,P,E]| = igr(A,B,Q,R)

Then the command returns the gain K, eigenvalue vector E, and matrix P, the unique
positive-definite solution to the Riccati equation:

A’P+PA-PBR'B'P+Q=0

If matrix A-BK is a stable matrix, such a positive-definite solution P always exists. The
eigenvalue vector E gives the closed-loop poles of A-BK.

9.1.2. Controllable

The system is controllable, if all the closed-loop poles may assigned to the desired
locations by selection of K.

Controllability means that the control input u(t) independently affects all the systems
modes

Te=[B 4B 4’B ... 4""'B]
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T, is controllability matrix. The system is controllable if T, has full rank of n, and if T,
has n linearly independent columns.

9.1.3. Stabilizability and Detectability

A system (A,B,C) is stabilizable if there exists a matrix K, so that A-BK is stable (i.e. it
has the eigenvalues in the stability region).

The system is detectable if a matrix L exists, so that A-LC is stable. A controllable
system is always stabilizable. An observable system is always detectable.

9.1.4. Conditions for convergence of the LQ solution algorithm

There exists a gain K such Ac is stable. If this is reality, we call the system output
stabilizable.

The output matrix C has full row rank p.

Control weighting matrix R is positive definite. (i.e. all eigenvalues greater than zero,
which implies non-singularity; denoted R > 0). This means that all the control inputs
should be weighted in the performance index (PI).

Weighting matrix Q is positive definite (Q >0 ) and ( \/6 ,A) is detectable. That is, the
observability matrix polynomial

s

ol

has full rank n, for all values of the complex variable s not constrained in the left-half
plane.

If these conditions is true, the algorithm finds an output-feedback gain that stabilizes the
plant and minimizes the performance index (PI). The detectability condition means that
any unstable system modes must be observable in the performance index (PI). Then if PI
is bounded, which it is if the optimization algorithm is successful, signal associated with
the unstable modes must go to zero as t becomes large, that is, they are stabilized in the
closed-loop system.

9.1.5. System description

We will consider linear systems of the form:

x=Ax+B u
y=Cx
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Where x € R" is the system state, u € R" is the control input, y € R” is the system output
to be controlled, and (A,B, ) is stabilizable. We assume x to be measured so that full
state information is available.

Assume now that rank (B, )=k < m. This implies that B, can be factorized as:

B, =BB

Where B, € R""and B € R*"". With this, an alternative system description is given by:

x=Ax+B v
v =Bu
y=Cx

Where v € R can be interpreted as the total control effort produced by the actuators. We
will refer to v as the virtual control input.

Since k <m B (and also B,) has null space of dimension m — k& in which u can be
perturbed without affecting the system dynamics. This is the type of actuator redundancy
that is typically considered in control allocation applications. For simplicity, we will
restrict ourselves to the case k = p,i.e, when the number if virtual control inputs equals

the number of variables to be controlled.

9.1.6. The optimal Linear Quadratic control

The design problem is now to select the feedback gain K that minimizes J subject to
dynamic constraints, which means that the performance index J should be minimized.
This is done by finding a control input u(t) such that the control input drives the state
variable x to zero when time goes to infinity and achieved output equal to commanded or
reference signal (y = r) at steady state:

min J = [((x)7Q, (x)+ (u) R, (u)s
0
Subject to x = Ax + B,u =(A4—B,K)x
Cx=r

The block diagram, Figure 107 is a detail description of Figure 104. In this diagram we
have a feedforward and feedback controller in the system.
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r(t) N 5@ u(?) B x(1) | x(2) c y(t)

Figure 107: Feedforward and feedback control law for the redundant system

The block N in Figure 107 is a Feed-forward controller and K is a Feedback controller.
Feed-forward calculation is a static gain of the closed-loop related to the tracking

problem.

The computation of Feedback controller is mainly based on chapter 1.2 (Linear Quadratic
Regulator) and Feed-forward computation is based on Glad (2000, chapter 9.2) and

Hérkegaard (2003, chapter 10).

When the system has more inputs than or equal to the outputs variables to be controlled,
it needs a feed-forward controller to track the input. The static gain N matrix can be

expressed in following equation:
N= [C(BK - A)‘IB]+

Here + denotes pseudoinverse.

Commanded input u(t) is:
u(t)=Nr —u_(?)

where the full-state feedback control law u.(t) is expressed in:
u (1) =-Kx(?)

