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Abstract 
The performance of constrained optimization algorithms for control allocation with applications to aircraft 
control was evaluated. Three control allocation algorithms were investigated: A pseudoinverse, a Fixed-
point, and a Direct Control Algorithm. The control allocation algorithms include a quadratic programming 
method and a linear programming method. The algorithms was implemented in the Swedish developed 
aircraft simulation model, ADMIRE. The aircraft model describes a single-engine delta-wing canard fighter 
aircraft with 7 control surfaces. The algorithms were both evaluated in a free testing environment to 
increase analysis clarity, and also in ADMIRE, in order to form a bridge to aircraft applications.  
The test in the free environment showed quite different results from the algorithm. In general it was stated 
that all the algorithms performed a solution to the commanded input. However, this was only an issue when 
none of the output variables was saturated. In the case where some or all of the output variables were 
saturated the algorithms has trouble achieving the desired moment. Some of them wouldn’t give enough 
moment and other wouldn’t track the desired moment direction. This was also the issue when the 
algorithms was tested in ADMIRE. 
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1. Introduction 
Control allocation is needed for control of overactuated systems, and deals with 
distribution of the control effort among the actuators in the system. When using control 
allocation, the actuator selection task is separated from the regulation task in the control 
design. In many flight-control systems of the past ganging has been used to associate the 
three dimensional movements of the aircraft to the control surfaces. For example, to 
achieve a pitching moment, the left and right elevator deflection should move together 
while a rolling moment can be produced by the differential movement of the ailerons. As 
more advanced aircrafts are built, more unconventional control surfaces have been 
introduced, such as canards, leading-edge flaps and elevons, ganging of these controls is 
less obvious. This property of the development in aircraft design and also the interest in 
reconfiguration after failures in flight control has given a solid foundation for the birth of 
control allocation.  
 
The aircraft controller usually outputs the desired moments to be produced in pitch, roll, 
and yaw. In order to control the aircraft, a mapping from the commanded moments in 
pitch, roll and yaw onto the control surface deflections needs to be calculated. Since 
redundant control surfaces are available the solution to determine the deflection of each 
control surface is not unique. The task of the control allocation algorithm is to provide an 
optimal mapping based on certain criteria. Three control allocation algorithms have been 
implemented and tested in the Swedish developed aircraft benchmark “ADMIRE”. These 
allocation algorithms include a quadratic algorithm as well as a linear, and a fixed-point 
algorithm. The simulation model, “ADMIRE”, uses a delta-wing canard single engine 
fighter aircraft model and the aero data is supplied by the Saab AB developed Generic 
Aerodata Model (GAM). The entire simulation model is implemented in 
Matlab/Simulink. 

2. Aerodynamics 
In order to understand aircraft control and behavior, a brief introduction to aerodynamics 
is essential. Any aircraft motion is determined by the moments and aerodynamic forces 
acting on the aircraft. In the following the moments and forces acting on the particular 
aircraft we are working on is examined. This section is based on L. Stevens, 2003 and  
Härkegård 2003. 

2.1. Coordinate frames 
The two frames most frequently used for describing aircraft angles and forces are the 
earth-fixed frame (i) and the body-fixed frame (b). In the earth-fixed frame the 3 axes are 
pointing north, east and down. This frame is useful for describing the position and 
orientation of the aircraft. In the body-fixed frame the 3 axes with origin point at the 
aircraft centre of gravity are pointing forward, over the right wing and down. In this 
frame the inertia matrix of the aircraft is fixed thus making the frame suitable for 
describing angular motions. 
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Figure 1 Earth-fixed frame (i) and body-fixed frame (b) 

Another coordinate frame is the wind-axes frame (w). This frame derives its x-axis from 
the velocity vector of the aircraft (V). The wind-axis frame is relative to the fixed-body 
frame by the angle of attack (α) and the angle of sideslip (β) as shown in Figure 1. 
 
Given any vector: 
     
Eq. 2-1    wwbb vv eev ==
 
its component vectors in the first two frames are related by: 
 
     

Eq. 2-2    
w

T
wbwbwb

bwbw

vTvTv

vTv

==

=

 
where: 
  

















−
−−=

















−














−=

αα
βαββα

βαββα

αα

βα
ββ
ββ

cos0sin
sinsincossincos

cossinsincoscos

cos0sin
010

sin0cos

100
0cossin
0sincos

wbT  

 

Page 6 of 154 



Flight Control Allocation using Optimization Based Linear and Quadratic programming  
P7 - project fall 2004 
Aalborg Universitet Esbjerg 
Since the body-fixed frame is the most frequently used, the subscript b for component 
vectors for this frame will not be used further. We will simply write  vbev =

 
Figure 2 Illustration of aircraft orientation angles (φ, θ, ψ) and angular rates (p,q,r) 

2.2. Aircraft variables 
Considering the aircraft as a rigid body its motion can be described by its position, 
orientation, velocity and angular velocity over time. 

2.2.1. Position 
The position vector is given by:  
 
     
Eq. 2-3    ( )T

ENi hpp −= ep
 
In the earth-fixed frame where pN = position north, pE = position east and h = altitude. 
 

2.2.2. Orientation 
The orientation of the aircraft can be represented by the Euler angles: 
 
    
Eq. 2-4    ( )Tψθφ=Φ
 
where φ = roll angle, θ = pitch angle and ψ = yaw angle 
 
These angles relate the body-fixed frame to the earth-fixed frame. 

2.2.3. Velocity 
The velocity vector (V) is given by: 
   
Eq. 2-5    wwb VV eeV ==
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where: 
 

( )TwvuV =  
 
and: 
 

( )T
Tw VV 00=  

 
in the body-fixed and in the wind-axes coordinate frames respectively. Here u = 
longitudinal velocity, v = lateral velocity and w = normal velocity and VT = total velocity 
(airspeed). 
     
Eq. 2-6   ( )T

Twbw VVTV βαββα cossinsincoscos==  

 
Conversely, we have that 
 

222 wvuVT ++=  

u
warctan=α  

TV
varcsin=β  

 
when β = φ = 0 the flight path angle is defined by: 
     
Eq. 2-7   αθγ −=  
 
as illustrated in Figure 2. 

2.2.4. Angular velocity 
The angular velocity for vector ω is given by: 
 
Eq. 2-8   wwb ωω eeω ==  

 
( )Trqp=ω  

 
( )T

wwwwbw rqpT == ωω  
 
in the body-fixed and wind-axes coordinates respectively. p = roll rate, q = pitch rate and 
r = yaw rate. The wind-axes roll rate pw is also known as the velocity vector roll rate since 

is parallel to the velocity vector V (see Figure 1). wx̂
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2.3. Control variables 
The control variables of an aircraft consist of the thrust produced from the engine 
combined with the control surfaces of the aircraft such as rudder, aileron and elevator. 
The deflection of the control surfaces produces aerodynamic forces when airflow is 
forced across them. The engine produces the speed control while the movement in pitch, 
yaw and roll is determined by the deflections in the control surfaces (δ). 
In modern aircraft the control surfaces include, but is not limited to, the elevator, aileron 
and rudder. For both redundancy and performance concerns modern aircraft typically 
implement more than three control surfaces, see Figure 3. 
 
Using this setup, roll control is achieved by deflecting the elevons differentially. Pitch 
control is achieved by combining symmetric elevon deflection which generate a non-
minimum phase response with deflection of the canards which produces a response in the 
commanded direction immediately.  
 

 
Figure 3 Modern delta canard fighter aircraft 

A growing interest in higher angles of attack has founded the development of thrust 
vectoring. By mounting deflectable vanes at the engine exhaust it is possible to direct the 
exhaust to provide additional pitching or yawing moments. 
Rigid body motion 
Using the variables in the former section, let us now derive a model of the aircraft 
dynamics. By considering the aircraft as a rigid body allows us to use Newton’s laws of 
motion to investigate the effects of the external forces and moments acting on the aircraft. 
In the earth-fixed frame (i), Newton’s second law states that: 
 
     

Eq. 2-9   ( )VF m
dt
d

i

=  
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HT
idt

d
=  

 
Where F = total force, T = total torque, m = aircraft mass and H = angular momentum of 
the aircraft.  
 
Using Figure 1 allows us to perform the differentiation in the body-fixed frame instead. 
     

Eq. 2-10   ( ) VωVF mm
dt
d

b

×+=  
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d  

 
As this frame is relative to the aircraft, the inertia matrix I is constant. The angular 
momentum can be expressed as: 
     
Eq. 2-11    IwbeH =
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The zero-entries are a property of the aircraft symmetry around the xz-axis. Expressing 
all vectors in the body-fixed frame gives the following standard equations for rigid body 
motion in terms of velocity and angular velocity: 
     
Eq. 2-12   ( )VVmF ×+= ω�  
 

ωωω IIT ×+= �  
 
Pitch, yaw and roll angle dynamics during level flight are given by: 
     
Eq. 2-13    p=φ�

r
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=
=

ψ
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�
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2.4. Forces and moments 
In Eq. 2-9 F and T represent the sum of forces and moments acting on the aircraft at the 
centre of gravity. These forces are a combination of three major forces; gravity, engine 
thrust and aerodynamic effects. F and T can therefore be expressed as: 
     
Eq. 2-14   AEG FFFF ++=  

AE TΤT +=  
 
We will now briefly investigate these components. 

2.4.1. Gravity 
Gravity only gives a force contribution since it acts at the aircraft center of gravity. The 
gravitational force mg is directed along the normal of the earth plane and is considered to 
be independent of the altitude. This gives: 
 
















=















−
=
















=

3

2

1

sincos
cossin

sin
0
0

g
g
g

mmg
mg

wbiG eeeF
θφ
θφ

θ
 

where: 
   

Eq. 2-15   
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using rotation around the 3 axes in Figure 2. 

2.4.2. Engine 
The thrust force produced by the engine is denoted by Ft. Assuming the engine is 
positioned to produce a force parallel to the aircraft body axis gives: 
     

Eq. 2-16    

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Also assuming the engine is positioned so the thrust point lies in the xz-plane of the 
body-fixed frame offset from the center of gravity by zTP along the z-axis gives a pitching 
moment: 
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Eq. 2-17    
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If thrust vectoring is used these expressions become different and depend also on the 
engine nozzle deflections. 

2.5. Aerodynamics 
The aerodynamic forces and moments are generated by the interaction between the 
aircraft body and the surrounding air. The size and direction of the moments are 
determined by the amount of air diverted by the aircraft in different directions. The 
amount of air directed by the aircraft is determined by: 
 

• The speed and density of the airflow (VT, ρ) 
• The geometry of the aircraft: S (wing area), b (wing span), c  (mean aerodynamic 

chord) 
• The orientation of the aircraft relative to the airflow: α, β 
• The control surface deflections: δ 

 

 
Figure 4 Aerodynamic forces and moments in the body-fixed frame 

The aerodynamic forces and moments also depend on other variables, such as angular 
rates (p,q,r) and the time derivatives of the aerodynamic angles ( ) but these effects 
are not as prominent. This motivates a standard way of modeling scalar aerodynamic 
forces and moments: 

βα �� ,
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Eq. 2-18   
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where the aerodynamic pressure is given by: 
     

Eq. 2-19   ( ) 2

2
1

TVhq ρ=  

 
The aerodynamic pressure captures the density dependence and most of the speed 
dependence. The remaining aerodynamic effects are determined by the dimensionless 
aerodynamic coefficients Cf and Cm. These coefficients are difficult to determine 
analytically but can be estimated empirically through wind tunnel experiments and actual 
flight tests. Typically each coefficient is written as the sum of several components each 
capturing the dependence of one or more of the variables involved. These components 
can be represented in several ways. A common approach is to store them in look-up 
tables and use interpolation to compute intermediate values. In other approaches one tries 
to fit the data to some parameterized function.  
 
In the body-fixed frame we introduce the components: 
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Eq. 2-21   where
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These are illustrated in Figure 4. The aerodynamic forces are often expressed in the wind-
axes coordinate frame: 
     

Eq. 2-22   where
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The sign convention is such that the drag force acts along the negative xw-axis in Figure 1 
while the lift force is directed upwards perpendicular to the velocity vector. Using Eq. 
2-2 the force components in the two frames are related by: 
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Eq. 2-23   
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The lift force (L) opposes gravity and prevents the aircraft from falling down. The lift 
generated is mainly produced from the angle of attack (α). 

 
Figure 5 Lift coefficient as function of angle of attack in ADMIRE 

Figure 5 shows the lift coefficient CL as a function of the angle of attack for the ADMIRE 
model. An increase in angle of attack leads to an increase in lift coefficient up to an angle 
of 32° where CL reaches its maximum. Beyond this angle of attack, the lift decreases. 
This point is called the stall angle, which civil aircraft wants to avoid during flight – 
while military aircraft can draw advantage of higher angles of attack for tactical purposes. 

2.6. Gathering the equations 
The equations which describe the rigid body dynamics (section 0) and forces and 
moments (section 2.4) can be gathered to describe the full motion of the aircraft. 
Combining Eq. 2-12 with Eq. 2-14 yields : 
 
Body-axes force equations: 
 

Eq. 2-24   
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Body-axes moment equations: 
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Eq. 2-25   
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The force equations can also be expressed in the wind-axes coordinate frame in terms of 
VT, α, β, ωw which gives the following equations: 
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In the absence of lateral motion, i.e when p = r = φ = β = 0, the equations of motion in 
the longitudinal direction are given by: 
 

Eq. 2-27   
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2.7. Control objectives 
Flight control systems can be designed for several types of control objectives. Let us first 
consider general maneuvering. In the longitudinal direction the normal acceleration is 
defined as: 
 

Eq. 2-28    
mg
Znz −=  

 
The pitch rate (q) can be selected as the controlled variable. The pitch rate is sometimes 
referred to as the normal acceleration. The normal acceleration or load factor (this factor 

is often used for the lift-to-weight ratio 
mg
Ln = ) is the normalized aerodynamic force 
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along the negative body-fixed z-axis, expressed as a multiple of the gravitational 
acceleration (g). The normal acceleration is closely coupled with the angle of attack (α). 
Since α appears naturally in the equations of motion (Eq. 2-27) angle of attack command 
control is also common in particular for nonlinear approaches. 
 
For lateral control, roll rate and sideslip command control is most often chosen. For roll-
control the body-fixed x-axis may be selected as the rotation axis and p as the controlled 
variable. At high angles of attack however, this choice leads to a disadvantage from the 
property of a rolling motion, which produces sideslip from the angle of attack. This 
property quickly leads to problems since the largest sideslip during a rolling motion is in 
the order of 3-5 degrees. To remove this effect the rotation axis can instead be selected as 
the x-axis of the wind-axes frame which means pw is the controlled variable. The 
resulting maneuver is known as velocity vector roll. 

2.8. Application of control allocation 
In flight control applications control allocation means computing control surface 
deflections such that the demanded aerodynamic moments are produced. This requires a 
static relationship between the commanded control deflections and the resulting 
moments, i.e. servo dynamics need to be neglected. 
For linear control allocation methods to be applicable the aerodynamic forces and 
moments must be affine in the control deflections. In terms of the aerodynamic 
coefficients in Eq. 2-18 this means: 
     

Eq. 2-29   
( ) ( ) ( )
( ) ( ) ( )δδ

δδ
xbxaxC
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MMM

FFF

+=
+=

,
,

 

 
must hold, where ( )...,,,, rqpx βα=  

2.9. The ADMIRE model 
To evaluate the designed control allocation algorithms produced in this project, the 
ADMIRE model is used for simulation. The ADMIRE model consist of a single engine 
delta-canard wing fighter aircraft model implemented in Matlab/Simulink and is 
maintained by the Department of Autonomous Systems of the Swedish Research Agency 
(FOI). 
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Figure 6 ADMIRE control surface configuration 

Further details about ADMIRE: 
 

• Dynamics: The dynamic model consists of the nonlinear rigid body equations 
along with the corresponding equations for the position and orientation. Actuator 
and sensor dynamics are included. 

• Aerodynamics: The aerodata model is based on the Generic Aerodata Model 
(GAM) developed by Saab AB and was recently extended for high angles of 
attack. 

• Control surfaces: The actuator suite consist of canards (left and right) leading-
edge flaps (left and right), elevons (inner, outer, right and left), a rudder and thrust 
vectoring capabilities. In this project the leading edge flaps will not be used for 
control allocation since these do not produce large aerodynamic moments. Thrust 
vectoring will also not be used in this project as a cause of lacking documentation. 
The remaining seven control surfaces are denoted in Figure 6. u denotes the 
commanded deflection while δ represent the actual deflection. 

• Actuator models: The servo dynamics of the utilized control surfaces are given by 
first order systems with a time constant of 0.05s, corresponding a bandwidth of 20 
rad/sec. Actuator position and rate constraints are also included.Table 1 shows the 
actual rate and position constraints for flight below Mach 0.5. 

• Flight envelope: The flight envelope covers Mach numbers up to 1.2 and altitudes 
up to 6000m. Longitudinal aerodata exist up to an angle of attack of 90 degrees, 
while lateral aerodata only exist for angles of attack up to 30 degrees. 

 Table 1 ADMIRE control surface limits below Mach 0.5 
Control surface Min. deflection(deg) Max deflection(deg) Max. rate (deg/sec) 
Canards -55 25 50 
Elevons -30 30 150 
Rudder -30 30 100 
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3. Control allocation 
As described earlier, control allocation is a mapping from the desired moments and forces 
into deflections of the control surfaces. In a modern control system the control allocator 
block is placed between the actuators and the designed controller. See Figure 7. The 
algorithms implemented into this block must be chosen amongst many different 
constrained optimization based algorithms. These include but are not limited to: least-
squares, linear programming and quadratic programming. 
 

Control 
law

Control
allocator Actuators System

dynamics
v u

r y

x

δ

 
Figure 7 Control allocation block diagram 

The simplest control allocation method is based on the unconstrained least squares 
algorithm with small modifications to consider position limits of the actuators. More 
complex methods are derived from the constrained least squares optimization to solve the 
control allocation problem. Until recently it was believed that control allocation was too 
complex and computational intensive for real world use in flight control cases. However, 
the recent dramatic change in computer speed and the development of more efficient 
algorithms have changed the situation considerably.  
 
In this project a few of the algorithms for control allocation are tested in the ADMIRE 
Matlab/Simulink model. The ADMIRE model used is the linear model, to provide for a 
brief overview of the aspect of control allocation with respect to applications of flight 
control.  

3.1. Control allocation - background 
To introduce the ideas behind control allocation, consider the system: 
 
Eq. 3-1    21 uux +=�
 
Where x is a scalar state variable, and u1 and u2 are control inputs. x can be affected by 
two actuators. Assume that to accelerate the object, the net force v = 1 is to be produced. 
There are several ways to achieve this. We can choose to utilize only the first actuator 
and select u1 = 1, u2 = 0, or to gang the actuators and use u1 = u2 = 0.5. 
 
In linear control theory, there is a wide range of control design methods, like LQ design, 
which perform control allocation and regulation in one step (Härkegård 2003). Thus, the 
usefulness of control allocation for linear systems is not so obvious. There are however 
other, more practical reason to use a separate control allocation module, even for linear 
system. One benefit is that actuator constraints can be taken into account. If one or more 
actuator saturates, and fail to produce its nominal control effect, another actuator may be 
used to make up the difference.  
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3.1.1. Linear equations 
The linear equations can be divided in to three groups: 
 

( ) 0=ji xf  
 
Where 
 

11 , nx
j

mx
i RxRf ∈∈  

 
• Under-determined system m < n (fewer equations than unknowns) 
• Over-determined system m > n (more equations than unknowns) 
• Exact-determined system m = n (same number of equations and unknowns) 

 
Under-determined system m < n 
An underdetermined system (m < n) does not have a unique solution, it can be consistent 
with infinitely many solutions or inconsistent, with no solution. If underdetermined 
system has infinite number of solutions, then we can not find the solution by x = A+b = 
AT(AAT)-1b. Then it gives minimum - norm solution with smallest ||x||. 
 