Where the feedback gain

K, =R"'B,'P,

To find the symmetric matrix P; the stationary Riccati equation should be solved,

AP +PA-PBR, BP +Q=0
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9.1.7. The optimal Linear Control with Control Allocator

r(t) N Nr & 5 v(t Control | #() B X(?)
— Allocati

[ e N I ol =

V(D)

K

Figure 108: Feedforward and feedback control law for the redundant system with allocator

In this design we use the system description (2) and determine the virtual control input

V(t) by solving:

mvin T (XTQZX + vTsz)dt
0

Where
Qz = Qg 20

1s positive semi-definite,
R,=R! >0
is positive definite, (A,Q, ) is detectable, and x, v solve:

Ax+B =0
Cx=r

Then determine the control input u(t) by solving:

min ||u||
u

Subjectto Bu=v

In this case there is no need to minimize the scalar quantity v' R,v at steady state because
the equation has a unique solution due to the dimension of v is same as the dimension of
.

Then optimal control law becomes as;

u(?) =Sv(?)
where:
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S =[B]
The optimal virtual control input is given by;
v(t)=Nr—u,
where:
u,(t)=—-K,x(t)
this matrix static gain N can be expressed in following equation,
N=|cBK-A)'B,[’

Since N is a square we get N* = N™'S = B* according to lemma 1.

The feedback gain K for design 2 can be expressed by the following equation. In this
equation B, was used instead of B,

K,=R,"B,/ P,

To solve feedback gain K, the symmetric matrix P, should be found first. This is done by
solve Riccati equation:

-1 T
A'P,+P,A+Q,-P.BR, B, P, =0

9.1.8. Flight Control example with ADMIRE benchmark

In this design example section we will demonstrate the theory described in the previous
using a flight control example. The flight control example used here is the ADMIRE
model. We consider a low speed flight case, Mach 0.5 and altitude 1000 m. In this
situation the efficiency of control surfaces is very poor, which means that there possible
to occur actuator saturation in certain positions.

The subsystem of ADMIRE described by the following state-space model.
x(t) = Ax(t) + B, u(t)

y(¢) =Cx(t) + Du(?)
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Where x € R" system state, u € R” commanded control input, y € R”. A € R™™ system

pxm

is the direct
transmission matrix. X € R" and y € R” are the state representation matrix and y(¢) the

matrix, B € R”" input matrix, C € R”™ output matrix and D € R

output observation matrix respectively.

r l >
—» Control Y .| Control U_| Control o - | System
| Allocator

law surface o (A,B)
r X —‘

Figure 109: Control law and control allocation for over actuator system with reference input

The aircraft data for the subsystem is from the linearized ADMIRE model, where the
desired states in this example are

x)=[a B p q r]

where the state variables are « = angle of attack, g = angle of sideslip, p =roll angular
rate, p = pitch angular rate, and » =yaw angular rate. The angle of attack and angle of

sideslip is measure in unit (degree), whereas the roll, pitch, and yaw is measured in the
unit degrees per second (deg/s).

The seven control surfaces for the Admire model as depicted in chapter 2, has a first
order dynamics with a time constant of 0.05 s. The transfer functions for all seven control
surface becomes as,

_ 20
© 5420

where J,) and u,) represents actual and commanded control input of right and left

canards, right outer and right inner elevons, left inner and outer elevons, and rudder. The
all control surface deflections are measured in degrees.

6(-)(t ) = [5rc 510 §roe 5 i 5

rie lie

é‘loe 5;’ ]T

u(.)(t) = [urc ulc uroe urie ulie uloe ur ]T
Actuator position constraints are given by:
S, =[25° 25° 30° 30° 30° 30° 30°]

Sy =|-55° 55" =30°=30° —30° —30° —30°[
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The commanded output variables are the angle of attack « , side-slip # and roll rate p.
Then the output matrix becomes as,

yO=[e B pl

System matrix A and input matrix B, for the subsystem:

[-0.5432 0.0137 0 09778 0|

0 -01179 02215 0 -09661

A= 0 -105130 -0.9968 0 06176
26221  -0.0030 0 -0.5057 0

i 0 07076  -0.0939 0 -02127 |

[ 0.0035 0.0035 -0.0318 -0.0548 -0.0548 -0.0318 0.0004 |
-0.0063 0.0063 0.0024 0.0095 -0.0095 -0.0024 0.0287
B, =| 06013 -0.6013 -2.2849 -19574 19574 22849 14871
0.8266 08266 -0.4628 -0.8107 -0.8107 -0.4628 0.0024
1-0.2615 0.2615 -0.0944 -0.1861 0.1861 0.0944 -0.8823 |