Over-determined system m > n 
In this case there is more equations than unknowns (m > n) in the system and it is usually 
inconsistent and does not have any solutions.  
 
Exact-determined system m = n 
In this case is the system consistent and there is only one solution.  

3.1.2. Optimization – mathematical Background 
An optimization problem can generally be described as determining values of 
independent variables that correspond to a “best” or optimal solution of a function. 
Chapra (2002, p. 336) defines optimization as; find x1 which minimizes or maximizes f(x) 
subject to: 
  

Eq. 3-2    
( )
( ) nibe

miad

ii

ii

,,2,1
,,2,1

"
"

==
=≤

x
x

   

 
where x is an n – dimensional design vector, f(x) is the objective function, di(x) are 
inequality constraints, ei(x) are equality constraints, and ai and bi are constraints. 
 
Optimization problems can be classified on basis of the form of f(x): 
 

• If f(x) and the constraints are linear we have linear programming. 
• If f(x) is quadratic and the constraints are linear, we have quadratic programming. 
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• If f(x) is not linear or quadratic and the constraints are nonlinear, we have 
nonlinear programming. 

 
The constraints considered in the control allocation problems, relate only to position 
constraints in the actuator suite of the aircraft. These constraints are regarded as equality 
constraints in the implemented methods. Given a virtual control command v, determine a 
feasible control input u such that Bu=v. this can be considered in the following way: 
 

• If there are several solutions, pick the best. 
• If there is no solution, determine u such that Bu approximates v as possible. 

 
lp – norm can be used when we want to analyze how good the measured solution or 
approximation is. The lp – norm of a vector u ∈  Rm is defined as, 
 

Eq. 3-3   ∞≤≤







= ∑

=

pforu
pm

i

p
ip

1

1

1
u  

and the optimal control input is given by the solution to a two – step optimization 
problem given as, 
 

( )
( )

pvuuu

pduu

vuBw

uuwu

−⋅=Ω

−=

≤≤

Ω=

maxmin

minarg

minarg
 

 
Interpretation: 
Given Ω, the set of feasible control inputs that minimize Bu-v (weighted by wv), pick the 
control input that minimizes u-ud (weighted by wu) 
ud – desired control input  
wu, wv – weighting matrix 

3.2. Control allocation problem formulation 
Before beginning to examine control allocation in more detail, the initial problem must 
first be defined. Consider the state-space model: 
 

Eq. 3-4    
Cxy

BuAxx
=

+=�

 
where  are all vectors. For control of the aircraft the state 
vector x can include the angle of attack, the angle of sideslip and the pitch rate. The 
output vector y might contain the pitch rate, roll rate and yaw rate. The control input 
vector u contains the actuator position deflections if the actuator dynamics are neglected. 
If the control surfaces are ganged the number of control variables can be as small as 3, 
otherwise the number of control variables (p) are usually in the range from 5 to 20. 

111 ,, mxpxnx RRR ∈∈∈ uyx
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Model reference control laws rely on a reference model which represents the desired 
dynamics of the closed-loop system. Consider the following reference model: 
 
Eq. 3-5   MMMMM rByAy +=�  
 
where rM is a reference input vector, in this case the commands from the pilot and yM 
represents the desired output of the system. Because the derivative of y is given by: 
 
Eq. 3-6    BuCAxy +=�
 
the objective can be achieved by setting: 
 
Eq. 3-7    ( )MMM rByACAxBu ++−= −1

 
Model matching follows if the matrix B is square and invertible and if the original system 
is minimum phase (Bodson 2002, p. 704). 
If the matrix B is not square but full row rank (has more columns than rows, as in the 
case with redundant actuators), the same model reference control law can be used if one 
defines the desired control effect vector (v) as: 
 
Eq. 3-8   MMM rByACAxv ++−=  
 
and a control input u such that: 
 
Eq. 3-9    ( ) vuB =
 
To obtain u from Eq. 3-9 one must solve a system of linear equations with more 
unknowns than equations. Although this might seem like an easy task, the vector u is 
constrained. The limits generally have the form: 
 
Eq. 3-10   ,ii,i uuu maxmin ≤≤       for     i = 1,…,p 

 
These constrains originate from the actuator position or rate limitations of the physical 
system. Given the limits, an exact solution might not exist, despite of the redundancy. 
Further, even if an exact solution exists, it cannot be assumed to be unique. Finding a 
solution to Eq. 3-9 within the constraints from Eq. 3-10 is defined as the control 
allocation problem. 
 
In the light of this problem formulation, the control allocation can be further formulated 
into 4 categories using mathematical formulations. These formulations all take into 
consideration that a solution is not unique and might not exist. 
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3.2.1. Direct allocation problem 
Given a matrix B, find a real number a and a vector u1 such that J = a is maximized, 
subject to: 
 
Eq. 3-11    ( ) vuB a=1

 
and u .  maxmin uu ≤≤
If a > 1, let: 

a
1uu = . Otherwise let 1uu =  

 
An advantage of direct allocation includes the straightforwardness of the allocation 
problem. No design variables must be selected, since the solution to the problem is 
determined by the control effectiveness matrix (B) and the constraints. When a>1 no 
element in u will be saturated. A method of implementing direct allocation is by using 
linear programming. 

3.3. Direct control allocation discussion 
The objective of direct control allocation is to find a control vector u which gives the best 
approximation of v in the given direction. Thus direct control allocation weighs 
directionality over moment generation, which is an important characteristic especially for 
applications such as flight control. In a special case of the matrix B direct allocation 
provides a unique solution to the problem. The condition for this property is that any q 
rows of B must be linearly independent, where q is the number of rows in B (Bodson, 
2002). In flight control the case is most often that the rows in B are 3. In this case the 
three components of v in the model reference control law is the accelerations in p, q and r 
as outputs are three rotational accelerations. The columns of B represent the contributions 
of the various control surfaces to each of the three rotational accelerations.  

3.4. Constrained optimization using linear programming 
Linear programming (LP) is an optimization approach that deals with meeting a desired 
objective such as minimizing cost in the presence of linear constraints such as limited 
resources. 
 
Standard form: 
The basic linear programming problem, consist of two major parts: 
 

• The objective function, and 
• A set of constraints 

 
The maximization problem, the objective function expressed as: 
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nn xcxcxcxc ++++= "332211max Z  
 
Where cj = payoff of each unit of the jth activity that is undertaken and xj = magnitude of 
the jth activity. 
The constraints can be considered as: 
 

iininiiiiii bxaxaxaxa ≤++ "332211  
 
where aij = amount of the ith resource that is consumed for each unit of the jth activity and 
bi = amount of the ith resource that is available. That is, the resource is limited. The 
second general type of constraint specifies that all activities must have a positive value. 
 

0≥ix  
 
Together, the objective function and the constraints specify the linear programming 
problem. 

3.5. Cascaded generalized pseudoinverse method 
Most existing methods for control allocation can be classified as pseudoinverse methods. 
If we disregard the actuator constraints, these methods can be reduced from the algorithm 
(Härkegård 2003, p. 123):  
 

( )
( )

pvuuu

pduu

vBuw

uuwu

−=Ω

−=

≤≤

Ω=

maxmin

minarg

minarg
 

 
to 
 

( )
2

min du
uu −  

Subject to Bu=v 
 
Which has an explicit solution given by 
 
     
Eq. 3-12    v+= Bu
 
Where   B+=BT(BBT)-1  
 
is the pseudo inverse of B. 
 
The l2 – norm is the most frequently used method because it can be beneficial to use on 
the behave of it is a linear program which is much faster than a quadratic program. 
 

Page 23 of 154 



Flight Control Allocation using Optimization Based Linear and Quadratic programming  
P7 - project fall 2004 
Aalborg Universitet Esbjerg 
As stated above, the psoudoinverse solution Eq. 3-12 will not be feasible for all 
attainable virtual control inputs v. various ways to accommodate to the constraints have 
been proposed. The simplest alternative is to truncate Eq. 3-12 by clipping those 
components that violate some constraint. However, since this typically causes only a few 
control inputs to saturate, is seems natural to use the remaining control inputs to make up 
the difference.  
 
Virnig and Bodden (Härkegård 2003, p. 124) propose a Redistributed PseudoInverse 
(RPI) scheme, in which all control inputs that violate their bounds in the pseudoinverse 
solution are saturated and removed from the optimization. Then, the control allocation 
problem is resolved with only the remaining control inputs as free variables. Bordignon 
(Härkegård 2003, p. 124) proposes an iterative variant of RPI. Instead of only 
redistributing the control effect once, the author proposes to keep redistributing the inputs 
as they become saturated. This is known as the Cascaded Generalized Inverse (CGI) 
approach.  
 
The method of CGI arises from the idea that if a generalized inverse commands a control 
to exceed a position limit, then that control should be set at the exceeded limit, and the 
rest of the controls redistributed to achieve the desired moment. This procedure can be 
used with either pseudoinverse, or generalized inverse weighted with a diagonal matrix. 
Initially, a generalized inverse is computed using either:  
 
Eq. 3-13    ( ) 1−+ = TT BBBB
 
or 
 
Eq. 3-14   ( ) ( )( ) 1−+ = TT BNBNBNNB  
 
This matrix is used to allocate the controls given in response to some desired moment.  
 
Eq. 3-15    v+= Bu
 
If none of the elements in the solution is saturated, then the desired moment lies within 
the limits of the constraints. If any of the elements in the solutions exceeds their 
constraints, the element is set equal to its constraint, and their effects at saturation are 
subtracted from the desired moment. The effect of a saturated control is equivalent to the 
control position multiplied by the column of the B matrix which corresponds to that 
control. The resulting moment is the part of the moment demand that must be satisfied by 
the remaining controls which is denoted ur. For example, if the ith control saturates: 
 
Eq. 3-16   ( ) (satiirsatii uuu Bu )−= ,  

 
Next, the saturated controls are removed from the problem. When a pseudoinverse is 
used, this is done by removing the corresponding column, Bi, from B. The reduced B 
matrix is denoted B*. The new pseudoinverse is then computed by plugging B* into Eq. 
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3-13 or Eq. 3-14 to get B*+. Now the new solution is once again checked for saturation. 
If there is saturated elements, the algorithm runs one more time according to the above 
method.  
Ultimately, either no new control will be saturated, or all the remaining controls  are 
saturated, or the reduced B will have n or fewer columns. When no new controls are 
saturated, an admissible solution is found. If all the controls are saturated, the controls are 
set to their limits and the moment is unattainable using this method. 
 
In the following we will try to demonstrate the concept of the CGI through an example.  

3.5.1. An example 
Take the case where: 
 

[ ]12=B  v = 3.5 
 
The constraints are as follows:  
 

20
10

2

1

≤≤
≤≤

u
u

 

 
The initial values for ud is given by: 
 

[ ]Td 00=u  
 
The pseudoinverse solution is given by: 
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u1 is infeasible since this control saturates at u1 = 1. The control allocation problem is 
resolved with only u2 as free variable. Replacing the original B matrix by [ 10 ]~ =B  the 
virtual control input that should be produced by u2 is given by 
 

[ ]
5.125.3

012~
1

=−=
⋅+⋅−= uvv

 

 
And the solution is then given by:  
 

5.15.11~~
2 =⋅=⋅= + vBu  

 
which is feasible since v= 2·1+1.5=3.5 and the algorithm stops. In this case, Cascade 
Generalized Inverse (CGI) was successful since the output: 
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is the true solution, though this is not always true.  
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Figure 8 Successful case 

An example where the algorithm fails to find the optimal solution could be if the 
constrains in the above example was set to 
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Running the algorithm with this constrains will after the first iteration set u1 = 1.4 and u2 
= 0.7 
And after the constraints are inserted u1= u2 = 1 this will give the result  
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which is an incorrect result. 
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ud

u1
uu2

u1  
Figure 9 Failing case 

Using CGI it is not guaranteed that the optimal solution is found. 
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3.6. Linear programming method 
Bodson re-formulated direct control allocation as a linear programming problem by e-
mail the 27th November 2004, and based on this definition, we can derive the following 
linear programming problem. 
 
When re-defining the control allocation problem to fit into linear programming 
formulation, a standard form must be followed. Linear programming implies this standard 
form: 
 
Eq. 3-17    bAx ≤
 
subject to: 
 
Eq. 3-18    maxmin xxx ≤≤
 
In our optimization problem, we must find a vector x which minimizes: 
 
Eq. 3-19    xcTJ =
 
subject to: 
 
Eq. 3-20   ,    h≤≤ x0 bAx =  
 
To obtain a linear programming problem in its standard form from the control allocation 
problem, a matrix M must be defined. The largest element of v must be identified 
beforehand. The largest element in v is denoted vmax, while the two remaining elements 
of v are defined as v1 and v2. According to the position of the largest element in v, M is 
defined. The index of M corresponds to the position of the largest element in v. The 
matrix M is then defined as one of three cases: 
 

Eq. 3-21 M , ,  
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Using this M matrix, we can define the linear programming problem in standard form, by 
defining the matrix A, the vectors b, h and cT. We proceed by defining A: 
 
Eq. 3-22    BMA *=
 
We need A to define b, which is then defined as: 
 
Eq. 3-23    minxAb ⋅−=
 
Proceeding to define h, we have: 
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Eq. 3-24    minmax xxh −=
 
The objective function (cT) must also be defined according to the problem. We define cT 
as: 
 
Eq. 3-25    vBc TT −=
 
The equations are then set up in a standard linear programming tableau, and the linear 
programming problem is then solved. In our implementation the MATLAB function 
“linprog” is used. The solution vector (x) must then be scaled according to the scaling 
factor (a). According to the value of the scaling factor, a logical choice is made to 
determine whether or not the solution vector should be scaled. If the scaling factor is 
larger than one, the solution vector should be. 
The scaling factor is calculated as: 
 

Eq. 3-26   
( )
( )T

T

a
vv

vBu
⋅

=  

3.6.1. An example 
Using the data from the example from the pseudoinverse method, we have: 
 

Eq. 3-27   ,      
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We proceed by defining M. Since the largest element of v is v2,  
 
M is defined as: 
 

Eq. 3-28    
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Following the procedure described above and using Eq. 3-22, we define A: 
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Eq. 3-29    
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Using Eq. 3-23 we define b: 
 

Eq. 3-30    







−
−

=



















−
−
−
−

⋅







=

27
45

1
2
10
5

9900
0009

b

 
Using Eq. 3-24 we define h: 
 

Eq. 3-31    



















=



















−
−
−
−

−



















=

2
4
20
10

1
2
10
5

1
2
10
5

h

 
Using Eq. 3-25 we define the objective function (cT). 
 
 

Eq. 3-32    
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Writing the linear programming tableau, we define the following: 
 

 X1 X2 X3 X4 b 
c 0 -9 0 -9 0 

R1 -9 0 0 0 -45 
R2 0 0 -9 -9 -27 

 
Where row c is the objective function and R1 and R2 are the rows of A. 
Looking at the objective function, it can be seen that we must increase X2 and X4 to 
obtain a better value of the objective function. To do this, both X2 and X4 is driven to 
their saturated values. X2 = 20, X4 = 2.  
 
We obtain the following tableau: 
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 X1 X3 b 
c 0 0 0 

R1 -9 0 -45 
R2 0 -9 -9 

 
This gives an easy solution for both X1 and X3. X1 = 5 and X3 = 1 
 
The x vector then becomes: 
 

Eq. 3-33    
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Before we arrive at the final solution, we must first return from the linear programming 
problem definition, and obtain a formulation for use with the control allocation problem. 
 
Continuing to use Bodson’s formulation, we calculate: 
 

Eq. 3-34    
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At last, the scaling factor must be calculated and applied to the solution if appropriate. 
Using the following formula, the scaling factor is calculated: 
 

Eq. 3-35   
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Since a>1, all elements of u must be divided by a to complete the calculations. This gives 
a final solution of: 
 

Eq. 3-36    
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In order to find out whether this solution produces the right moment in the right direction, 
we can calculate: 
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Eq. 3-37    
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This calculation concludes that the solution found using linear programming is correct. 

3.7. Fixed-point method 
The fixed-point algorithm is simple. Many of the computations need to be performed 
only once before iterations starts. Remarkably, the algorithm also provides an exact 
solution to the optimization problem, and it is guaranteed to converge. Its drawback is 
that convergence of the algorithm can be very slow and strongly dependant on the 
problem. (The number of iterations required can vary by orders of magnitude depending 
on the desired vector.) In addition, the choice of the parameter ε is delicate, as affects the 
objectives, as well as the convergence of the algorithm. Bodson (2002). The fixed-point 
method is based upon the mixed allocation problem. 
This section is based on Härkegård (2003). 
 
The fixed-point method finds the control input vector u that minimizes:  
 

Eq. 3-38   ( ) 2

2

2

2
1 uvBu εε +−−=J  

 
subject to umin ≤ u ≤ umax 
 
In this case we use l2 – norm and consider the initial value ud = 0. The algorithm 
becomes:  
 

Eq. 3-39   
( ) ( )[ ]

( )k

k
T

k nnsat
GuFv

uIMvBu
−=

−−−=+ ε11  

 
where:  
 
Eq. 3-40    ( ) IBM εε +−= T1
 
and:  
 

Eq. 3-41   
2

1
M

=n  

 
Sat (·) is the saturation function that clips the components of the vector u to their 
allowable value. 
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This algorithm provides an exact solution to the optimisation problem, and guaranteed to 
converge. 
The convergence can though be very slow. Therefore is it very essential to find a proper 
value ε. There is a trade-off; a large value speeds up the convergence but makes it hard 
for the algorithm to find the exact solution. A small value for ε leads to slightly slower 
convergence but the algorithm converges closer to its optimal solution. 
The fixed-point algorithm can be interpreted as a gradient search method where the 
iterations are clipped to satisfy the constraints.  

3.7.1. An example 
Consider the following: 
 

3=v  
[ ]12=B  

[ ]T11min −−=u  
[ ]T11max =u  

001.0=ε  
 
The first thing to find is the initial condition for u. This is done by: 
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To compute the output we use:  
 
Eq. 3-43   ( )kk GuFvu −=+1  

 
where: 
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and: 
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Inserting the above F and G matrices into Eq. 3-43 gives: 
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The next thing is to check if any element in u1 exceed the saturation limit. This is done 
according to: 
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If one of the outputs exceeds the constraints it will be set equal to the constraint. 
This gives a new u1: 
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Now we are ready to do the next iteration. In the following table the results of the 
iterations are given with the initial guess of u0 = 0: 
 
 
 

Table 2: results from each iteration 
Iteration no. u1 u2 error for u1 error for u2 
0 0,0000 0.0000 100.000 100.000 
1 1.0000 0.5999 0.000 40.010 
2 1.0000 0.6798 0.000 32.020 
3 1.0000 0.7437 0.000 25.630 
4 1.0000 0.7948 0.000 20.520 
5 1.0000 0.8357 0.000 16.430 
6 1.0000 0.8683 0.000 13.170 
7 1.0000 0.8945 0.000 10.550 
8 1.0000 0.9154 0.000 8.460 
9 1.0000 0.9321 0.000 6.790 
10 1.0000 0.9455 0.000 5.450 

 
Of course it is necessary to do more iterations to achieve the correct solution in this 
example, but it can be seen clearly that u converges to the optimal solution. In this 
calculated example, the correct solution was achieved after 98 iterations.  
 
From this example it can be concluded that the fixed-point algorithm works properly. Of 
curse it should be kept in mind that this algorithm is slow. The reason for this is the 
relatively high number of iterations required before a solution can be found.   
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4. Mathematical simulation 
After implementing the algorithms in MATLAB a preliminary test was conducted in 
order to test the algorithms with a pre-determined input. Since ADMIRE contains a 
controller, the input to the allocation algorithms are determined by the controller, and not 
directly by the input given. In order to test the algorithms in a fully controllable 
environment a small simulation model was setup. 

4.1. Test of algorithm 
In the following section, a test of the three implemented algorithms will be described and 
carried out. The algorithms included in this test is; Fixed-point (FIX); Pseudoinverse also 
called Cascading Generalized Inverse (Pinv); and Direct Control Allocation using linear 
programming (DCA). The algorithms are set up in a simulink model where they can be 
tested simultaneously. 

Bb* u

sub B3

Bb* u

sub B2

Bb* u

sub B1

setpoint output from Pinv

output from FIX

output from DCA

MATLAB
Function

Pinv

step1

From
Workspace3

step1

From
Workspace2

step1

From
Workspace1

MATLAB
Function

FIX_point

MATLAB
Function

DCA Achieved moment 
in P,Q and R2

Achieved moment 
in P,Q and R1

Achieved moment 
in P,Q and R

 
Figure 10: Simple simulations model 

The algorithm will be tested with a number of different input, step input, ramp input and 
parabola input created by the m. file input_simple. The outcome of the various tests will 
be plotted with help from the m. file plot_simple_ADMIRE. The tests will be run for 5 
sec, used the ODE 4 (Runge Kutta) with a fixed step size at 0.08 method from simulink. 
 
The test section is divided into three parts: Step input, ramp input and parabola input. 

4.2. Step input 
The step input tests are conducted by giving the input vector equal magnitude in each 
element, hence p=q=r for each test. The test sequence is given by the following table: 

Table 3 Step input sequence 
Test: Step magnitude 

1 Zero input 
2 50N 
3 -50N 
4 100N 
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5 -100N 
6 200N 
7 -200N 
8 300N 
9 -300N 
10 400N 
11 -400N 

 

4.2.1. 1st test run, zero input     
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Figure 11: 1st test run, desired moment and achieved moment 

As it can be seen the input set point for P, Q, and R equals zero. The results from Pinv 
and DCA lies exactly on top of the curve representing the input signal. The achieved 
moment for FIX gives for P approximately 5.1 and for Q approximately -0.078 and last R 
approximately -13.5. This is not preferable because it commands the actuators to produce 
a moment which does not correspond the input.  
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Figure 12: 1st test run, deflections for Right inner and outer elevon and Left inner and outer elevon 

The graph in the top shows the desired deflection for the right outer elevon. As it can be 
seen the curves for Pinv and DCA tracks at zero. The curve for Fix lies at approximately -
3.3.  
The second graph shows the desired deflection for the right inner elevon. The curves for 
Pinv and DCA again tracks zero. The curve for FIX follows at -5.4.  
A look at the last two graphs will reveal that they are identical with the two first. The 
moment produced differs from the commanded moment when using FIX, while both Pinv 
and DCA tracks the commanded moment properly.    
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Figure 13: 1st test run, deflections for Right and Left canard and the rudder 
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The graph in the top shows the desired deflection for the left canard. As it can be seen 
both Pinv and DCA tracks at zero. The curve for FIX lies at approximately -11.5.  
The second graph shows the desired deflection for the left canard.  Both Pinv and DCA 
tracks at zero. The curve for Fix lies at approximately -11.5.  
The bottom graph shows the desired deflection for the rudder. Pinv and DCA tracks at 
zero. The curve for FIX lies at approximately 0.0034. 

1.1.1.1. Summary 
From this first test run it can be stated that the algorithm for Pinv and DCA tracks the 
desired input quite good. The FIX algorithm has an offset according to the desired input. 
The reason for this is that it in the start of the algorithm finds an initial start value. 
However, because there isn’t any contribution from the desired input, the outputs are set 
to the initial value. This property has the negative effect that it commands the actuators to 
produce some moment while zero moment is commanded.     
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4.2.2. 2nd test run, step input 
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Figure 14: 2nd test run, desired moment and achieved moment 

As it can be seen the input set point equals a step input of 50 at one sec. delay for P, Q, 
and R. The results from Pinv, DCA, and FIX lies on top of the commanded input and 
tracks it fine.  
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Figure 15: 2nd test run, deflections for Right inner and outer elevon and Left inner and outer elevon 
 
The graph in the top shows the deflection for the right outer elevon. As it can be seen the 
curves goes for Pinv approximately to -2.4 and DCA goes to -4.6 after the step input. The 
curve for Fix goes approximately to -3.6 from an initial point at -3.3.  
The second graph shows the deflection for the right inner elevon. As it can be seen the 
curves for Pinv goes approximately to -4.2 and DCA goes to -4.6 after the step input. The 
curve for Fix goes approximately to -9.8 from an initial point at -5.3.  
The third graph shows the deflection for the left outer elevon. As it can be seen goes the 
curves for Pinv approximately to -0.4 and DCA goes to -4.6 after the step input. The 
curve for Fix goes approximately to -3.6 from an initial point at -3.3.  
The graph at the bottom shows the deflection for the left inner elevon. As it can be seen 
the curves stabilizes for Pinv around zero and DCA goes to 2 after the step input. The 
curve for Fix is almost stable at approximately -5.2.  
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Figure 16: 2nd test run, deflection for Right and Left canard and the rudder 

The graph in the top shows the deflection for the left canard.  As it can be seen the curves 
for Pinv goes to 2.5 and DCA goes to 4. The curve for Fix goes approximately to -8.5 
from an initial value at -12. 
The second graph shows the desired deflection for the left canard.  As it can be seen the 
curves for Pinv goes to 0.5 and DCA goes to -4.4. The curve for Fix goes approximately 
to -11.4 from an initial value at -11.6.  
The bottom graph shows the desired deflection for the rudder. As it can be seen the 
curves for Pinv goes to -4.8 and DCA goes also to -4.8. The curve for FIX goes 
approximately to -6.2. 
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Figure 17: 2nd test run, the vector of moment shoving the direction of the desired and achieved 
moment 

The above figure shows the tracking of the desired moment and its direction. And as it 
can be seen from the figure, all the other curves lie on top of each other and all algorithms 
track the desired moment fine.  

1.1.1.2. Summary 
In this test run can it be seen that all three algorithms track the desired input moment. A 
look at the deflections of the control surfaces reveals that the deflections demanded by 
the FIX algorithm is lager then for the two other algorithms.  
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4.2.3. 3rd test run, step input  
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Figure 18: 3rd test run, desired moment and achieved moment 

As it can be seen the input set point equals a step input of -50 at one sec. delay for P, Q, 
and R.  The result from Pinv, DCA and FIX lies under the desired input and tracks it. 
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Figure 19: 3rd test run, deflection for Right inner and outer elevon and Left inner and outer elevon 
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The graph in the top shows the deflection for the right outer elevon. As it can be seen the 
curves for Pinv goes approximately to 2.4 and DCA goes to 4.6 after the step input. The 
curve for Fix goes approximately to 1 from an initial point at -3.2.  
The second graph shows the deflection for the right inner elevon. As it can be seen the 
curves for Pinv goes approximately to 4.2 and DCA goes to 4.6 after the step input. The 
curve for Fix goes to approximately -1 from an initial point at -5.3.  
The third graph shows the deflection for the left outer elevon. As it can be seen the curves 
for Pinv goes approximately to -0.4 and DCA goes to -4 after the step input. The curve 
for Fix goes approximately to -3.3 from an initial point at -3.6.  
The bottom graph shows the deflection for the left inner elevon. As it can be seen is the 
curve for Pinv stable around zero and DCA goes to -3.3 after the entrees of the step. The 
curve for Fix is almost stable at approximately -5.2. 
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Figure 20: 3rd test run, deflection for Right and Left canard and the rudder 

The graph at the top shows the deflection for the left canard.  As it can be seen the curves 
for Pinv goes to -2.5 and DCA goes to 7.5. The curve for Fix goes approximately to -14 
from an initial value at -12. 
The second graph shows the deflection for the left canard.  As it can be seen the curves 
for Pinv goes to -0.5 and DCA goes to 3.5. The curve for Fix goes approximately to -11.6 
from an initial value at -11.4.  
The bottom graph shows the deflection for the rudder. As it can be seen the curves for 
Pinv and DCA goes to 4. The curve for FIX goes approximately to 6.2.  
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Figure 21: 3rd test run, the vector of moment shoving the direction of the desired and achieved 
moment 

The above figure shows the detection of the desired moment. And as it can be seen all the 
curves lie on top of each other.  

1.1.1.3. Summary 
In this test run can it be seen that the entire three algorithm tracks the desired input 
moment. A look at the desired output deflection of the control surfaces can reveal that 
deflection demanded by the FIX algorithm is lager then for the two other algorithms.  
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4.2.4. 4th test run, step input 
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Figure 22: 4th test run, desired moment and achieved moment 

As it can be seen the input set point equals a step input of 100 at one sec. delay for P, Q, 
and R.   The result from Pinv, DCA and FIX lies under the desired input and tracks it 
fine. 
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Figure 23: 4th test run, deflection for Right inner and outer elevon and Left inner and outer elevon 
 
The graph at the top shows the deflection for the right outer elevon. As it can be seen the 
curves for Pinv goes approximately to -4.8 and DCA goes to -9.5 after the step input. The 
curve for Fix goes approximately to -8.1 from an initial point at -3.3.  
The second graph shows the deflection for the right inner elevon. As it can be seen the 
curves for Pinv goes approximately to -8 and DCA goes to -8.5 after the step input. The 
curve for Fix goes approximately to -14 from an initial point at -5.3.  
The third graph shows the deflection for the left outer elevon. As it can be seen the curves 
for Pinv goes approximately to -0.4 and DCA goes to -9.2 after the step input. The curve 
for Fix goes approximately to -4 from an initial point at -3.3.  
The bottom graph shows the deflection for the left inner elevon. As it can be seen the 
curves stabilizes for Pinv around zero and DCA goes to 4 after the step input. The curve 
for Fix is almost stable at approximately -5.2. 
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Figure 24: 4th test run, deflection for Right and Left canard and the rudder 

The top graph shows the deflection for the left canard.  As it can be seen the curves for 
Pinv goes to 5.1 and DCA goes to 7.5. The curve for Fix goes approximately to -6.5 from 
an initial value at -12. 
The second graph shows the deflection for the left canard.  As it can be seen the curves 
for Pinv goes to 0.5 and DCA goes to -9. The curve for Fix goes approximately to -11 
from an initial value at -11.5.  
The bottom graph shows the deflection for the rudder. As it can be seen the curves for 
Pinv and DCA goes to -8. The curve for FIX goes approximately to -12. 
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Figure 25: 4th test run, the vector of moment shoving the direction of the desired and achieved 
moment 

The above figure shows the tracking of the desired moment. And as it can be seen all the 
curves lie on top of each other.  

1.1.1.4. Summary 
In this test run can it be seen that the entire tree algorithm tracks the desired input 
moment. A look at the desired output deflection of the control surfaces can reveal that 
deflection demanded by the FIX algorithm is larger than for the two other algorithms.  
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4.2.5. 5th test run, step input  
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Figure 26: 5th test run, desired moment and achieved moment 

As it can be seen the input set point equals a step input of -100 at one sec. delay for P, Q, 
and R.   The result from Pinv, DCA and FIX lies under the desired input and tracks it 
fine. 
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Figure 27: 5th test run, deflections for Right inner and outer elevon and Left inner and outer elevon 
 
The top graph shows the deflections for the right outer elevon. As it can be seen the 
curves for Pinv goes approximately to 4.8 and DCA goes to -7 after the step input. The 
curve for Fix goes approximately to 1.5 from an initial point at -3.3.  
The second graph shows the deflections for the right inner elevon. As it can be seen the 
curves for Pinv goes approximately to 8 and DCA goes to 7.5 after the step input. The 
curve for Fix goes approximately to 3.5 from an initial point at -5.3.  
The third graph shows the deflections for the left outer elevon. As it can be seen the 
curves for Pinv goes approximately to 0.4 and DCA goes to 8 after the step input. The 
curve for Fix goes approximately to -2.8 from an initial point at -3.3.  
The bottom graph shows the deflections for the left inner elevon. As it can be seen are the 
curves for Pinv stable around zero and DCA goes to -6.5 after the step input. The curve 
for Fix is almost stable at approximately -5.2. 
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Figure 28: 5th test run, deflections for Right and Left canard and the rudder 

The top graph shows the deflections for the left canard.  As it can be seen the curves for 
Pinv goes to -5.1 and DCA goes to -14.9. The curve for Fix goes approximately to -17 
from an initial value at -12. 
The second graph shows the deflections for the left canard.  As it can be seen the curves 
for Pinv goes to -0.5 and DCA goes to 7. The curve for Fix goes approximately to -12 
from an initial value at -11.  
The third graph shows the deflections for the rudder. As it can be seen the curves for Pinv 
goes to 8 and DCA goes to also to 8. The curve for FIX goes approximately to 12.5. 
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Figure 29: 5th test run, the vector of moment shoving the direction of the desired and achieved 
moment 

The above figure shows the tracking of the desired moment. And as it can be seen all the 
curves lie on top of each other.  

1.1.1.5. Summary 
In this test run can it be seen that all three algorithms track the desired input moment. A 
look at the desired output deflection of the control surfaces reveal that the deflections 
demanded by the FIX algorithm is larger than for the two other algorithms. 
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4.2.6. 6th test run, step input 
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Figure 30: 6th test run, desired moment and achieved moment 

As it can be seen the input set point equals a step input of 200 at one sec. delay for P, Q, 
and R. The result from Pinv, DCA and FIX lies under the desired input and tracks it fine. 
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Figure 31: 6th test run, deflection for Right inner and outer elevon and Left inner and outer elevon 
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The top graph shows the deflection for the right outer elevon. As it can be seen the curves 
for Pinv goes approximately to -9.5 and DCA goes to -18 after the step input. The curve 
for Fix goes approximately to -14 from an initial point at -3.3.  
The second graph shows the deflection for the right inner elevon. As it can be seen the 
curves for Pinv goes approximately to -17.5 and DCA goes to -18 after the step input. 
The curve for Fix goes approximately to -23 from an initial point at -5.3.  
The third graph shows the deflection for the left outer elevon. As it can be seen the curves 
for Pinv goes approximately to -2 and DCA goes to -18 after the step input. The curve for 
Fix goes approximately to -4.8 from an initial point at -3.3.  
The bottom graph shows the deflection for then left inner elevon. As it can be seen the 
curves for Pinv stabilizes around zero and DCA goes to 8 after the step input. The curve 
for Fix is almost stable at approximately -5.2. 
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Figure 32: 6th test run, deflection for Right and Left canard and the rudder 

The top graph shows the deflection for the left canard.  As it can be seen the curves for 
Pinv goes to 10.1 and DCA goes to 15.1. The curve for Fix goes approximately to -1 
form an initial value at -12. 
The second graph shows the deflection for the left canard.  As it can be seen the curves 
for Pinv goes to1.5 and DCA goes to -17.5. The curve for Fix goes approximately to -
10.4 from an initial value at -12.  
The bottom graph shows the deflection for the rudder. As it can be seen the curves for 
Pinv goes to -18 and DCA goes to also to -18. The curve for FIX goes approximately to -
25. 
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Figure 33: 6th test run, the vector of moment shoving the direction of the desired and achieved 
moment 

The above figure shows the tracking of the desired moment. And as it can be seen all the 
curves lie on top of each other.  

1.1.1.6. Summary 
In this test run can it be seen that the entire three algorithm tracks the desired input 
moment. A look at the desired output deflection of the control surfaces can reveal that 
deflection demanded by the FIX algorithm is lager then for the two other algorithms. 
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4.2.7. 7th test run, step input 
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Figure 34: 7th test run, desired moment and achieved moment 

As it can be seen the input set point equals a step input of -200 at one sec. delay for P, Q, 
and R. The result from Pinv, DCA and FIX lies under the desired input and tracks it fine. 
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Figure 35: 7th test run, deflection for Right inner and outer elevon and Left inner and outer elevon 

The top graph shows the deflection for the right outer elevon. As it can be seen the curves 
for Pinv goes approximately to 9.6 and DCA goes to 14 after the step input. The curve for 
Fix goes approximately to 6.5 from an initial point at -3.3.  
The second graph shows the deflection for the right inner elevon. As it can be seen the 
curves for Pinv goes approximately to 17.5 and DCA goes to 16 after the step input. The 
curve for Fix goes approximately to 12.5 from an initial point at -5.3.  
The third graph shows the deflection for the left outer elevon. As it can be seen the curves 
for Pinv goes approximately to 2 and DCA goes to 17 after the step input. The curve for 
Fix goes approximately to -2.3 from an initial point at -3.3.  
The bottom graph shows the deflection for the left inner elevon. As it can be seen the 
curves for Pinv stabilizes around zero and DCA goes to -13 after the step input. The 
curve for Fix is almost stable at approximately -5.2. 
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Figure 36: 7th test run, deflection for Right and Left canard and the rudder 

The top graph shows the deflection for the left canard.  As it can be seen the curves for 
Pinv goes to -10.1 and DCA goes to -29. The curve for Fix goes approximately to -1 form 
an initial value at -22. 
The second graph shows the deflection for the left canard.  As it can be seen the curves 
for Pinv goes to -1.5 and DCA goes to 13.5. The curve for Fix goes approximately to -
12.5 from an initial value at -11.  
The bottom graph shows the deflection for the rudder. As it can be seen the curves for 
Pinv and DCA goes to 17. The curve for FIX goes to at approximately 25. 
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Figure 37: 7th test run, the vector of moment shoving the direction of the desired and achieved 
moment 

The above figure shows the tracking of the desired moment. And as it can be seen all the 
curves lie on top of each other.  

4.2.8. Summary 
In this test run can it be seen that all three algorithm track the desired input moment. A 
look at the desired output deflection of the control surfaces can reveal that deflection 
demanded by the FIX algorithm is larger than for the two other algorithms. 
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4.2.9. 8th test run step input 
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Figure 38: 8th test run, desired moment and achieved moment 

As it can be seen the input set point equals a step input of 300 at one sec. delay for P, Q, 
and R. In the top graph, the curve for Pinv goes approximately to -190, and the curve for 
DCA goes approximately to 300 and the curve for FIX lays under the curve for DCA.  
In the middle graph, the curve for Pinv goes approximately to 250, and the curve for 
DCA goes approximately to 300 and the curve for FIX lays under the curve for DCA. 
In the bottom graph, the curve for Pinv goes approximately to 160, and the curve for 
DCA goes approximately to 300 and the curve for FIX lays nearly under the curve for 
DCA. 
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Figure 39: 8th test run, deflection for Right inner and outer elevon and Left inner and outer elevon 
 
The top graph shows the deflection for the right outer elevon. As it can be seen the curves 
for Pinv goes approximately to 30 (saturated) and DCA goes to -28 after the step input. 
The curve for Fix goes to -19 from an initial point at -3.3.  
The second graph shows the desired deflection for the right inner elevon. As it can be 
seen the curves for Pinv goes approximately to -26 and DCA goes to -26 after the step 
input. The curve for Fix goes to -30 (saturated) from an initial point at -5.3.  
The third graph shows the deflection for the left outer elevon. As it can be seen the curves 
for Pinv goes approximately to 30 (saturated) and DCA goes to -28 after the step input. 
The curve for Fix goes approximately -28 from an initial point at -3.3.  
The bottom graph shows the deflection for the left inner elevon. As it can be seen the 
curves for Pinv goes to -30 (saturated) and DCA goes to 12 after the step input. The curve 
for Fix goes to 2.5 from the initial point -5.3. 
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Figure 40: 10th test run, desired deflection for Right and Left canard and the rudder 

The top graph shows the deflection for the left canard.  As it can be seen the curves for 
Pinv stays at zero and DCA goes to 25 (saturated). The curve for Fix goes to 25 
(saturated) from an initial value at -12. 
The second graph shows the deflection for the left canard.  As it can be seen the curves 
for Pinv goes to 25 (saturated) and DCA goes to -27. The curve for Fix goes to 
approximately -22 from an initial value at -11.5.  
The bottom graph shows the deflection for the rudder. As it can be seen the curves for 
Pinv goes to -27.5 (saturated) and DCA goes to -27.5 the curve for Fix goes to at 
approximately -30(saturated) from an initial value at 0.  
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Figure 41: 10th test run, the vector of moment shoving the direction of the desired and achieved 
moment 

The above figure shows the tracking of the desired moment. The curves for Pinv can not 
track the desired moment direction. DCA and FIX tracks the desired moment direction 
quite good. 