The input matrix By; is ganged, which means that the right canards (u,, ) and left canards
(u, ) 1s ganged together, right outer elevon (u,,, ) and right inner elevon (u,,, ) is ganged
together, right inner elevon (u,,, ) and left outer elevon (u,,, ) is ganged together and

rudder (u, ) was not ganged, because there is only one rudder (u, ). Then the ganged input
matrix B, becomes as follows,

[ 0.0069 -0.0866 -0.0866 0.0004 ]
0 00119 -00119 0.0287
B, = 0 -42423 42423 14871
16532 -12735 -12735 0.0024
0 -02805 02805 -0.8823 |

The output matrix C and the direct transmission matrix D is given below. In this case, we
will measure the responses of angle of attack (& ), sideslip ( /), and roll rate (p),

therefore, ones in diagonal entries of C matrix. All The entries of the D matrix are zeros.

1 0 0 0 O
C=0 1 0 0 O
0 0 1 0 O
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0 0 O
D=0 0 0 O
0 0 O

For the simulation we use nxn quadratic system matrix A and nxm ganged input matrix
B,. The state variable equation x(t) and output equation y(¢) for the open-loop system

yields,

0.0069 -0.0866 -0.0866 0.0004

-0.5432 0.0137 0 0.9778 0|l
u
0 -0.1179 0.2215 0 -09661||p 0 0.0119 -0.0119 0.0287 ¢
u
x(t) = 0 -10.5130 -0.9968 0 0.6176 |-| p |+ 0 -42423 42423 14871 || ”
2.6221 -0.0030 0 -0.5057 0||q 1.6532 -1.2735 -1.2735 0.0024 M
0 0.7076 -0.0939 0 -02127||r 0 -0.2805 0.2805 -0.8823 r
-
u(}
1 0 0 0 0]|B| o 0 0 0
u.,
y()=[0 1 0 0 O||p[+/0 0 0 O] "~
u
0 01 0 0||g] |0 0 0 of]"
u,
-

We check the open-loop stability by the system matrix A. Then we get the open-loop
systems pole placement, damping ratio and natural frequency using MATLAB command
damp;

States x(t) Eigenvalue Damping ({) Natural frequency
(W) (rad/s)

Angle of attack, « 1.08 -1.00 1.0800

(dutch mode)

Angle of sideslip, g -0.3180 + 1.70001 0.1840 1.7300

(dutch mode)

Roll angular rate, p -0.3180 - 1.7000i 0.1840 1.7300

(short period mode)

Pitch angular rate, ¢ -0.6920 1.00 0.6920

(short mode)

Yaw angular rate, r -2.1300 1.00 2.1300

It seems that the system has an unstable pole at 1.08 for angle of attack and insufficient
damping for angle of attack, pitch rate, and yaw rate. Since unstable pole and insufficient
damping, the system requires a feedback gain K. Therefore for we use optimal LQ
control with feedback design.
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For computation of feedback gain K it is necessary to select the performance index
weighting matrix Q and R as discussed in chapter 1.2. Then we can compute the optimal
gain K.

First will we discuss the choice of Q. It is desired to obtain good stability of the dutch

mode, so that &® and 3 should be weighted in the performance Index (PI) by factors qg.
To obtain good stability of short period mode, which in closed-loop will consist primarily
of p and ¢, we may weight p* and ¢° in the PI by factors qsp. The roll mode consists of

r, so that 7> should be weighted in the PI by factors g, to have good stability criteria,
then we have:

lE‘5‘&'.11;%‘“7’

Q = diag[qdr qdr qsp qu Qr]
As far as the R matrix goes, it is generally satisfied to select R as:

R=pl
where I is the identity matrix and p a scalar design parameter. After few trials, we
obtained a good result using

20 0 0 0 0
0 20 0 0 0
Q=0 0 10 0 0
0 0 0 1 0
(0 0 0 0 2]
01 0 0 0
Ro| 0 01 0 0
0 0 01 0
0 0 0 0l