1.1.1.7. Summary 
In this test run can it be seen that only the FIX and DCA algorithms track the desired 
input moment. The Pinv algorithm can’t track the desired input. The Pinv algorithm also 
produces a wrong direction of the moment generated by the control surface deflections.  
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4.2.10. 9th test run, step input 
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Figure 42: 9th test run, desired moment and achieved moment 
 
As it can be seen the input set point equals a step input of 300 at one sec. delay for P, Q, 
and R. In the top graph, the curve for Pinv goes approximately to 120, and the curve for 
DCA goes approximately to -300 and the curve for FIX lies under the curve for DCA.  
In the middle graph, the curve for Pinv goes approximately to -360, and the curve for 
DCA goes approximately to -300 and the curve for FIX lies under the curve for DCA. 
In the bottom graph, the curve for Pinv goes approximately to 120, and the curve for 
DCA goes approximately to 300 and the curve for FIX lies nearly under the curve for 
DCA. 
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Figure 43: 9th test run, deflection for Right inner and outer elevon and Left inner and outer elevon 
 
The top graph shows the deflection for the right outer elevon. As it can be seen the curves 
for Pinv goes approximately to -30 (saturated) and DCA goes to 21 after the step input. 
The curve for Fix goes to 5 from an initial point at -3.3.  
The second graph shows the deflection for the right inner elevon. As it can be seen the 
curves for Pinv goes approximately to 30 (saturated) and DCA goes to 24 after the step 
input. The curve for Fix goes to 28 from an initial point at -5.3.  
The third graph shows the deflection for the left outer elevon. As it can be seen the curves 
for Pinv goes approximately to -30 (saturated) and DCA goes to 24 after the step input. 
The curve for Fix goes approximately to 5 from an initial point at -3.3.  
The bottom graph shows the deflection for the left inner elevon. As it can be seen the 
curves for Pinv goes to 30 (saturated) and DCA goes to -19 after the step input. The curve 
for Fix goes to -12.5 from the initial point -5.3 
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Figure 44: 9th test run, deflection for Right and Left canard and the rudder 

The top graph shows the deflection for the left canard.  As it can be seen the curves for 
Pinv stays around zero and DCA goes to -50. The curve for Fix goes to -40 from an initial 
value at -12. 
The second graph shows the deflection for the left canard.  As it can be seen the curves 
for Pinv goes to -55 (saturated) and DCA goes to 20. The curve for Fix goes 
approximately to 0 from an initial value at -11.5.  
The bottom graph shows the deflection for the rudder. As it can be seen the curves for 
Pinv goes to 30 (saturated) and DCA goes to -24. The curve for Fix goes to at 
approximately -30(saturated) from an initial value at 0. 
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Figure 45: 9th test run, the vector of moment shoving the direction of the desired and achieved 
moment 

The above figure shows the detection of the desired moment. The curves for Pinv can not 
track the desired moment direction. DCA and FIX tracks the desired moment direction 
quite good. 

1.1.1.8. Summary 
In this test run it can be seen that only the algorithm for FIX and DCA tracks the desired 
input moment. The Pinv algorithm can’t track the desired input. Many actuators reach 
saturation when using the Pinv algorithm, hence it becomes difficult to keep 
directionality. The direction of the moment for Pinv algorithm is off track.  
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4.2.11. 10th test run, step input 
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Figure 46: 10th test run, desired moment and achieved moment 

As it can be seen the input set point equals a step input of 400 at one sec. delay for P, Q, 
and R. In the top graph, the curve for Pinv goes approximately to -180, and the curve for 
DCA goes approximately to 320 and the curve for FIX lies under the curve for DCA.  
In the middle graph, the curve for Pinv goes approximately to 250, and the curve for 
DCA goes approximately to 320 and the curve for FIX goes approximately to 370. 
In the bottom graph, the curve for Pinv goes approximately to 160, and the curve for 
DCA goes approximately to 320 and the curve for FIX goes approximately to 330. 
As it can be seen, none of the achieved moments track the desired moments. 
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Figure 47: 10th test run, deflection for Right inner and outer elevon and Left inner and outer elevon 

The top graph shows the deflection for then right outer elevon. As it can be seen the 
curves for Pinv goes approximately to 30 (saturated) and DCA goes to -30 (saturated) 
after the step input. The curve for Fix goes to -30 (saturated) from an initial point at -3.3.  
The second graph shows the deflection for then right inner elevon. As it can be seen the 
curves for Pinv goes approximately to -30 (saturated) and DCA goes to -30 (saturated) 
after the step input. The curve for Fix goes to -30 (saturated) from an initial point at -5.3.  
The third graph shows the deflection for then left outer elevon. As it can be seen the 
curves for Pinv goes approximately to 30 (saturated) and DCA goes to -30 (saturated) 
after the step input. The curve for Fix goes approximately to -28 from an initial point at -
3.3.  
The bottom graph shows the deflection for then left inner elevon. As it can be seen the 
curves for Pinv goes to -30 (saturated) and DCA goes to 13 after the step input. The curve 
for Fix goes to 15 from the initial point -5.3. 
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Figure 48: 10th test run, deflection for Right and Left canard and the rudder 

The top graph shows the deflection for the left canard.  As it can be seen the curves for 
Pinv stays around zero and DCA goes to 25 (saturated). The curve for Fix goes to 25 
(saturated) from an initial value at -12. 
The second graph shows the deflection for the left canard.  As it can be seen the curves 
for Pinv goes to 25 (saturated) and DCA goes to -28. The curve for Fix goes 
approximately to -12.5 from an initial value at -11.  
The bottom graph shows the deflection for the rudder. As it can be seen all the curves go 
to -30 (saturated). 
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Figure 49: 10th test run, the vector of moment shoving the direction of the desired and achieved 
moment 

The above figure shows the detection of the desired moment. The curves for Pinv and Fix 
can not track the desired moment direction. The only curve which can do that is the curve 
for DCA. 

1.1.1.9. Summary 
In this test run can it be seen that only the algorithm for DCA tracks the desired input 
moment. The algorithm for Pinv and FIX can’t track the desired input. Many actuators 
reach saturation when using the Pinv algorithm, hence it becomes difficult to keep 
directionality. The direction of the moment for Pinv algorithm is off track. FIX comes 
closer to the commanded moment direction, but still only DCA is able to track the 
direction of the moment. 
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1.1.1.10. 11th test run, step input 
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Figure 50: 11th test run, desired moment and achieved moment 

As it can be seen the input set point equals a step input of -400 at one sec. delay for P, Q, 
and R.  
In the top graph, the curve for Pinv goes approximately to 210, and the curve for DCA 
goes approximately to -360 and the curve for FIX lies under the curve for DCA.  
In the middle graph, the curve for Pinv goes approximately to -150, and the curve for 
DCA goes approximately to -360 and the curve for FIX goes approximately to -390. 
In the bottom graph, the curve for Pinv goes approximately to -180, and the curve for 
DCA goes approximately to -360 and the curve for FIX goes approximately to -360. 
As it can be seen none of the achieved moments track the desired moments. 
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Figure 51: 11th test run, deflection for Right inner and outer elevon and Left inner and outer elevon 
 
The top graph shows the deflection for the right outer elevon. As it can be seen the curves 
for Pinv goes approximately to -30 (saturated) and DCA goes to 25 after the step input. 
The curve for Fix goes to 29 from an initial point at -3.3.  
The second graph shows the deflection for the right inner elevon. As it can be seen the 
curves for Pinv goes approximately to 30 (saturated) and DCA goes to 30 (saturated) 
after the step input. The curve for Fix goes to 30 (saturated) from an initial point at -5.3.  
The third graph shows the deflection for the left outer elevon. As it can be seen the curves 
for Pinv goes approximately to -30 (saturated) and DCA goes to 30 (saturated) after the 
step input. The curve for Fix goes approximately to 30 (saturated) from an initial point at 
-3.3.  
The bottom graph shows the deflection for the left inner elevon. As it can be seen the 
curves for Pinv goes to 30 (saturated) and DCA goes to -24 after the step input. The curve 
for Fix goes to -22 from the initial point -5.3. 
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Figure 52: 11th test run, deflection for Right and Left canard and the rudder 

The top graph shows the deflection for the left canard.  As it can be seen the curves for 
Pinv stays around zero and DCA goes to -55 (saturated). The curve for Fix goes to -55 
(saturated) from an initial value at -12. 
The second graph shows the deflection for the left canard.  As it can be seen the curves 
for Pinv stays around zero and DCA goes to 25 (saturated). The curve for Fix goes 
approximately to 22.5 from an initial value at -11.5.  
The bottom graph shows the deflection for the rudder. As it can be seen all the curves go 
to 30 (saturated). 
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Figure 53: 9th test run, the vector of moment shoving the direction of the desired and achieved 
moment 

The above figure shows the detection of the desired moment. The curves for Pinv can not 
track the desired moment direction. DCA and FIX tracks the desired moment direction 
quite good. 

1.1.1.11. Summary 
In this test run can it be seen that only the algorithm for FIX and DCA tracks the desired 
input moment. The algorithm for Pinv can’t track the desired input. Many actuators reach 
saturation when using the Pinv algorithm, hence it becomes difficult to keep 
directionality. The direction of the moment for Pinv algorithm is off track. Both FIX and 
DCA is able to track the direction of the moment. 

4.3. Ramp input 
The ramp input tests are conducted by giving the input vector equal magnitude in each 
element, hence p=q=r for each test. The test sequence is given by the following table:  

Table 4 Ramp input sequence 
Test: Slope 

12 100N/second 
13 -100N/second 
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4.3.1. 12th test run, ramp input. 
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Figure 54: 12th test run, desired moment and achieved moment 

As it can be seen the input set point equals a ramp input with a slope of 100 units per 
second for P, Q, and R.  
In the top graph, the curve for Pinv follows the desired moment until it reaches 290 where 
it drops to approximately -190. Here it stays until the desired input reaches 440 where the 
curve for Pinv goes to 580 where it stops. For DCA the curve tracks the ramp input up to 
approximately 310, where it clips the moment generation. The curve for FIX keeps on 
tracking the desired input. 
 
In the middle graph, the curve for Pinv follows the desired moment until it reaches 290, 
here it drops to approximately 180, and shortly afterwards it rises a little, approximately 
to 230. It stays at this value until the desired input reaches 440, where the curve for Pinv 
goes down in two steps until it reaches 10. The curve for DCA goes approximately to 
310. The curve for FIX follows the desired input until it reaches 270 where it clips the 
moment generation and falls a little back. 
 
In the bottom graph, the curve for Pinv follows the desired moment until it reaches 290, 
here it drops to approximately 180, where it stays until the desired input reaches 440 
where the curve for Pinv goes up to 400 shortly and the settles at approximately 380. FIX 
and DCA tracks the desired input until it reaches 310, at this point it almost settles.  
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Figure 55: 14th test run, deflection for Right inner and outer elevon and Left inner and outer elevon 

The top graph shows the deflection for the right outer elevon. At the start the Pinv curve 
drops by 5 per sec until it reaches -12.5. at this point it start rising at 5 per sec. at the 
mark 2.8 sec the curve rises to 30 (saturated) here it settles until mark 4.6 sec. At this 
time point it drops to -30 (saturated). DCA drops following a slope given by -9 per sec. 
until it reaches -30 (saturated). FIX starts at -3.3 and drops to -30.  
The second graph shows the deflection for the right inner elevon. The curves for Pinv and 
DCA drops along a -11 per sec. slope until it reaches -30 (saturated). The curve for FIX 
drops along the same slope but it reaches -30 (saturated) approximately a half sec. before 
the two other curves. The reason for this is that it starts from an initial position of -5.6. 
The third graph shows the deflection for the left outer elevon. A look at the curve for 
Pinv shows that there is not much activity before mark 2.5 sec. after this mark the curve 
drops to -5 and shortly after rises to 30 (saturated). Here it settles until the 4.6 sec mark 
where it drops to -30 (saturated). Here it settles. The curve for FIX doesn’t change much 
before the 2.5 sec mark. After this point it drops to -30 (saturated) over a 1.5sec period. 
The curve for DCA drops from zero to -30 (saturated) over a period of 3.2 sec where it 
settles. 
The bottom graph shows the deflection for the left inner elevon. The curve for Pinv is 
settled at zero at until 2.5 sec mark, at this mark raises the curve slightly until 5 and then 
drops to -30 (saturated). At the 2.8 sec mark the curve settles until the 4.6 sec mark where 
it reaches to 30 (saturated). At this point it settles. The curve for FIX is stabilized at -5.6 
until the 2.5 sec mark. After this point it raises to 20 over 2.5 sec. the curve for DCA rises 
over 3.2 sec to 12 where it settles. 
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Figure 56: 12th test run, desired deflection for Right and Left canard and the rudder 

The top graph shows the deflection for the left canard. The Pinv curve has some huge 
fluctuations over time and finally settles at zero deflection. DCA goes to 25 (saturated). 
The curve for Fix goes also to 25 (saturated) from an initial value at -12. 
The second graph shows the deflection for the left canard.  The Pinv curve has some huge 
fluctuations along with time and ends out at -55 (saturated). DCA goes to -30 and settles 
at 3.2sec mark. The curve for Fix makes a drop to -30 and the goes to 10 from an initial 
value at -11.5.  
The bottom graph shows the deflection for the rudder. As it can be seen goes the curves 
for Pinv, FIX and DCA all to 30 (saturated), the curve for Pinv and FIX at the 2.4 sec 
mark and the curve for DCA at 3.3 sec mark. 
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Figure 57: 14th test run, the vector of moment shoving the direction of the desired and achieved 
moment 

The above figure shows the detection of the desired moment. The curves for Pinv and 
FIX can not track the desired moment direction. DCA tracks the desired moment 
direction quite good. 

1.1.1.12. Summary 
In this test run it can be seen that only the algorithm for DCA tracks the desired input 
moment. The algorithm for Pinv and FIX can’t track the desired input. The reason for this 
is that both algorithms has problems when they violate the constraints. DCA scales its 
output vector, and preserves directionality while both FIX and Pinv attempts to keep up 
with the moment demand. 
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4.3.2. 13th test run, ramp input 
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Figure 58: 13th test run, desired moment and achieved moment 

As it can be seen the input set point equals a ramp input with a slope of -100 units per 
second for P, Q, and R.  In the top graph, the curve for Pinv follows the desired moment 
until it reaches -290, here it rises to approximately 120 where it stays until the desired 
input reaches 340. The curve for Pinv goes to -340 at this time point. At the 3.6 sec mark 
the curve rises to 120 and shortly after rises further to 210 where it settles. At 4.7 sec 
mark the curve makes a spike followed by a drop to -520 where it settles. For DCA the 
curve tracks the input until it saturates at approximately -350 and the curve for FIX keep 
on tracking the desired input. 
 
In the middle graph, the curve for Pinv follows the desired moment until it reaches -290, 
here it drops to approximately -350, after 0.5 sec it rises a little approximately to -320. 
here it stays until the desired input reaches -350 here the curve for Pinv rises to it rashes -
150 where it settles for approximately 1 sec. at 4.7 sec mark a spike occurs followed by a 
drop to -350 two where it settles. 
The curve for DCA goes to approximately -350 and settles. The curve for FIX follows the 
desired input until it reacts 270 where it slag’s of a little. 
 
In the bottom graph, the curve for Pinv follows the desired moment until it reaches  -290, 
here it rises to approximately -150, here it stays until the desired input reaches -330 
where the curve for Pinv goes dawn to -330 shortly and the ain rises to -150 for a short 
period followed by a small drop to -190. Hire it settles for approximately 1 sec followed 
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by a drop to -390 and settles. FIX and DCA tracks the desired input until it reaches -350, 
at this point it almost settles. 
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Figure 59: 13th test run, deflection for Right inner and outer elevon and Left inner and outer elevon 

The top graph shows the deflection for the right outer elevon. At the start the Pinv curve 
rises by 5 per sec until it reaches 12.5. at this point it starts dropping at 5 per sec. at the 
mark 2.8sec the curve drops to 30 (saturated) here it settle until mark 3.3 sec where it 
makes a spikes for a period of 0.2 sec and at 4.6sec at this deflection it rises to 
30(saturated). DCA rises following a slope given by 7 per sec. until it reaches 26. FIX 
starts at -3.3 and rises to 30.  
The second graph shows the deflection for the right inner elevon. The curves for Pinv and 
DCA rises approximately along a 9 per sec. slope until it reaches 30 (saturated). The 
curve for FIX rises also along the same slope but it reaches 30 (saturated) approximately 
a half sec. before DCA. 
The third graph shows the deflection for the left outer elevon. A look at the curve for 
Pinv shows that there isn’t much activity before mark 2.5 sec. after this mark rises the 
curve to 5 and shortly after drops to -30 (saturated). Here it settles until the 3.3 sec mark 
where it makes a spike to 15 and at the 4.6 sec mark rises to 30 (saturated). Here it settles. 
The curve for FIX doesn’t vitiate much before the 2.5 sec mark. After this point it rises to 
30 (saturated) over a 1.5sec period. The curve for DCA rises from zero to 30 (saturated) 
over a period of 3.5 sec where it settles. 
The bottom graph shows the desired deflection for the left inner elevon. The curve for 
Pinv is settled at zero at until 2.5 sec mark, at this mark the curve drops slightly until 5 
and then rises to 30 (saturated). At the 2.8 sec mark the curve settles until the 3.3 sec 
mark where it makes a spike followed by a drop at the 4.6 sec mark where it settles at -30 
(saturated). The curve for FIX is stabilized at -5.6 until the 2.5 sec mark. After this point 
it rises to 20 over 2.5 sec. The curve for DCA rises during 3.2 sec to 12 where it settles. 
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Figure 60: 13th test run, deflection for Right and Left canard and the rudder 

The top graph shows the deflection for the left canard. The Pinv curve has some huge 
fluctuations along with time and ends out at -55 (saturated). DCA goes to -55 (saturated). 
The curve for Fix goes also to -55 (saturated) from an initial value at -12. 
The second graph shows the deflection for the right canard.  The Pinv curve has some 
huge fluctuations along with time and ends out at 25 (saturated). DCA goes to 25 and 
settles at 3.2sec mark. The curve for Fix makes a rise to 25 and the goes against zero, 
from an initial value at -11.5.  
The bottom graph shows the deflection for the rudder. As it can be seen the curves for 
Pinv, FIX and DCA all goes to 30 (saturated), the curve for Pinv and FIX at the 2.4 sec 
mark and the curve for DCA at 3.6 sec mark. 

Page 83 of 155 



-600
-400

-200
0

200
400

-500

-400

-300

-200

-100

0

100
-500

-400

-300

-200

-100

0

100

Moment, P, (N)

Moment Directions

Moment, Q, (N)

M
om
en
t, 
R
, 
(N
)

Pinv
FIX
DCA
Desired

 

Flight Control Allocation using Optimization Based Linear and Quadratic programming  
P7 - project fall 2004 
Aalborg Universitet Esbjerg 

Page 84 of 155 

Figure 61: 13th test run, the vector of moment shoving the direction of the desired and achieved 
moment 

The above figure shows the detection of the desired moment. The curves for Pinv can not 
track the desired moment direction. DCA and FIX tracks the desired moment direction 
quite good. 

1.1.1.13. Summary 
In this test run it can be seen that only the DCA algorithm can track the desired input 
moment direction. The algorithms Pinv and FIX can’t track the desired input. The desired 
moment is not attainable, and both algorithms try to produce as much moment as 
possible, while sacrificing directionality. FIX is nearly capable of following the moment 
direction, while Pinv seems to produce erratic results. 

4.4. Parabola input 
The parabola input tests are conducted by giving the input vector equal magnitude in each 
element, hence p=q=r for each test. The test sequence is given by the following table: 

Table 5 Parabola input sequence 
Test  

14 10x2 N/sec 
15 -10x2 N/sec 
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4.4.1. 14th test run, parabola input 
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Figure 62: 14th test run, desired moment and achieved moment 

As it can be seen the input set point is a parabola input with the formula 10·x2 for P, Q, 
and R.  
The three graphs show the curves for Pinv, FIX and DCA. As it can be seen the curves 
track the input just fine. 
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Figure 63: 14th test run, deflection for Right inner and outer elevon and Left inner and outer elevon 

The top graph shows the deflection for the right outer elevon. The curves for Pinv, FIX, 
and DCA follow some parabola curve.   
The second graph shows the deflection for the right inner elevon. The curves for Pinv, 
FIX, and DCA follow some parabola curve.   
The third graph shows the deflection for the left outer elevon. The curve for Pinv has a 
drop at approximately 2 over a 5 sec. period. The curve for FIX has drop at 
approximately 2 over a 5 sec period with a start from an initial value at 3. The curve for 
DCA follows a parabola curve. 
The bottom graph shows the deflection for the left inner elevon. The Pinv curve follows 
zero deflection for 5 sec. The curve for FIX is almost settled at -5.1. The curve for DCA 
follows a parabola and ends at 10 after 5 sec. 
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Figure 64: 14th test run, deflection for Right and Left canard and the rudder 

The top graph shows the deflection for the left canard. The curves for Pinv, FIX and 
DCA follow a parabola. The curve for Pinv starts at zero and ends at 15. The curve for 
DCA starts at zero and ends at 20. The curve FIX starts at -12 and ends at 3. 
The second graph shows the deflection for the right canard. The curve for Pinv rise a little 
at time but ends at zero. The curve for FIX starts at -12, rises a little with time but end out 
at -12. The curve for DCA follows a parabola and ends out at -22. 
The bottom graph shows the deflection for the rudder. The curves for Pinv and Fix follow 
a parabola curve and ends out at -30(saturated) at 4.9 sec. The curves for DCA follow a 
parabola curve and ends out at -23.  
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Figure 65: 14th test run, the vector of moment shoving the direction of the desired and achieved 
moment 

The above figure shows the detection of the desired moment. All algorithms track the 
desired moment direction. 

1.1.1.14. Summary 
In this test run, the algorithm tracks the desired moment just fine. The cheapest algorithm 
to use in this case is the Pinv. This algorithm is the one who deflects the control surfaces 
the least.  
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4.4.2. 15th test run, parabola input  
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Figure 66: 15th test run, desired moment and achieved moment 

As it can be seen the input set point is a parabola input with the formula 10·x2 for P, Q, 
and R.  
The three graphs show the curves for Pinv, FIX and DCA. As it can be seen the curves 
tracks the input just fine. 
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Figure 67: 15th test run, deflection for Right inner and outer elevon and Left inner and outer elevon 

The top graph shows the deflection for the right outer elevon. The curves for Pinv, FIX, 
and DCA follow some parabola curve.   
The second graph shows the deflection for the right inner elevon. The curves for Pinv, 
FIX, and DCA follow some parabola curve.   
The third graph shows the deflection for the left outer elevon. The curve for Pinv rises 
approximately 2 over a 5 sec period. The curve for FIX has rises approximately 2 over a 
5 sec period with a start from an initial value at 3. The curve for DCA follows a parabola 
curves. 
The bottom graph shows the desired deflection for the left inner elevon. The Pinv curve is 
almost stationer at zero. The curve for FIX is almost stationer at -5.1. The curve for DCA 
follows a parabola and ends at -17 after 5 sec. 
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Figure 68: 15th test run, deflection for Right and Left canard and the rudder 

The top graph shows the deflection for the left canard. The curves for Pinv, FIX and 
DCA follow a parabola. The curve for Pinv starts at zero and ends at -15. The curve for 
DCA starts at zero and ends at -36. The curve FIX starts at -12 and ends at -26. 
The second graph shows the deflection for the right canard. The curve for Pinv drops a 
little at time but ends at zero. The curve for FIX starts at -12, drops a little with time but 
end out at -12. The curve for DCA follows a parabola and ends out at 18. 
The bottom graph shows the deflection for the rudder. The curves for Pinv and Fix follow 
a parabola curve and ends out at 30(saturated) at 4.9 sec. The curves for DCA follow a 
parabola curve and ends out at 20. 
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Figure 69: 15th test run, the vector of moment shoving the direction of the desired and achieved 
moment 

The above figure shows the detection of the desired moment. Pinv, DCA and FIX track 
the desired moment direction quite good. 

1.1.1.15. Summary 
In this test run, the algorithm tracks the desired moment just fine. The cheapest algorithm 
to use in this case is the Pinv. This algorithm is the one who deflects the control surfaces 
the least.  

4.5. Conclusion of mathematical simulation 
From the first test run, it can be concluded that the Pinv and DCA algorithms track the 
desired input quite good. The FIX algorithm has an offset according to the desired input. 
The reason for this is that when the algorithm starts to run it finds an initial non-zero start 
value dependent on the constraints. However, because the desired input is zero, the 
outputs are set to the initial value. This contribution then has the negative effect that it 
deflects the actuators which produce a moment when no moment is commanded. 
 
When the input becomes a step input, the algorithms should immediately find a solution 
to the desired moment. A look at the desired output deflection of the control surfaces 
reveals that the deflection commanded by the FIX algorithm is larger than for both Pinv 
and DCA. In the non-saturated case, Pinv proves to provide the best solution, since this 
algorithm commands the smallest actuator deflection.   
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When the input becomes large the algorithm begins to saturate the actuators. If the input 
is too large all of the actuators become saturated and the algorithms can’t deliver the 
desired moment. In the saturated case, DCA is the only algorithm which produces the 
correct moment direction. The deflections produced by Pinv become very erratic at times, 
and these large fluctuations will wear the actuators, as is also the case with the FIX 
algorithm and its larger deflections. In the saturated case DCA provides better actuator 
utilization from a control effort minimization perspective.  
 
In the case of a ramp input the same observations can be made. As long as the amplitude 
of the desired moment lies within the attainable moment space both DCA and Pinv 
provides good solutions, with Pinv being the best. When some of the actuators become 
saturated the Pinv and FIX algorithms try to compensate for the lost moment by 
commanding some of the non-saturated actuators to make up the difference. However, 
this has the effect that both Pinv and FIX algorithms saturate other actuators and in the 
end produce a moment with a different direction than the desired. In the border-case 
scenario when some actuators are saturated, the FIX algorithm provides better 
directionality than the Pinv algorithm. The DCA algorithm always tracks the desired 
moment direction.  
 
Finally, from a general point of view it can be said that the DCA algorithm is always able 
to track the moment direction. Moreover, the Pinv algorithm is the algorithm where it in 
the most cases saves most power by commanding the smallest deflection of the actuators. 
While the Pinv algorithm doesn’t provide the correct moment direction in the saturated 
case, it provides the most optimal solution in the non-saturated case. The algorithm that 
performs the worst is the FIX algorithm. This algorithm should always find the optimal 
solution but it is also the algorithm which wastes most actuator power. It commands the 
largest deflections of the control surfaces and it can’t track the desired moment direction 
when some of the output variable is saturated.  
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5. ADMIRE linear model in simulink  
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Figure 70 ADMIRE linear model overview 

5.1. Start the simulation 
To start the simulation, first start MATLAB and point the directory to the location where 
you have extracted ADMIRE and type  
 
>>start  
 
This command will open the following files:  
 

• startup.m 
• admtrim_sl.m 
• adm_lin.m 
• Bbare_B.m 
• admire_linear_G771.mdl 
• admire_linear_G771_FIX.mdl 
• admire_linear_G771_DCA.mdl 
• admire_linear_G771_Pinv.mdl 
• admire_linear_mix_plot.m 
• Input_For_Test.m  
• Plotter_for_Admire.m 
• Plotter_for_simpel_modle.m 
• simpel_ADMIRE.m 
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5.1.1. Startup.m 
This file sets up the Matlab path and references the different parts in ADMIRE. 

5.1.2. admtrim_sl.m 
The Matlab file admtrim_sl.m calls the functions in setup_ratelims.m and uncertainty.m. 
These .m files set up the necessary parameters used in the simulation, such as the 
uncertainties and the rate and position limits for the actuators.  

5.1.3. adm_lin.m 
adm_lin.m creates the matrices for the two state space models in the linear model by 
calling two files, linmod_nnt.m and admire_bare_lin.mdl. These matrices describe the 
linearized aircraft model at the given flight condition. 

5.1.4. linmod_nnt.m 
This is a modified model of the Matlab function linmod. Simulink provides the linmod 
functions to extract linear models in the form of state-space matrices A, B, C, and D. 
This file is called by the file adm_lin.m. State-spaces matrices describe the linear input-
output relationship as: 
  

Eq. 5-1    
uxy
uxx

DC
BA

+=
+=�

 
where x, u, and y are state, input, and output vectors, respectively. 

5.1.5. admire_bare_lin.mdl 
This file is called by the file adm_lin.m. This model is a quite complex simulink model 
which is used for configuration of the dynamic aerodynamic aircraft model. 

5.1.6. Bbare_B.m 
This file makes a sub-matrix from the Bbare matrix in the dynamic system of the 
airplane.  
The sub-matrix (B) is used to convert the output, P, Q and Beta, from the controller and 
map those into the angular accelerations in pitch, roll and yaw. Information of the desired 
moment is the essence of control allocation in applications of flight control. The B matrix 
defined by this .m file is the control effectiveness matrix. 

5.1.7. admire_linear_G771.mdl 
This file is the linear simulink model, which is the main file for simulating the aircraft 
dynamics with control law and control selector modules. This file is the original 
ADMIRE linearized model. After it appears the simulation can be run. 
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Use the pull-down menu simulation and press start to run the simulation. The time step 
for the simulation is set to 0.008 s. Such a short time step is required for the padé 
approximations of the time delays to work properly. More about this later. 

5.1.8. admire_linear_G771_FIX.mdl 
This file is the linear simulink model, which is the main file for simulating the aircraft 
dynamics with control law and the Fixed-point algorithm implemented as the control 
allocater. After it appears the simulation can be run. 
Use the pull-down menu simulation and press start to run the simulation. The time step 
for the simulation is set to 0.008 s. Such a short time step is required for the padé 
approximations of the time delays to work properly. 

5.1.9. admire_linear_G771_DCA.mdl 
This file is the linear simulink model, which is the main file for simulating the aircraft 
dynamics with control law and the Direct Control Allocation algorithm implemented as 
the control allocater. After it appears the simulation can be run. 
Use the pull-down menu simulation and press start to run the simulation. The time step 
for the simulation is set to 0.008 s. Such a short time step is required for the padé 
approximations of the time delays to work properly. 

5.1.10. admire_linear_G771_Pinv.mdl 
This file is the linear simulink model, which is the main file for simulating the aircraft 
dynamics with control law and the Pseudoinverse algorithm implemented as the control 
allocater. After it appears the simulation can be run. 
Use the pull-down menu simulation and press start to run the simulation. The time step 
for the simulation is set to 0.008 s. Such a short time step is required for the padé 
approximations of the time delays to work properly. 

5.1.11. admire_linear_mix_plot.m 
This file can be used to plot the simulated results of the aircraft response. After the 
simulation has been rune this file can be run. This file will then plot the result from the 
simulation. However, it should be mention that it only works with the simulation in 
admire_linear_G771.mdl. 

5.1.12.   Input_For_Test 
This file sets up all the input variables for the test. Within this file can the different input 
bee manipulated. 

5.1.13.   Plotter_for_Admire.m 
This file can be rune when all the fore simulations have been run. It will then plot the 
results from the simulations, in a way where it is easy to compeer the results from the 
different simulations. 
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5.1.14.   Plotter_for_simpel_modle.m 
This file can be rune when the simulations in the simple_ADMIRE.mdl file has been run. 
It will the plot the results from the simulation, in a way where it is easy to compeer the 
results from the simulation.  

5.1.15.   simple_ADMIRE.mdl 
This file is a simulation environment set up for testing the three different algorithms 
simultaneous. There are a number of different possibilities for setting the input. This 
explained in the model. 

5.2.  Description of admire_linear_G771_xxx.mdl 
First, all the inputs and outputs for this block will be explained and afterwards the sub 
blocks will be described in detail. 
The model is described by the ADMIRE team as “mainly linear” which describes the 
dynamics of a small generic fighter aircraft with one engine. This aircraft is a bit larger 
than the JAS39 and with a lower wing loading. The model is implemented as several c-
mex-files in order to fit into the Simulink environment. It is based on GAM (Generic 
Aerodata Model) developed by Saab AB, Sweden. 
The simulink model admire_linear.mdl will be described in detail in the following 
section. First, all the input and outputs for the block will be explained, and then each sub-
block will be described. 

5.2.1. ADMIRE_fcs_Linear 
The first block, “ADMIRE_fcs_Linear”, has 10 inputs and 12 outputs, se the explanation 
in Table 1. 

Table 1 input and output variables for the block ADMIRE_fcs_Linear 
Input Explanation 
dFes Longitudinal stick deflection 
dVt Airspeed 
dFas Lateral stick deflection 
dFrp Rudder pedal deflection 
dle_in Leading-edge flap angle 
ldg_in Landing gear 
dty_in Engine nozzle-deflection in the xy-plan  
dtz_in Engine nozzle-deflection in the xz-plan 
Disturbance 4 input u_dist, v_dist, w_dist and p_dist 
Feedback 27 input from feedback (State space model in the block 

ADMIRE_bare_Linear) 
  
Output 
p Roll angular rate 
q Pitch angular rate 
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beta Sideslip angle 
dle Leading-edge flap angle 
tss Throttle setting 
ldg Landing gear 
dty Engine nozzle-deflection in xy-plan 
dtz Engine nozzle-deflection in xz-plan 
u_dist Turbulence in x axis 
v_dist Turbulence in y axis 
w_dist Turbulence in z axis 
p_dist Turbulence around roll axis 
 
ADMIRE_fcs_linear is a sub block containing a 10 to 1 multiplexer and a 1 to 12 de-
multiplexer. Furthermore it includes a state-space block which has the following four 
matrices: Afcs (dim 4x4), Bfcs (dim 4x40), Cfcs (dim 12x4) and Dfcs (dim 12x40). This 
state space model acts as the controller for the aircraft. Its input and output is described 
above in Table 1. 
 
p,q and beta are the first three outputs and these connect to the input of the “control 
selector block”. 
The next two output, dle and tss, is connected to the “Saturators, Rate limiters and 
Actuators” block. 
The last seven outputs, ldg, dty, dtz, u_dist, v_dist, w_dist, and p_dist are connected 
directly to the last block, “ADMIRE_bare_Linear”. 

5.2.2. Control Selector 
The control selector is a sub-block contains the block, “FCS_cs” which has 5 inputs and 7 
outputs. The description of the inputs and outputs can be seen in Table 2. 

Table 2 input and output variables for the control selector block 
Input Explanation 
p  Roll angular rate 
q  Pitch angular rate 
beta Sideslip angle 
Alt+dalt_err Altitude + difference in the altitude error 
Mach+dMach_err Speed (mach) + difference in the speed error 
  
Output 
drc Right canard angle deflection 
dlc Left canard angle deflection 
droe Right outer elevon angle deflection  
drie Right inner elevon angle deflection 
dlie Left inner elevon angle deflection 
dloe Left outer elevon angle deflection 
dr Rudder angle deflection  
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5.2.3. FCS_cs 
The block FCS_cs is a sub-block located in Control Selector and contains a sub-block 
named FCS_cs_table and a number of summations elements, a multiplexer and four de-
multiplexers. 
The multiplexer joins 21 outputs from the FCS_cs_table block into a single vector. After 
combining the inputs, the vector of 21 elements is split up in to three vectors: One 
containing the first 7 elements, the second containing the next 7 elements and last the 
third containing the last 7 elements.  
After splitting the vectors into smaller vectors, these are multiplied by p, q, and beta. The 
first vector is multiplied by p, the second by q and the third by beta. Each of the three 
vectors are then de-multiplexed into 21 signals. The signals are then summed together in 
the following way: Signal one from vector one is summed with signal one from the 
second and third vector, the second signal from each array is summed together the same 
way as the remaining five signals. These calculations produce the 7 signals which are the 
outputs from this block. These output signals represent the control signals sent to the 
actuators. See Figure 71 for reference. 
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Figure 71 An overview of the sub-block FCS_cs 

FCS_cs_table contains the block ‘fcsselector’ and a demultiplexer. The demultiplexer 
splits the signals from the S-function ‘fcsselector’ into 21 single signals (see Figure 71). 
fcsselector 
This block contains an S-Function called ‘fcsselector’. This S-function is made from a c-
file, which decides what weighting the 21 outputs should have according to the altitude 
and Mach number. The S-Function delivers its output vector to a de-multiplexer which 
splits the vector up into 21 single signals. These 21 outputs then represent how to weigh 
p, q and beta from the controller and map these onto the control surfaces of the aircraft. 
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This is the simple control allocation block of ADMIRE. The calculations in this block 
determine the outputs for the seven control surfaces. The input and output can be seen in 
Table 3. 