For this selection, the solution for the symmetric matrix Py obtained from the continuous-
time Riccati equation, the optimal feedback gain K; was:

AP, +PA-PBR, 'B,/P, +Q=0

[ 4.8288 0.0094 -0.0001 0.3134 0.0005 |
0.0094 8.8641 0.0429 0.0006 -1.0139
P,=|-0.0001 0.0429 0.1600 -0.0000 -0.0197
0.3134  0.0006 -0.0000 0.1442  0.0002

| 0.0005 -1.0139 -0.0197 0.0002 0.6031 |
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K,=R'B,'P,

5.5136  0.0103

_|-8.1697  2.0625 -6.7251
'T1-8.1749 -2.0937 6.7256
0.0242 12.1281 2.5647

-0.0003 2.4053  0.0028
-2.1072  -0.9798
-2.1080 0.9747
0.0032  -5.9053

Now we can check the closed-loop stability again with the stable closed-loop
matrix A, = A— B K, . The closed-loop dynamic matrix computed as below,

[ -1.9967
-0.0008
A, =|-0.0142
-27.3078

| 0.0228

0.0061
-0.5154
-10.9165
-0.0889
12.5740

-0.0010
0.3080
-61.8726
-0.0049
-1.6040

0.5962  0.0019 |
-0.0001 -0.7734
-0.0013  1.1080
-9.8503  0.0032
0.0030 -5.9711

We check the closed-loop stability again by the system matrix Aq. Then we get the
closed-loop systems poles, damping ratio and natural frequency using the MATLAB

command “damp”:

States, x(t) Eigenvalues Damping ({)
Angle of attack, « -0.989 + 1.401 0.5760
(dutch mode)

Angle of sideslip, g -0.989 - 1.401 0.5760
(dutch mode)

Roll angular rate, p -1.81 +0.34401 0.9820
(short period mode)

Pitch angular rate, ¢ -1.81 - 0.34401 0.9820
(short mode)

Yaw angular rate, r -2.34 1.00

Natural Frequency (w,)

in (rad/s)
1.72

1.72
1.84
1.84

2.34

It seems that all the poles are in the stability region and is moved further to left-hand side
of the S-plane with the slowest time constant, T = 1/2.34 = 0.42 sec.
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9.1.9. Simulation results for Design 1

Cutput response curves of angle of attack, sideslip and roll rate versus t

25 | | T | | T I I |
=== angle of attack
. . . . =-=- sideslip
' r\\__L ' ' ' — roll rate
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U 1 1 1 E 1 1 1 1
E 15 B :'"""F"""%'""'"."""'I"""'F""".' """ N
=) ! : i
Lok} 1 1 1
= 1 1 1 1 1 1 1 1
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v} : : 1 : 1 1 1 1
o 10------ R L Rk e
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Bl------ UNN—— e d e e e e e e e e e e e
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Figure 110: Output response of angle of attack, side-slip and roll rate

We set the reference input, angle of attack to 5 degrees, side-slip to 10 deg, and roll to
rate 20 deg/sec. Step input occurs start at t=2 sec. and it should be settled at the desired
commanded input at steady state. The Figure 110 depicted the output response of these
three variables. As it can be seen in Figure 110, the angle of attack and roll rate settled at
5 degrees and 20 degrees/sec after 1 second, respectively. Side-slip response settled at 10
after 1.5 seconds.

9.1.10. Design 2

The design model used here is

Xx=Ax+B u=Ax+B v
v=DBu

As described in section 1.2.5 the matrix B, was factorized into two matrices B, and B.
where B, = B B . Matrix B contains the last three rows of B,. The virtual control

input, v = Bu, contains the angular acceleration in roll, pitch, and yaw produced by the
control surfaces.
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o = 9 o o
S O o o

=
<
I
o o - o o

1
0 -42423 42423 14871

B=|16532 -12735 -12735 0.0024
0 -0.2805 0.2805 -0.8823

The same weighting matrices Q,=Q,; and R,=R; as in design 1 is used in this example.
Then the solution for the symmetric matrix P, from continuous-time Riccati equation and

optimal feedback gain K is:
AP, +P,A+Q,-P,BR,'B,'P, =0

57451  0.0142  0.0000 0.5257 -0.0009 |
0.0142 9.4231 0.0397 0.0014 -1.2915
P, =| 0.0000 0.0397 0.1599 -0.0000 -0.0212
0.5257  0.0014 -0.0000 0.1759  0.0000
[-0.0009 -1.2915 -0.0212 0.0000  0.6791 |

K,=R,"B,/ P,

0.0192  1.3823 60.8724 0.0024 -0.8381
K, =|31.4175 0.1138  0.0055 10.5153 -0.0138
-0.0194 -11.6616 1.5096 -0.0036 6.1293

Nbar can be calculated by equation N = [C(BVK ~A)'B, ]_l , and becomes a 3 x 3 square

matrix.