Table 3 Input and output from the block FCS_cs_table  
Input Explanation 
(1) FCS_cs_table_Altitude Altitude 
(2) FCS_cs_table_Mach Mach number 
Output 
(1) FCS_cs_table_p_drc  
(2) FCS_cs_table_p_dlc  
(3) FCS_cs_table_p_droe  
(4) FCS_cs_table_p_drie  
(5) FCS_cs_table_p_dlie  
(6) FCS_cs_table_p_dloe  
(7) FCS_cs_table_p_dr  
(8) FCS_cs_table_q_drc  
(9) FCS_cs_table_q_dlc  
(10) FCS_cs_table_q_droe  
(11) FCS_cs_table_q_drie  
(12) FCS_cs_table_q_dlie  
(13) FCS_cs_table_q_dloe  
(14) FCS_cs_table_q_dr  
(15) FCS_cs_table_beta_drc  
(16) FCS_cs_table_beta_dlc  
(17) FCS_cs_table_beta_droe  
(18) FCS_cs_table_beta_drie  
(19) FCS_cs_table_beta_dlie  
(20) FCS_cs_table_beta_dloe  
(21) FCS_cs_table_beta_dr  

5.2.4. New implementation  
The block ‘New implementation’ is a new block. This block is the place for our 
implementation of a control allocator. The input to this block comes from the Controller 
block, and it sends its output to the block total computer delay. In our implementation, a 
mapping must be made from the desired moments commanded by the controller, into 
control surface deflections of the aircraft. The dynamic response of the aircraft after using 
our new control allocator should be very close to the response of the aircraft when using 
ADMIRE’s own built-in allocator. Depending on the choice of algorithm for performing 
control allocation the aircraft response will differ slightly under some conditions. As 
mentioned in former chapters, the direct allocation implemented using linear 
programming provides directionality by sacrificing moment generation, while the control 
minimization is implemented using the cascaded generalized inverse sacrifices 
directionality while attempting to preserve moment generation.  
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5.2.5. Total computer delay 
The block, ‘Total computer delay’ is a sub-system containing a delay element for each of 
the seven input signals. The delay is produced by a second order filter. Each of the seven 
inputs is routed through this block with a delay of 20 milliseconds. The seven inputs are 
taken from the FCS_cs block. The output is sent to the ‘saturators, rate limiters and 
actuators’ block. 

5.2.6. Saturators, rate limiters and actuators 
The block ‘saturators, rate limiters and actuators’ provide the system with information on 
the actuator’s limitations in both position and angular rate. These limitations are functions 
of the Mach number and the altitude. The work done in this block is to test if the 
actuators are saturated in either rate or position. The position limitation checking is 
performed by the S-Function ‘act_pos_lim’, which simply compares the actual value with 
the saturation value. If any input is exceeding saturation limits, this function clips the 
output to the actuator to the saturated values for the corresponding actuator, thereby 
simulating real world actuators which have their saturation limits. The block has ten 
inputs and nine outputs see Table 4. 

Table 4: Input and output from the block ’saturators, rate limiters and actuators’ 
Input Explanation 
FCS_ae_rl_drc Right canard angle 
FCS_ae_rl_dlc Left canard angle 
FCS_ae_rl_droe Right inboard elevon angle 
FCS_ae_rl_drie Right outboard elevon angle 
FCS_ae_rl_dlie Left outboard elevon angle 
FCS_ae_rl_dloe Left inboard elevon angle 
FCS_ae_rl_dr Rudder angle 
FCS_ae_rl_dle Leading-edge flap angle 
FCS_ae_rl_tss Throttle setting 
Mach Mach number 
Output  
FCS_ae_rl_drc_out Right canard angle 
FCS_ae_rl_dlc_out Left canard angle 
FCS_ae_rl_droe_out Right inboard elevon angle 
FCS_ae_rl_drie_out Right outboard elevon angle 
FCS_ae_rl_dlie_out Left outboard elevon angle 
FCS_ae_rl_dloe_out Left inboard elevon angle 
FCS_ae_rl_dr_out Rudder angle 
FCS_ae_rl_dle_out Leading-edge flap angle 
FCS_ae_rl_tss_out Throttle setting 
 
The subsystem contains a rate limitation block, see Table 5. The rate limitations of the 
actuators are determined by a first order system. Each first order system is dependant of 

Page 101 of 155 



Flight Control Allocation using Optimization Based Linear and Quadratic programming  
P7 - project fall 2004 
Aalborg Universitet Esbjerg 
an initial value, except for the first order system related to the engine. The engine rate 
limiter is determined with a specific first order system. 

Table 5: Sub-system name 
System name File name 
FCS_ae_rl_rc Admire_linear/FCS_ae_rl/FCS_ae_rl_rc 
FCS_ae_rl_lc Admire_linear/FCS_ae_rl/FCS_ae_rl_lc 
FCS_ae_rl_roe Admire_linear/FCS_ae_rl/FCS_ae_rl_roe 
FCS_ae_rl_rie Admire_linear/FCS_ae_rl/FCS_ae_rl_rie 
FCS_ae_rl_lie Admire_linear/FCS_ae_rl/FCS_ae_rl_lie 
FCS_ae_rl_loe Admire_linear/FCS_ae_rl/FCS_ae_rl_loe 
FCS_ae_rl_r Admire_linear/FCS_ae_rl/FCS_ae_rl_r 
FCS_ae_rl_le Admire_linear/FCS_ae_rl/FCS_ae_rl_le 

5.2.7. ADMIRE_bare_Linear 
The block ‘ADMIRE_bare_Linear’ is a subsystem containing a state-space model. This 
model has 16 inputs and 59 outputs. The matrices in this block is: Abare (dim 28 x 28), 
Bbare (dim 28 x 16), Cbare (dim 59 x 28) and Dbare,(dim 59 x 16). These four matrices 
describe the state-space model which represents the linearized aircraft dynamics under 
certain flight conditions described by the Mach number and the altitude of the aircraft.  
The 16 inputs consist of the following variables, as can be seen in Table 5. 

Table 6: Input for ADMIRE_bare_Linear 
Input Explanation 
drc Right canard angle 
dlc Left canard angle 
droe Right outboard elevon angle 
drie Right inboard elevon angle 
dlie Left inboard elevon angle 
dloe Left outboard elevon angle 
dr Rudder angle 
dle Leading-edge flap angle 
ldg Landing gear 
tss Throttle setting 
dty Engine nozzle-deflection in the xy-plane 
dtz Engine nozzle-deflection in the xz-plane 
u_dist Turbulence in x axis 
v_dist Turbulence in y axis 
w_dist Turbulence in z axis 
p_dist Turbulence around roll axis 
 
Since the output variables from the block containing both output and state variables, it 
has to be sorted. This is done by selecting the first 31 variables for output and another 
block for retrieving the last 27 state variables. The first 31 variables are summed together 
with the first 31 variables in the imported array, y0bare, and it is then sent to the output 
port 1 which is the output representing the aircraft current state. 
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These 31 variables can be found in Table 7. 
 

Table 7 Output for ADMIRE_bare_Linear 
Output Explanation unit 
(1)   Vt Airspeed m/s 
(2)   alpha Angle of attack rad 
(3)   beta Angle of sideslip rad 
(4)   pb  Roll angular rate rad/s 
(5)   qp Pitch angular rate rad/s 
(6)   rb Yaw angular rate rad/s 
(7)   psi Euler angles (azimuth) rad 
(8)   theta Euler angles (elevation) rad 
(9)   phi Euler angles (bank) rad 
(10) x  x position in Fv m 
(11) y y position in Fv m 
(12) z z position in Fv m 
(13) ub Velocity in x-axis m/s 
(14) vb Velocity in y-axis m/s 
(15) wb Velocity in z-axis m/s 
(16) uv Velocity in earth parallel x-axis m/s 
(17) vv Velocity in earth parallel y-axis m/s 
(18) wv Velocity in earth parallel z-axis m/s 
(19) nz Normal acceleration of c.g. “g” 
(20) ny  Side acceleration of c.g. “g” 
(21) mach Mach number - 
(22) gamma Climb angle rad 
(23) cd Drag coefficient - 
(24) cl Lift coefficient - 
(25) cc Side force coefficient - 
(26) crm Roll coefficient - 
(27) cpm Pitch coefficient - 
(28) cym Yaw coefficient - 
(29) not defined   - 
(30) not defined  - 
(31) not defined  - 
 
The 27 state variables are sent to a memory block and then used for feedback to the 
block, ’ADMIRE_fcs_linear’. The signals have the same denomination as the first 27 
elements in the 31 output variables.  
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5.2.8.  disturbParam 
The block ‘disturbParam’ is a subsystem containing four inputs giving on four channel 
output. The four inputs, see Table 8, are multiplexed to become a vector and then output 
as ‘dist’.   

Table 8: Input and output to the block DisturbParam. 
Indput  Explanation 
u_dist Turbulence in x axis 
v_dist Turbulence in y axis 
w_dist Turbulence in z axis 
p_dist Turbulence around roll axis 
Output 
dist Input to ADMIRE_fcs_Linear 

6. Implementation in ADMIRE 
The control selector box in ADMIRE works as most existing ganging methods. However, 
the control selector in ADMIRE also takes into account the Mach number and the 
altitude. The controller of ADMIRE has 3 control outputs. P, Q and R. In conventional 
aircraft terminology, these variables determine the roll-rate, yaw-rate respectively. In the 
control selector box these 3 input variables are used to produce the control signals for the 
7 actuators. In this project we require the 3 commanded moments in the rolling, pitching 
and yawing direction. To obtain the control vector (v) it’s necessary to “roll back” the 7 
actuator control signals from the control selector box. This is done by picking out the 
columns and rows in the B-matrix of the state-space model describing the linearized 
dynamics of the actuators in the ADMIRE model. Ola Härkegård confirmed on e-mail the 
14th of October 2004 that we should define the control effectiveness matrix (B) as: 
 
Eq. 6-1   ( )7:1,6:4BbareB =   
 
Since p, q and r are states 4, 5, 6 and since there’s seven control surfaces. This operation 
defines a new matrix B, which is our control effectiveness matrix for the aircraft at the 
specified flight condition. Multiplying the output of the control selector by B we obtain 
the angular accelerations in roll, pitch and yaw. Using this vector as input to our control 
allocation algorithm, we need to make some approximations of the aircraft model.  
 

• Ignoring actuator dynamics 
• Viewing control surfaces as moment generators 
• Consider only position constraints 

 
These approximations make it possible to consider the control allocation problem much 
simpler. By ignoring actuator dynamics, we assume that the actuators are capable of 
moving indefinitely fast and without offset problems. The actuator rate limitations will 
only pose a problem when the input to the control allocator changes instantly with a large 
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magnitude. Since the input to the control allocator is described by the output of the 
controller, the input should not change instantly. Further, by viewing the control surfaces 
as moment generators, we can obtain a direct coherency between an exact actuator 
position and a generated aerodynamic moment. While the actuators both have position 
and rate limits, the easiest part to consider are the position constraints. It’s not impossible 
to also include rate constraints, but in this project we will focus only on position 
constraints. The methods used in this project are implemented only to consider position 
limitations. Using other methods and algorithms it’s possible to consider actuator rate 
constraints as well. 

6.1. Flight conditions 
During the testing of an aircraft response, it’s important to settle on a given flight 
condition, since flight as a general case is highly non-linear, one must decide which flight 
conditions are feasible for a test scenario in order to keep the test size down. At each 
flight condition, the dynamics of the aircraft are slightly changed, if each flight condition 
should be tested, the test itself would be a project on its own. The two most significant 
variables to be determined beforehand are the Mach number and the altitude of the flight. 
In our testing scenario, the group settled for a Mach number of 0.5 and an altitude of 
1000m.  
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7. ADMIRE simulation 
The real simulation of the algorithms will be conducted in the aircraft benchmark 
ADMIRE. As described in previous chapters, the model used in ADMIRE is the linear 
model, which is trimmed at a certain flight condition.  
 
The ADMIRE test section is divided into 4 tests. The first two tests consist of step inputs. 
The last two tests consist of 2 ramp inputs.  Ola Härkegård confirmed on e-mail 2nd of 
november that the inputs Fes, Fas, and Frp are all limited to a range of possible inputs. 
These ranges are: 
 
Table 6 Input limitations 

Input Positive limit Negative limit 
Fes 80 -40 
Fas 80 -80 
Frp 200 -200 

 

7.1. Test 1 
The first test gives a step input to the ADMIRE model, using the following values: 
 

Input Step magnitude 
Fes 50 
Fas 50 
Frp 120 

 
The step is given after 1 second simulation.  
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Figure 72: Test1 - commanded and achieved moment for p 
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As it can be seen from the figure, the commanded and achieved moments for p for all 
three algorithms match. 
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Figure 73: Test 1 - commanded and achieved moment for q 

In this test it can be seen that the commanded and achieved moment for q for all three 
algorithms match. Notice how the commanded moment for FIX is different from both 
DCA and Pinv. This is a property of a closed-loop test, the controller influences the 
commanded moment according to the aircraft response. 
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Figure 74: Test 1 - commanded and achieved moment for r 

In this test it can be seen that the commanded and achieved moment for r for all three 
algorithms match. Notice how the commanded moment for FIX is different from both 
DCA and Pinv. This is a property of a closed-loop test, the controller influences the 
commanded moment according to the aircraft response. 
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Figure 75: Test 1 - Right canard and left canard deflection 

The upper graph shows the right canard deflection while the bottom graph shows the left 
canard deflection. The FIX algorithm commands a larger deflection of both canards, 
while DCA comes in at second place with a little less deflection. Pinv commands the 
least deflection of the three. None of the algorithms saturate either of the canards. 
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Figure 76: Test 1 - Right outer and inner elevon deflection 

The upper graph shows the right outer elevon deflection, while the lower graph shows the 
right inner elevon deflection. All three algorithms show a similar curve shape, while the 
FIX algorithm commands the largest deflection, DCA comes second and Pinv commands 
the least deflection. None of the algorithms saturate either right elevon. 
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Figure 77: Test 1 - Left outer and inner elevon deflection 

The upper graph shows the left outer elevon deflection, while the lower graph shows the 
left inner elevon deflection. All three algorithms show a similar curve shape, but in this 
case the FIX algorithm commands the smallest deflection. DCA comes second while Pinv 
comes in last with the largest deflection. None of the algorithms saturate either of the left 
elevons. 
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Figure 78: Test 1 - Rudder deflection 

The graph shows the rudder deflection. All three algorithms show a similar curve shape, 
while DCA commands the largest deflection, Pinv commands less deflection and the FIX 
algorithm commands the smallest deflection of the rudder. None of the algorithms 
saturate the rudder. 
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Figure 79: Test 1 - Aircraft X-Y-Z movement 

This figure shows the aircraft movement in the X-Y-Z directions. Notice how the 
representation of the aircraft movement is according to its trimmed altitude and Mach 
number. The position of the aircraft is given without including the integral of its trimmed 
velocity. Especially this can be seen in the x-plot, where the position of the aircraft 
should increase with time according to the speed of 0.5 Mach. Instead we can see a 
decrease in position. This merely means that the aircraft velocity is decreasing through 
the simulation.  
 
By inspection, the middle graph and the lower graph show all three algorithms behave 
identical. The upper graph, however, shows some difference between the three. Pinv 
tracks the ADMIRE trajectory without error, while DCA comes very close. The FIX 
algorithm is a little more off than both DCA and Pinv. 

7.2. Test 2 
The second test gives a step input to the ADMIRE model, using the following values: 
 

Input Step magnitude 
Fes -30 
Fas -50 
Frp -120 
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The step is given after 1 second simulation.  
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Figure 80: Test 2 - commanded and achieved moment for p 

As it can be seen from the figure, the commanded and achieved moments for p for all 
three algorithms match. 
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Figure 81: Test 2 - commanded and achieved moment for q 

In this test it can be seen that the commanded and achieved moment for q for all three 
algorithms match. Notice how the commanded moment for FIX is different from both 
DCA and Pinv. This is a property of a closed-loop test, the controller influences the 
commanded moment according to the aircraft response. 
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Figure 82: Test 2 - commanded and achieved moment for  r 

In this test it can be seen that the commanded and achieved moment for r for all three 
algorithms match. Notice how the commanded moment for FIX is different from both 
DCA and Pinv. This is a property of a closed-loop test, the controller influences the 
commanded moment according to the aircraft response. 
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Figure 83: Test 2 - Right canard and left canard deflection 

The upper graph shows the right canard deflection while the bottom graph shows the left 
canard deflection. The FIX algorithm commands a larger deflection of both canards, 
while DCA comes in at second place with a little less deflection. Pinv commands the 
least deflection of the three. None of the algorithms saturate either of the canards.  
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Figure 84: Test 2 - Right outer and inner elevon deflection 

The upper graph shows the right outer elevon deflection, while the lower graph shows the 
right inner elevon deflection. All three algorithms show a similar curve shape, while the 
FIX algorithm commands the smallest deflection, Pinv comes second and DCA 
commands the largest deflection. None of the algorithms saturate either right elevon.  
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Figure 85: Test 2 - Left outer and inner elevon deflection 

The upper graph shows the left outer elevon deflection, while the lower graph shows the 
left inner elevon deflection. All three algorithms show a similar curve shape. In this case 
the FIX algorithm commands the largest deflection. DCA comes second while Pinv 
comes in last with the smallest deflection. None of the algorithms saturate either of the 
left elevons. 
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Figure 86 Test 2 - Rudder deflection 

The graph shows the rudder deflection. All three algorithms show a similar curve shape, 
while DCA commands the largest deflection, Pinv commands less deflection and the FIX 
algorithm commands the smallest deflection of the rudder. None of the algorithms 
saturate the rudder. 
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Figure 87: Test 2 - Aircraft X-Y-Z movement 

As mentioned in test 1, the graphs represent the aircraft movement in X-Y-Z directions 
without the integral of the trimmed velocity. 
By inspection, the middle graph and the lower graph show all three algorithms behave 
identical. The upper graph, however, shows some difference between the three. Pinv 

Page 114 of 155 



Flight Control Allocation using Optimization Based Linear and Quadratic programming  
P7 - project fall 2004 
Aalborg Universitet Esbjerg 
tracks the ADMIRE trajectory without error, while DCA comes very close. The FIX 
algorithm is a little more off than both DCA and Pinv. 

7.3.  Test 3 
The third test gives a ramp input to the ADMIRE model, using the following values: 
 

Input Ramp slope 
Fes 40/sec 
Fas 40/sec 
Frp 100/sec 

 
The ramp is given after 1 second simulation.  
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Figure 88: Test 3 - commanded and achieved moment for p 

As it can be seen from the figure, the commanded and achieved moments for p for all 
three algorithms aren’t equal. Pinv produce some fluctuations in both commanded and 
achieved moment while both DCA and FIX produce steady moments. 

Page 115 of 155 



Flight Control Allocation using Optimization Based Linear and Quadratic programming  
P7 - project fall 2004 
Aalborg Universitet Esbjerg 
 

0 1 2 3 4 5 6 7 8 9 10
-20

-15

-10

-5

0

5

m
om
en
t 
(N
)

Desired moment Q

Pinv
FIX
DCA
ADMIRE

0 1 2 3 4 5 6 7 8 9 10
-20

-15

-10

-5

0

5

time(sec)

m
om
en
t 
(N
)

Achieved moment Q

Pinv
FIX
DCA
ADMIRE

 
Figure 89: Test 3 - commanded and achieved moment for q 

As it can be seen from the figure, the commanded and achieved moments for q for all 
three algorithms aren’t equal, although the achieved moment comes closer to the 
commanded moment than for p. Pinv produce some fluctuations in both commanded and 
achieved moment while both DCA and FIX produce steady moments.  
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Figure 90: Test 3 - commanded and achieved moment for r 

As it can be seen from the figure, the commanded and achieved moments for p for all 
three algorithms aren’t equal. Pinv produce some fluctuations in both commanded and 
achieved moment while DCA produce steady moments. The FIX algorithm stops 
producing moment in the end of the simulation and backs off.   
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Figure 91: Test 3 – Right canard and left canard deflection 

The upper graph shows the right canard deflection while the bottom graph shows the left 
canard deflection. Pinv commands the least deflection of the three, until at timepoint 6.5 
sec. where Pinv commands erratic deflections for both canards. DCA commands the 
largest deflections of the left canard over time. FIX commands the largest deflection of 
the right canard. DCA saturates the left canard in the negative deflection, and Pinv 
saturates both canards in its erratic period. The FIX algorithm doesn’t saturate either 
canard. 
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Figure 92: Test 3 - Right outer and inner elevon deflection 

The upper graph shows the right outer elevon deflection while the lower graph shows the 
right inner elevon deflection. All 3 algorithms follow the same curve shape until time 
point 7 sec. where Pinv commands erratic deflections. Both FIX and DCA follows the 
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same curve shape through the entire simulation. Pinv commands the least deflection, until 
time point 7 sec. where it shows erratic behavior and saturates both elevons in the upper 
and lower position in turn. All algorithms saturate both elevons. 
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Figure 93: Test 3 - Left outer and inner elevon deflection 

In the upper graph the left outer elevon deflection is shown, while the lower graph shows 
the left inner elevon deflection. All 3 algorithms command the same actuator deflection, 
within a very small margin. All 3 algorithms saturate both elevons in the positive 
position. 
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Figure 94: Test 3 - Rudder deflection 

The graph shows the rudder deflection. All three algorithms show a similar curve shape 
up until time point 6.5 sec. where Pinv commands erratic deflections. While DCA 
commands the largest deflection before this time point, Pinv commands the largest 
deflection after the time point. Over time the FIX algorithm commands the smallest 
deflection of the rudder. Only the Pinv algorithm saturates the rudder. 
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Figure 95: Test 3 - Aircraft X-Y-Z movement 

As mentioned in the other tests, the graphs represent the aircraft movement in X-Y-Z 
directions without the integral of the trimmed velocity. 
 
By inspection, the middle graph and the lower graph show all three algorithms behave 
identical. The upper graph, however, shows some difference between the three. Pinv 
tracks the ADMIRE trajectory without error, while DCA comes very close. The FIX 
algorithm is a little more off than both DCA and Pinv. 

7.4. Test 4 
The fourth test gives a ramp input to the ADMIRE model, using the following values: 
 

Input Ramp slope 
Fes -20/sec 
Fas -40/sec 
Frp -100/sec 

 
The ramp is given after 1 second simulation.  
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Figure 96: Test 4 - commanded and achieved moment for p 

As it can be seen from the figure, the commanded and achieved moments for p for all 
three algorithms aren’t equal. Pinv produce some fluctuations in both commanded and 
achieved moment while both DCA and FIX produce steady moments. 
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Figure 97: Test 4 - commanded and achieved moment for q 

As it can be seen from the figure, the commanded and achieved moments for q for all 
three algorithms aren’t equal. Pinv produce some fluctuations in both commanded and 
achieved moment while both DCA and FIX produce steady moments. None of the 
algorithms can fully track the commanded moment. 
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Figure 98: Test 4 - commanded and achieved moment for r 

As it can be seen from the figure, the commanded and achieved moments for p for all 
three algorithms aren’t equal. Pinv produce some fluctuations in both commanded and 
achieved moment while DCA produce steady moments. The FIX algorithm stops 
producing moment in the end of the simulation and backs off while the commanded 
moment increases accordingly. 
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Figure 99: Test 4 - Right and left canard deflection 

The upper graph shows the right canard deflection while the bottom graph shows the left 
canard deflection. Pinv commands the least deflection of the three, until at time point 7 
sec. where Pinv commands erratic deflections for both canards. FIX commands the 
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largest deflections of both right and left canard. DCA saturates the left canard in the 
positive deflection, and Pinv saturates both canards in its erratic period. The FIX 
algorithm saturates both canards. 
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Figure 100: Test 4 - Right outer and inner elevon deflection 

The upper graph shows the right outer elevon deflection while the lower graph shows the 
right inner elevon deflection. All 3 algorithms follow the same curve shape until time 
point 7 sec. where Pinv commands erratic deflections. Both FIX and DCA follows the 
same curve shape through the entire simulation. FIX commands the least deflection. Pinv 
commands a steady deflection until time point 7 sec. where it shows erratic behavior and 
saturates both elevons in the upper and lower position in turn. All algorithms saturate 
both elevons. 
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Figure 101: Test 4 - Left outer and inner elevon deflection 

In the upper graph the left outer elevon deflection is shown, while the lower graph shows 
the left inner elevon deflection. All 3 algorithms command the same actuator deflection, 
within a very small margin. All 3 algorithms saturate both elevons in the negative 
position.
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Figure 102: Test 4 - Rudder deflection 

The graph shows the rudder deflection. All three algorithms show a similar curve shape 
up until time point 7 sec. where Pinv commands erratic deflections. While DCA 
commands the largest deflection before this time point, Pinv commands the largest 
deflection after the time point. Over time the FIX algorithm commands the smallest 
deflection of the rudder. Only the Pinv algorithm saturates the rudder. 
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Figure 103: Test 3 - Aircraft X-Y-Z movement 

As mentioned in the other tests, the graphs represent the aircraft movement in X-Y-Z 
directions without the integral of the trimmed velocity. 
 
By inspection, the middle graph and the lower graph show all three algorithms behave 
identical. The upper graph, however, shows some difference between the three. Pinv 
tracks the ADMIRE trajectory without error, while DCA comes very close. The FIX 
algorithm is a little more off than both DCA and Pinv. 
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8. Conclusion 
During the test of the three algorithms in ADMIRE and in the mathematical simulation, it 
is hard to come to precise conclusions on which algorithm is the best. Each algorithm has 
its strong side and weak side, as both the mathematical simulation and the ADMIRE 
simulations showed. However, general comments can be made on the subject if we divide 
the objective of the algorithms into 3 categories: 
 

• Error minimization 
• Control minimization 
• Directionality preservation 

 
Error minimization can be described as an attempt to provide a moment as close to the 
commanded as possible. In this case only the amplitude of the moments generated is 
considered. This objective may very well sacrifice directionality. 
 
Control minimization can be described as an attempt to minimize the control surface 
deflections for any given commanded moment. This objective may very well sacrifice 
moment generation. 
 
Directionality preservation is an attempt to provide the correct direction of the achieved 
moment according to the commanded moment. This objective may very well sacrifice 
moment generation. 

8.1. Error minimization 
All three algorithms are able to provide a solution with minimal error under the condition 
that no actuators are saturated. In the case that some actuators come near saturation DCA 
proves to be the worst algorithm for error minimization. The commanded deflections in 
this case obtained from the DCA algorithm are all scaled according to the scaling factor 
providing the control surfaces with smaller signals thus generating larger moment errors. 
 
The two remaining algorithms both try to minimize moment error, and their performance 
comes very close to each other. However, in the mathematical test it can be concluded 
that the FIX algorithm provides moments with larger amplitude when some of the 
actuators become saturated. The FIX algorithm is therefore considered to be the 
algorithm with the best error minimization performance. 

8.2. Control minimization 
In this category the algorithms spread a little more. In the case of no saturation, it is very 
clear that the Pinv algorithm provides the best control minimization, where FIX gives the 
largest control surface deflection in many cases. DCA lies in the middle ground and 
provides solutions with average control minimization. 
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In the saturated case, however, the tables turn, and the Pinv algorithm becomes the worst 
algorithm. The remaining two algorithms both do a good job of control minimization. 
The FIX algorithm provides a more balanced stance on control minimization, and DCA, 
as a property of the built-in scaling, comes in as the winner of control minimization in the 
saturated case. 

8.3. Directionality preservation 
In this category all algorithms provide the correct direction of the moments in the non-
saturated case. No real winner can be announced when no actuators are saturated. 
 
In the saturated case, however, there is a tendency for the Pinv algorithm to loose grip on 
directionality, and especially the mathematical simulation showed the weak side of the 
Pinv algorithm. At times the direction of the generated moment was the opposite of the 
commanded moment direction. The FIX algorithm provides a good middle ground for 
directionality preservation, as many of the mathematical tests showed, this algorithm was 
able to provide a large moment and still produce a moment with the correct direction. 
However, in extreme saturation cases the FIX algorithm looses directionality and 
attempts to preserve moment generation. The clear winner in the directionality category is 
the DCA algorithm which was able to provide the correct moment direction in any case. 
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9. Control designs for actuator redundancy system 
In this chapter we have investigated two design methods for over actuated systems. An 
over actuated system is a system which is underdetermined and has more inputs than 
outputs (m>p). 
    
In design 1, we will describe how to design a control law for an over actuated system 
with more inputs than outputs. In terms of control input u directly go to the control 
surface then the control surface gives the signals to the system. 

r y

x

δuControl
law

System
(A,B)

 
Figure 104: Control law for over actuated system 

In design 2, first we will focus on the design of a control law in terms of a virtual input v, 
and then map this into u.  The benefits of design 2, is that the constraints can be taken 
into consideration. 

 

r

x

y
uvControl

law
System

(A,B)
Control

Allocator

 

Figure 105: Control law and control allocation for over actuator system 

The objective of both designs are that the plant output y tracks the given constant 
reference signal r asymptotically, which means after specific time, the response of the 
system settles in its original steady-state level, such that the outputs match the input 
signals, (y = r).  
  
There are many choices to designs these two methods, e.g. optimal LQ control. In this 
worksheet we restrict our discussion to optimal LQ control. Before we design these 
methods, let us consider the properties of the standard Linear Quadratic Regulator (LQR). 

9.1. Linear Quadratic Regulation with state-feedback 
A system can be expressed in a state-space model as  
 

BuAxx +=�  
 
with  , u . The initial condition is x(0). We assume here that all the states 
are measurable, so that full state information is available and seek to find a state variable 
feedback control such that, 

( ) nRtx ∈ ( ) mRt ∈
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( ) ( ) ( )ttt rKxu +−=  
 

This gives the desirable closed-loop properties. The closed-loop system using this control 
becomes as: 
 

( ) BrxABrxΒΚAx +=+−= c�  
 

With A the closed-loop system matrix and r(t) is the reference or command input. c 
 
First, we assume the reference signal r(t) is equal to zero, and only consider the internal 
stability of the closed-loop system. 
 
The objective of optimal design in the linear quadratic regulation problem is to select the 
state feedback control law that minimizes the performance index J. 
The performance index also called cost function or integrated loss function , we can 
interpret this function as how much we pay to move the state x(t) to the desired point. Or 
we can interpret this as an energy function, where we should make the cost function small 
and keep it small according to the total energy of the closed-loop system. Both state x(t) 
and control input u(t) are weighted in the  performance index J, so that if the scalar 
performance index J is small, then either x(t) or u(t) can’t be too large. 
 
If J is minimized, then it is certainly finite, and since it is infinite of x(t), this implies that 
x(t) goes to zero as time goes to infinity. This guarantees that the stability of the closed-
loop system will be stable. 
 
The two weighting matrices Qn x n and Rm x m are real symmetric (Hermitian) positive 
semi-definite and positive definite matrices respectively. Depending on how these design 
parameters are selected, the closed-loop system matrix A-BK gives a different response. 
Generally, selecting Q large, to keep the J minimized, means that the state x(t) must then 
be smaller. Conversely, selecting R large means that the control input u(t) must be 
smaller to keep J small. This means that large values of Q results in the poles of the 
closed-loop system matrix Ac = A-BK  goes further to the left-hand side of the S-plane, 
so the system becomes more stable and state x(t) decays faster to zero. When selecting R 
large means that less control effort is used, resulting in larger values of the state x(t). 
 
Generally, we say Q is positive semi-definite and R is positive definite. This means that 
the scalar  is always positive or zero at each time for all functions x(t), and the 
scalar  is always positive at each time for all values of u(t). The eigenvalues of Q 
should be non-negative and the eigenvalues of R should be positive. If both matrices are 
selected as diagonal, this means that all the entries of R must be positive and all the 
entries of Q should be positive, with possibly some zeros on its diagonal. Note that R is 
invertible. 

QxxT

RuuT
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Since the system is linear and the performance index is quadratic, the problem of 
determining state feedback control law K is to minimize J. This is called the Linear 
Quadratic Regulator (LQR). 
 
To find the optimal K we have to follow some procedure. In following gives a brief 
description of the procedure will be given.  
To find an optimal feedback K a constant matrix P should exist such that: 
 

Eq. 9-1   ( ) xRKKQxPxx )( TTT

dt
d

+−=  

 
Substitute into the following performance index or cost function:  
 

Eq. 9-2    ( ) (∫∫
∞=

=

∞=

=

+=+=
T

T

TT
T

T

TT dtdtJ
00

xRKKQxRuuQxx )
 
then the equation becomes as: 
 

Eq. 9-3   ( ) ( ) ( )00
0

PxxPxx T
T

T

T dt
dt
dJ −=−= ∫

∞=

=

 

 
If we look at Eq. 9-3 the integration and differentiation cancels each other.  We assumed 
the closed-loop system is stable and that x(t) goes to zero as time goes to infinite.  It can 
be seen in Eq. 9-3 that J is independent of K. It is a constant that dependent only on the 
matrix P and the initial conditions. 
 
Now we can find the state feedback control gain K. Differentiate Eq. 9-1 and the 
substitute from the closed-loop state equation xBKAx )( −=�  to se that equation Eq. 9-1 
is equivalent to: 
 

0RKxKxPxxPx =++ TTTTx�  
 

( ) ( ) 0RKxKxQxxxBKAPxPxBKAx =++−+− TTTTTT  
 

( ) ( )( ) 0xRKKQBKAPPBKAx =++−+− TT  
 
It is remarkable that the last equation has to hold for every x(t). Therefore, the term in the 
parentheses is identically equal to zero. Then:  
 

( ) ( ) 0RKKQBKAPPBKA =++−+− TT  
 
Eq. 9-4    0PBKPBKRKKQPAPA =−−+++ TTTT
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The above equation is a matrix quadratic equation.  We select:  
 
Eq. 9-5   PBRK T1−=  
 
Then the results of equation Eq. 9-4 becomes: 
 

( ) ( ) ( ) ( ) 0PBRPBPBPBRPBRRPBRQPATA =−−+++ −−−− TTTTTTTT 1111  
 
Eq. 9-6    0PBPBRQPAPA =−++ − TT 1

 
Eq. 9-6 is called; algebraic Riccati equation (ARE). It is a quadratic matrix equation that 
can be solved for the P given (A,B,Q,R). Then the optimal full-state feedback gain K can 
be calculated using Eq. 9-6. The minimum value of performance index is given by Eq. 
9-3, which is only dependent on the initial value condition. This means that the cost of 
using the full state feedback Eq. 9-5 can be computed from initial conditions before the 
control is ever applied to the system. 
   
The Riccati equation can be solved and K exists, provided that the state-space realization 
is completely stabilizable or controllable. A state-space realization is completely 
controllable if there for arbitrary states  and arbitrary times T10 , XX 10 T≤  exists a control 
strategy capable of moving the system from state  at time T  to state  at timeT  
(Anderson, 1990).This is guaranteed if and only if the controllability matrix: 

0X 0 1X 1

 
[ ]BABAABBT 12 .... −= n

C  
 
has rank n (or full rank), n being the order of the system. 
The regulator design can be illustrated as in figure 1, where the state space description 
has been transformed into a time domain block diagram. 
 

CΣ

A

B y(t))(tx�+

+

∫
)(tx

K)(tu

 
Figure 106: Standard Regulator design 

When we are going to design an optimal regulator, we will follow the criteria as 
mentioned below: 
 

• Solve Eq. 9-6 for the matrix P. (if a positive-definite matrix P exists, the system is 
stable). 
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• Substitute the matrix P into Eq. 9-5. The resulting matrix K is the optimal matrix. 
 
If the matrix A-BK is stable, the present methods give the correct result. 

9.1.1. Solving Quadratic Regulator Problem with Matlab 
We use the MATLAB lqr(A,B,Q,R) command to solve the continuous-time, linear 
quadratic regulator problem and the Riccati equation. 
 
This command calculates the optimal feedback gain matrix K such that the feedback 
control law: 
 

)()( tt Kxu −=  
 
that minimizes the performance index: 
 

( )dtJ
T

T

TT∫
∞=

=

+=
0

RuuQxx  

 
Subject to the constrained equation: 
 

BuAxx +=�  
 
The other command in matlab is: 
 

[ ] ),,,(,, RQAEPK Blqr=  
 
Then the command returns the gain K, eigenvalue vector E, and matrix P, the unique 
positive-definite solution to the Riccati equation: 
 

0QPBPBRPAPA =+−+ − TT 1  
 
If matrix A-BK is a stable matrix, such a positive-definite solution P always exists. The 
eigenvalue vector E gives the closed-loop poles of A-BK. 

9.1.2. Controllable 
The system is controllable, if all the closed-loop poles may assigned to the desired 
locations by selection of K. 
 
Controllability means that the control input u(t) independently affects all the systems 
modes 
 

[ ]BABAABBTc n 12 .... −=  
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Tc is controllability matrix. The system is controllable if Tc has full rank of n, and if Tc 
has n linearly independent columns. 

9.1.3. Stabilizability and Detectability 
A system (A,B,C) is stabilizable if there exists a matrix K, so that A-BK is stable (i.e. it 
has the eigenvalues in the stability region).  
 
The system is detectable if a matrix L exists, so that A-LC is stable. A controllable 
system is always stabilizable. An observable system is always detectable. 

9.1.4. Conditions for convergence of the LQ solution algorithm 
There exists a gain K such Ac is stable. If this is reality, we call the system output 
stabilizable. 
 
The output matrix C has full row rank p. 
 
Control weighting matrix R is positive definite. (i.e. all eigenvalues greater than zero, 
which implies non-singularity; denoted R > 0). This means that all the control inputs 
should be weighted in the performance index (PI). 
 
Weighting matrix Q is positive definite ( ) and (0≥Q AQ , ) is detectable. That is, the 
observability matrix polynomial 
 










−

−
=

Q

AIS
sO )(  

 
has full rank n, for all values of the complex variable s not constrained in the left-half 
plane. 
 
If these conditions is true, the algorithm finds an output-feedback gain that stabilizes the 
plant and minimizes the performance index (PI). The detectability condition means that 
any unstable system modes must be observable in the performance index (PI). Then if PI 
is bounded, which it is if the optimization algorithm is successful, signal associated with 
the unstable modes must go to zero as t becomes large, that is, they are stabilized in the 
closed-loop system. 

9.1.5. System description 
We will consider linear systems of the form: 
  

uBAxx u+=�  
Cxy =  
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Where nR∈x is the system state,  is the control input, y is the system output 
to be controlled, and  is  stabilizable. We assume x to be measured so that full 
state information is available. 

mR∈u pR∈
( uBA, )

 
Assume now that rank This implies that B can be factorized as: ( ) .mku <=B u

 
BBB vu =  

Where and B  With this, an alternative system description is given by: kn
v R ×∈B .mkR ×∈

 
vBAxx v+=�  

Buv =  
Cxy =  

 
Where can be interpreted as the total control effort produced by the actuators. We 
will refer to v as the virtual control input. 

kR∈v

 
Since   B (and also Bmk < u) has null space of dimension km −  in which u can be 
perturbed without affecting the system dynamics. This is the type of actuator redundancy 
that is typically considered in control allocation applications. For simplicity, we will 
restrict ourselves to the case k i.e, when the number if virtual control inputs equals 
the number of variables to be controlled. 

,p=

9.1.6. The optimal Linear Quadratic control 
The design problem is now to select the feedback gain K that minimizes J subject to 
dynamic constraints, which means that the performance index J should be minimized. 
This is done by finding a control input u(t) such that the control input drives the state 
variable  to zero when time goes to infinity and achieved output equal to commanded or 
reference signal (y = r) at steady state:   

x�

( ) ( ) ( ) ( )( )∫
∞

+=
0

11min dtJ TT

u
uRuxQx  

 
Subject to ( )xKBAuBAxx uu −=+=�  
     rCx =

     
The block diagram, Figure 107 is a detail description of Figure 104. In this diagram we 

have a feedforward and feedback controller in the system. 
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Figure 107: Feedforward and feedback control law for the redundant system 

The block N  in Figure 107 is a Feed-forward controller and K1 is a Feedback controller. 
Feed-forward calculation is a static gain of the closed-loop related to the tracking 
problem.  
The computation of Feedback controller is mainly based on chapter 1.2 (Linear Quadratic 
Regulator) and Feed-forward computation is based on Glad (2000, chapter 9.2) and 
Härkegaard (2003, chapter 10). 
 