0.0206 12.0729 61.5355
Nbar =|34.9179 -0.0359  0.0023
-0.0214 -13.1432  3.0575

9.1.11. Simulations result for design 2

In this simulation will we test the output variables settled at a desired position in steady
state. In the second test, will we analyse how good the control surfaces produce the
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desired moment. In this test we will not include the constraints. In the final test we will
include constraints and consider the control surfaces according to the boundaries, when
they produce the desired moment.Design 2 considers the system without constraints

Output response curves of angle of attack, sideslip, roll rate versus t

28 | | T | | | | | |
5 5 5 5 roll rate: 5 5 5
] BN e SN S S S
PN SN R S S S S
Ei} 1 1 1 E 1 1 1 1
o !
= : : : Lo : : :
! ! ! sideslip ! ! !
10 }------ MR I P : : : ' :
':angle of attack!
5 ------- -:r ------------- oo '------.:--------! ------ oo R R —
0 i | | | | | | |

Time {sec)

Figure 111: Output response for design 2

As in design 1, the reference input, angle of attack is set to 5 degrees, sideslip to 10
degrees, and roll rate to 20 deg/sec. The step input is given at t=2 sec. Figure 111 shows
the response of the angle of attack, sideslip, and roll rate. As it can be seen as in Figure
111 the angle of attack and roll rate settles at 5 degrees and 20 deg/sec after 1 second.
There is small tracking error in angle of attack. Sideslip settled at 10 degrees after 1.5
seconds.

From these two design approaches we can conclude that design 1, without control
allocator and design 2, with control allocator, gives exactly same response.

Control inputs

The following four figures illustrate the control surfaces deflection for the aircraft
response. In this test constraints are not included. However, it can be clearly seen from
the figures that the control surfaces exceeds the maximum and minimum constraints in
some cases.
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Figure 112: the control surfaces deflections

Another interesting point here is that have the control surfaces produced the desired
moment v. It can be confirmed by taking the produced moment by the control surfaces
multiply by the control effectiveness matrix B, which means v =Bu.
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Figure 113: The desired moment v
Response curves v1, v2 v3 versus t
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Figure 114: Achieved moment v

Figure 114 shows the desired moment and the achieved moment. There is no difference
between these two figures. This means that the control surfaces has achieved the desired
moment. As mentioned before the control surfaces exceed their maximum and minimum
boundaries. Therefore is this an inadequate method.

In the following four figures illustrates the control surfaces deflection for aircraft
response. In this test constraints included and cascaded generalized psedoinverse

algorithm was used. Anyway, it can be clearly seen from the figures the control surfaces
are into their maximum and minimum constraints.
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Figure 117: Achived moment v

Figure 117 illustrate the desired moment and the achieved moment for design 2. The
figures are almost same. There are only small differences between these two figures.

Output response for this design is depicted below:

QOutput response curves of angle of attack (alpha), sideslip (beta). roll rate (q) versus t
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Figure 118: output response for design 2 after constrints in allocator

Using the allocation algorithm in our LQR design reveals that the system has almost the
same response, while also being more real-world applicable since the position constraints
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is considered. The settling times for all three variables are very close to the settling times
in the non-constrained case.
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9.2. Summery

LQR design for flight control is a powerful tool. LQR on its own can distribute the
control effect to the redundant control surfaces of the aircraft but it lacks the possibility of
regarding constraints in design 1. Using design 2 it is possible to include a control
allocation algorithm into the LQR designs, thereby making it adhere to the constraints of
the system’s actuators. The choice of algorithm depends on the goal of the controller, and
the three tested algorithms have their different weaknesses and strengths. In order to
choose the optimal algorithm for LQR design 2 the weaknesses and strengths of the
algorithms must be considered.
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10. Appendix A.

Lemma 1. The least squares problem
. 2 r
Min ||x|| =x'x
Subjectto Ax =y

Where
A =A"(aa")'
is the pseudoinverse of 4.
10.1. Symmetric matrices
A symmetric matrix such as matrix A given by 4" = 4 if this is true it is necessarily
square. Its main diagonal entries are arbitrary, but its other entries occur in pairs- on

opposite sides of the main diagonal.

10.1.1. Example:

Symmetric matrices,

A" =4 is symmetric
0 -1 0 0 -1 0
B=|-1 5 8| B'=|-1 5 8
0 8 -7 0 8 -7
B" =B is symmetric

For example, X" X is called Quadratic forms.

A quadratic form on R" function Z defined on R" whose value at a vector x in R" can
be computed by and expressed of the form, Z (X ) = X"A4X ,where Aisan nxn
symmetric matrix. Matrix A is then called the “matrix of the quadratic form”.

The simplest example of a nonzero quadratic form is
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Z(r=x"1x = x| .

Io- I-2- Example I-
{ 1}
x2

Compute X" AX for the following matrices.
4 0 3 -2
a) A= b) B=
0 3 -2 7

a) XTAX =y, xz]B (3)} [ﬂ

4 x

“ )|

} =4x] +3x;

2

b) There are two -2 entries in A.

XTax =[x xz]F —2Hx1}:[x1 xz]{.%xl —2x2}

-2 7 ||x, -2x, +7x,
=X (3x1 - 2x2)+ xz(— 2x, + 7x2)
= 3x] —2x,x, —2x,x, +7x;

— 2 2
= 3x; —4x,x, +7x,

The presence of —4x,x, in the quadratic form in example 1(b) is due to the -2 entries off
the diagonal matrix. In Example 1(a) has no x,x, cross-product term.

10.1.3. Example 2
For X in R’, let

Q(x) =5x7 +3x7 +2x] —x,X, +8x,x;.
then we will write this in quadratic form as:
X'4x.

Solution:
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The coefficients x,”, xZ, x2 go on the diagonal of A. To make A symmetric, the
coefficient of x, x, for i # j must split evenly between the (i,7),and (/i) entries in A.

The coefficient of x, x; is 0. It is readily checked that:

5 =% 0]|x
OX)=X"aX =[x, x, x;]|-% 3 4||x
0 4  2||x

10.1.4. Example 3
Let

Q(X) =x —8x,x, —5x;.

Compute the value of Q(X) for

Solution:

Page 152 of 155



Flight Control Allocation using Optimization Based Linear and Quadratic programming

P7 - project fall 2004
Aalborg Universitet Esbjerg

Uk
<) b

€sgyen®

pALE
L311°

11. Aircraft nomenclature

State variables

Symbol: unit Definition

a rad angle of attack
p rad angle of sideslip
Y rad flight path angle
u m/s longitudinal velocity
v m/s lateral velocity
w m/s normal velocity
Vr m/s total velocity
p rad/s roll rate

q rad/s pitch rate

r rad/s yaw rate

PN m position north
PE m position east

h m altitude

@ rad roll angle

0 rad pitch angle

v rad yaw angle

n, g load factor, normal accel.
Nzp g pilot load factor
Coordinate frames

Symbol Defintion

e = ()21., Vs él.) inertial, Earth-fixed frame

e, = (ib, j/b,ib) body-fixed frame

e, =(%,.7,.2,) wind-axes frame

Control surface deflections

Symbol unit Definition

0. rad right canard

0, rad left canard

0., rad right outer elevon

o, rad right inner elevon

O rad left outer elevon

Oy rad left inner eleveon

0. rad rudder

Forces and moments

Symbol unit Definition

g m/s” gravitational acceleration
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Fr N engine thrust force
D=gSC, N drag force
L =gSC, N
Y =¢qSC, N
L =gShC, Nm rolling moment
M =gScC,, Nm pitching moment
N =¢gSbC, Nm yawing moment
Aircraft data
Symbol unit Definition
m kg aircraft mass
X 0 - Xz
I= 0 y kgm® aircraft inertial matrix
- Xz O IZ
S m’ wing platform area
b m wing span
c m mean aerodynamic chord
Z7p m zp-position of engine thrust point
Xp m Xp-position of the pilot
Atmosphere
Symbol unit Definition
p kg/m’ air density
q N/m’ dynamic pressure
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