When the system has more inputs than or equal to the outputs variables to be controlled, 
it needs a feed-forward controller to track the input. The static gain N  matrix can be 
expressed in following equation: 
 

( )[ ]+−−= BABKCN 1  
 
Here + denotes pseudoinverse.  
 
Commanded input u(t) is: 
 

)()( tt cuNru −=  
 
where the full-state feedback control law uc(t) is expressed in: 
 

)()( 1 ttc xKu −=  
 
Where the feedback gain 
 

1
1

1 PBRK T
u

−=  
 
To find the symmetric matrix P1 the stationary Riccati equation should be solved, 
 

0QPBRBPAPPA =+−+ −
1

1
1111

T
uu

T  
 

Page 134 of 155 



Flight Control Allocation using Optimization Based Linear and Quadratic programming  
P7 - project fall 2004 
Aalborg Universitet Esbjerg 

9.1.7. The optimal Linear Control with Control Allocator 
 

CΣ
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A

B y(t))(tx�+

+

∫
)(tx

K2

Σ
-

+ )(tvN Nr

)(tcv

Control )(tu
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Figure 108: Feedforward and feedback control law for the redundant system with allocator 

In this design we use the system description ( )2  and determine the virtual control input 
 by solving:  ( )tv

 

( )∫
∞

+
0

22min dtTT

v
vRvxQx  

Where  
022 ≥= TQQ  

 
is positive semi-definite,  
 

022 >= TRR   
 
is positive definite,  is detectable, and x, v solve:  ( 2,QA )

 

rCx
BAx

=
=+ 0v  

 
Then determine the control input ( )tu  by solving: 
  

u
u

min  

Subject to   vBu =   
 
In this case there is no need to minimize the scalar quantity v  at steady state because 
the equation has a unique solution due to the dimension of v is same as the dimension of 
y.  

vRT
2

 
Then optimal control law becomes as; 
 

)()( tt Svu =   
where:  
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[ ]+= BS  
 
The optimal virtual control input is given by; 
 

ct uNrv −=)(  
 
where:  
 

)()( 2 ttc xKu −=  
 
this matrix static gain N  can be expressed in following equation,  
 

( )[ ] 11 −−−= vv BAKBCN  
 
Since N  is a square we get +−+ == BSNN 1  according to lemma 1. 
 
The feedback gain K2 for design 2 can be expressed by the following equation. In this 
equation Bv was used instead of Bu: 
  

2
1

22 PBRK T
v

−=  
 
To solve feedback gain K2, the symmetric matrix P2 should be found first. This is done by 
solve Riccati equation: 
 

0PBRBPQAPPA =−++ −
2

1
22222

T
vv

T  

9.1.8. Flight Control example with ADMIRE benchmark 
In this design example section we will demonstrate the theory described in the previous 
using a flight control example. The flight control example used here is the ADMIRE 
model. We consider a low speed flight case, Mach 0.5 and altitude 1000 m. In this 
situation the efficiency of control surfaces is very poor, which means that there possible 
to occur actuator saturation in certain positions. 
   
 
The subsystem of ADMIRE described by the following state-space model.  
 

)()()( ttt uuBAxx +=�  
 

)()()( ttt DuCxy +=  
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Where nR∈x  system state, u commanded control input, . mR∈ pR∈y nnR ×∈A  system 
matrix, mnR ×∈B input matrix, C  output matrix and np×R∈ mpR ×∈D  is the direct 
transmission matrix. nR∈�x  and y are the state representation matrix and y  the 
output observation matrix respectively. 

pR∈ )t(
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Figure 109: Control law and control allocation for over actuator system with reference input 

The aircraft data for the subsystem is from the linearized ADMIRE model, where the 
desired states in this example are  

 
[ ]Trqpt βα=)(x  

 
where the state variables are α = angle of attack, β = angle of sideslip, p = roll angular 
rate, p = pitch angular rate, and r =yaw angular rate. The angle of attack and angle of 
sideslip is measure in unit (degree), whereas the roll, pitch, and yaw is measured in the 
unit degrees per second (deg/s).  
 
The seven control surfaces for the Admire model as depicted in chapter 2, has a first 
order dynamics with a time constant of 0.05 s. The transfer functions for all seven control 
surface becomes as, 
 

( ) ( )•• +
= u

s 20
20δ  

 
where  and  represents actual and commanded control input of right and left 
canards, right outer and right inner elevons, left inner and outer elevons, and rudder. The 
all control surface deflections are measured in degrees.   

( )•δ ( )•u

 

( ) [ ]Trloelierieroelcrct δδδδδδδ=• )(δ  
 

( ) [ ]Trloelierieroelcrc uuuuuuut =• )(u  
 
Actuator position constraints are given by: 
 

[ ]TDDDDDDD 30303030302525max =δ  
 

[ ]TDDDDDDD 30303030305555min −−−−−−−=δ  
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The commanded output variables are the angle of attackα , side-slip β  and roll rate p. 
Then the output matrix becomes as, 
 

[ ]Tpt βα=)(y  
 

System matrix A and input matrix Bu1 for the subsystem: 
 























=

21270009390707600
05057000030062212

617600996805130100
96610022150117900

09778000137054320

.      -               .       -.                   
                .     -                 .       -.  
.                       .      -.     -           
.     -                .        .       -           

                .                        .         .-

A  

 























88230094401861018610094402615026150
00240462808107081070462808266082660
48711284929574195741284926013060130
02870002400095000950002400063000630
00040031800548005480031800035000350

1

.   -.    .    .   -.   -.    .-

.   .   -.   -.   -.   -.    . 
.    .    .    .   -.   -.   -. 
.    .   -.   -.    .    .    .-

 .    .   -.   -.   -.   -.    . 

 = uB  

 
The input matrix Bu1 is ganged, which means that the right canards (u ) and left canards 
( ) is ganged together, right outer elevon (u ) and right inner elevon ( ) is ganged 
together, right inner elevon ( ) and left outer elevon (u ) is ganged together and 
rudder ( u ) was not ganged, because there is only one rudder ( ). Then the ganged input 
matrix B

rc

lcu roe rieu

rieu loe

r ru
u becomes as follows, 

 























8823028050280500
00240273512735165321
4871124234242340
0287001190011900

00040086600866000690  

=  u

.   -.      .    -           
.     .    -.     -.  
.     .      .    -           
.     .    -.                 

.     .    -.    -.

B  

  
The output matrix C and the direct transmission matrix D is given below. In this case, we 
will measure the responses of angle of attack (α ), sideslip ( β ), and roll rate (p), 
therefore, ones in diagonal entries of C matrix.  All The entries of the D matrix are zeros.  
 

















00100
00010
00001

                    
                    
                    

= C    
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















0000
0000
0000

               
               
               

 = D  

 
For the simulation we use n×n quadratic system matrix A and n×m ganged input matrix 
Bu. The state variable equation ( )tx�  and output equation for the open-loop system 
yields, 

)(ty

  





















⋅























+























⋅























=

r

le

re

c

u
u
u
u

r
q
pt

0.8823-   0.2805      0.2805-    0           
0.0024     1.2735-    1.2735-     1.6532  
1.4871     4.2423      4.2423-    0           
0.0287     0.0119-    0.0119      0           
0.0004     0.0866-    0.0866-    0.0069  

0.2127-      0               0.0939-       0.7076        0           
0                0.5057-     0                 0.0030-       2.6221  

0.6176       0                0.9968-      10.5130-     0           
0.9661-     0                0.2215        0.1179-       0           
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0     0     1     0     0
0     0     0     1     0
0     0     0     0     1

)(
β
α

y  

 
We check the open-loop stability by the system matrix A. Then we get the open-loop 
systems pole placement, damping ratio and natural frequency using MATLAB command 
damp;  
 
States x(t) Eigenvalue Damping (ζ) Natural frequency 

(wn) (rad/s) 
Angle of attack, α  
(dutch mode) 

1.08 -1.00 1.0800 

Angle of sideslip, β  
(dutch mode) 

-0.3180 + 1.7000i 0.1840 1.7300 

Roll angular rate, p  
(short period mode) 

-0.3180 - 1.7000i 0.1840 1.7300 

Pitch angular rate, q  
(short mode) 

-0.6920 1.00 0.6920 

Yaw angular rate, r  -2.1300 1.00 2.1300 
 
It seems that the system has an unstable pole at 1.08 for angle of attack and insufficient 
damping for angle of attack, pitch rate, and yaw rate. Since unstable pole and insufficient 
damping, the system requires a feedback gain K. Therefore for we use optimal LQ 
control with feedback design.  
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For computation of feedback gain K it is necessary to select the performance index 
weighting matrix Q and R as discussed in chapter 1.2. Then we can compute the optimal 
gain K.  
First will we discuss the choice of Q. It is desired to obtain good stability of the dutch 
mode, so that  and should be weighted in the performance Index (PI) by factors q2α 2β dr. 
To obtain good stability of short period mode, which in closed-loop will consist primarily 
of p and q, we may weight  and  in the PI by factors q2p 2q sp. The roll mode consists of 
r, so that 2r  should be weighted in the PI by factors qr, to have good stability criteria, 
then we have: 
 

[ ]rspspdrdr qqqqqdiag=Q  
 
As far as the R matrix goes, it is generally satisfied to select R as: 

 
IR ρ=  

where I is the identity matrix and ρ  a scalar design parameter. After few trials, we 
obtained a good result using 
 























20000
01000
001000
000200
000020

                    
                     
                  
                   
                    

= Q



















1.0000
01.000
001.00
0001.0

               
               
               
               

=R 

                                

 

 
For this selection, the solution for the symmetric matrix P1 obtained from the continuous-
time Riccati equation, the optimal feedback gain K1 was:  
 

0QPBRBPAPPA =+−+ −
1

1
1111

T
uu

T  
 























0.60310.00020.0197-1.0139-0.0005
0.00020.14420.0000-0.00060.3134
0.0197-0.0000-0.16000.04290.0001-
1.0139- 0.00060.04298.86410.0094
0.00050.31340.0001-0.00944.8288

= P1  
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1
1

1 PBRK T
u

−=  
 

 K1



















=

5.9053-0.00322.564712.12810.0242
0.97472.1080-6.72562.0937-8.1749-
0.9798- 2.1072-6.7251-2.06258.1697-

0.00282.40530.0003-0.01035.5136

 

 
Now we can check the closed-loop stability again with the stable closed-loop 
matrix . The closed-loop dynamic matrix computed as below, 1KBAA ucl −=

 

   = Acl























5.9711-0.00301.6040-12.57400.0228
0.00329.8503-0.0049-0.0889-27.3078-
1.10800.0013-61.8726-10.9165-0.0142-
0.7734-0.0001-0.30800.5154-0.0008-
0.00190.59620.0010-0.00611.9967-

 

 
We check the closed-loop stability again by the system matrix Acl. Then we get the 
closed-loop systems poles, damping ratio and natural frequency using the MATLAB 
command “damp”: 
 
States, x(t) Eigenvalues Damping (ζ) Natural Frequency (wn) 

in (rad/s) 
Angle of attack, α  
(dutch mode) 

-0.989 + 1.40i 0.5760 1.72 

Angle of sideslip, β  
(dutch mode) 

-0.989 - 1.40i 0.5760 1.72 

Roll angular rate, p  
(short period mode) 

-1.81  + 0.3440i 0.9820 1.84 

Pitch angular rate,  
(short mode) 

q -1.81  - 0.3440i 0.9820 1.84 

Yaw angular rate, r  -2.34 1.00 2.34 
    
It seems that all the poles are in the stability region and is moved further to left-hand side 
of the S-plane with the slowest time constant, τ = 1/2.34 = 0.42 sec. 
 

Page 141 of 155 



Flight Control Allocation using Optimization Based Linear and Quadratic programming  
P7 - project fall 2004 
Aalborg Universitet Esbjerg 

9.1.9. Simulation results for Design 1 

 
Figure 110: Output response of angle of attack, side-slip and roll rate 

We set the reference input, angle of attack to 5 degrees, side-slip to 10 deg, and roll to 
rate 20 deg/sec. Step input occurs start at t=2 sec. and it should be settled at the desired 
commanded input at steady state. The Figure 110 depicted the output response of these 
three variables. As it can be seen in Figure 110, the angle of attack and roll rate settled at 
5 degrees and 20 degrees/sec after 1 second, respectively. Side-slip response settled at 10 
after 1.5 seconds.   

9.1.10. Design 2 
The design model used here is 
 

vBAxuBAxx vu +=+=�   
Buv =  

 
As described in section 1.2.5 the matrix Bu was factorized into two matrices Bv and B. 
where B . Matrix B contains the last three rows of BBBvu =

Buv =
u. The virtual control 

input, , contains the angular acceleration in roll, pitch, and yaw produced by  the 
control surfaces. 
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





















100
010
001
000
000

          
          
          
          
          

 = Bv   

















8823028050280500
00240273512735165321
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.    .   -.   -.
.    .    .   -         

= B  

 
The same weighting matrices Q2=Q1 and R2=R1 as in design 1 is used in this example. 
Then the solution for the symmetric matrix P2 from continuous-time Riccati equation and 
optimal feedback gain K2 is: 
 

0PBRBPQAPPA =−++ −
2

1
22222

T
vv

T  
 























=

0.67910.00000.0212- 1.2915-0.0009-
0.00000.17590.0000-0.00140.5257
0.0212-0.0000-0.15990.03970.0000
1.2915-0.00140.03979.42310.0142
0.0009-0.52570.00000.01425.7451

2P  

 

2
1

22 PBRK T
v

−=  
 
















=

6.12930.0036- 1.509611.6616- 0.0194-
0.0138-10.51530.00550.113831.4175
0.8381-0.002460.87241.38230.0192

 K 2  

 
Nbar can be calculated by equation ( )[ ] 11 −−−= vv BAKBCN , and becomes a 3×3 square 
matrix. 
 
















=

3.057513.1432- 0.0214-
0.00230.0359- 34.9179

61.535512.07290.0206
Nbar  

9.1.11. Simulations result for design 2 
In this simulation will we test the output variables settled at a desired position in steady 
state. In the second test, will we analyse how good the control surfaces produce the 
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desired moment. In this test we will not include the constraints. In the final test we will 
include constraints and consider the control surfaces according to the boundaries, when 
they produce the desired moment.Design 2 considers the system without constraints 

 
Figure 111: Output response for design 2 

As in design 1, the reference input, angle of attack is set to 5 degrees, sideslip to 10 
degrees, and roll rate to 20 deg/sec. The step input is given at t=2 sec. Figure 111 shows 
the response of the angle of attack, sideslip, and roll rate. As it can be seen as in Figure 
111 the angle of attack and roll rate settles at 5 degrees and 20 deg/sec after 1 second. 
There is small tracking error in angle of attack. Sideslip settled at 10 degrees after 1.5 
seconds. 
 
From these two design approaches we can conclude that design 1, without control 
allocator and design 2, with control allocator, gives exactly same response.  
 
Control inputs 
The following four figures illustrate the control surfaces deflection for the aircraft 
response. In this test constraints are not included. However, it can be clearly seen from 
the figures that the control surfaces exceeds the maximum and minimum constraints in 
some cases. 
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Figure 112: the control surfaces deflections 

Another interesting point here is that have the control surfaces produced the desired 
moment v. It can be confirmed by taking the produced moment by the control surfaces 
multiply by the control effectiveness matrix B, which means Buv = . 
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Figure 113: The desired moment v 

 
Figure 114: Achieved moment v 

Figure 114 shows the desired moment and the achieved moment. There is no difference 
between these two figures. This means that the control surfaces has achieved the desired 
moment. As mentioned before the control surfaces exceed their maximum and minimum 
boundaries. Therefore is this an inadequate method. 
 
In the following four figures illustrates the control surfaces deflection for aircraft 
response. In this test constraints included and cascaded generalized psedoinverse 
algorithm was used. Anyway, it can be clearly seen from the figures the control surfaces 
are into their maximum and minimum constraints. 
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Figure 115: control surfaces deflections after included constraints 

                
Figure 116: Desired moment v 
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Figure 117: Achived moment v 

Figure 117 illustrate the desired moment and the achieved moment for design 2. The 
figures are almost same. There are only small differences between these two figures.  
 
Output response for this design is depicted below: 
 

 
Figure 118: output response for design 2 after constrints in allocator 

Using the allocation algorithm in our LQR design reveals that the system has almost the 
same response, while also being more real-world applicable since the position constraints 
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is considered. The settling times for all three variables are very close to the settling times 
in the non-constrained case. 

9.2. Summery 
LQR design for flight control is a powerful tool. LQR on its own can distribute the 
control effect to the redundant control surfaces of the aircraft but it lacks the possibility of 
regarding constraints in design 1. Using design 2 it is possible to include a control 
allocation algorithm into the LQR designs, thereby making it adhere to the constraints of 
the system’s actuators. The choice of algorithm depends on the goal of the controller, and 
the three tested algorithms have their different weaknesses and strengths. In order to 
choose the optimal algorithm for LQR design 2 the weaknesses and strengths of the 
algorithms must be considered. 
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10. Appendix A. 
Lemma 1. The least squares problem 
 

Min   xxx T=2  
           
Subject to  yAx =              

  
Where  
 

( ) 1−+ = TT AAAA  
 
is the pseudoinverse of . A

10.1. Symmetric matrices    

A symmetric matrix such as matrix A given by AAT =  if this is true it is necessarily 
square. Its main diagonal entries are arbitrary, but its other entries occur in pairs- on 
opposite sides of the main diagonal. 

10.1.1. Example: 
     Symmetric matrices, 
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
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AAT =         is symmetric 
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



−
−

−
=

780
851
010

TB

 
BBT =         is symmetric 

 
For example, XX T is called Quadratic forms. 
 
A quadratic form on nR  function Z defined on nR  whose value at a vector x in nR  can 
be computed by and expressed of the form, ( )X = AXXZ T , where A is an  
symmetric matrix. Matrix A is then called the “matrix of the quadratic form”. 

nn ×

 
The simplest example of a nonzero quadratic form is 
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( )2XIXXxZ T == .   

10.1.2.  Example1. 
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Compute AXX T  for the following matrices. 
 

a)                      b)            
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b)   There are two -2 entries in A. 
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                    = ( ) ( )212211 7223 xxxxxx +−+−  
                    = 3  2

21221
2
1 722 xxxxxx +−−

                    = 3  2
221

2
1 74 xxxx +−

 
The presence of   in the quadratic form in example 214 xx− ( )b1  is due to the -2 entries off 
the diagonal matrix. In Example ( )a1  has no  cross-product term. 21xx

10.1.3. Example 2  

For X in let  ,3R
 

( ) .8235 3221
2
3

2
2

2
1 xxxxxxxxQ +−++=  

 
then we will write this in quadratic form as:  
 

.AXX T  
 
Solution: 
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The coefficients  go on the diagonal of A. To make A symmetric, the 
coefficient of  for 

2
3

2
2

2
1 ,, xxx

jxix ji  must split evenly between the≠ ( )ji, , and ( )ij,  entries in A. 
The coefficient of  is 0. It is readily checked that: 31 xx
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10.1.4. Example 3 
Let  
 

( ) .58 2
221

2
1 xxxxXQ −−=  

 
Compute the value of Q  for (X )
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
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=

1
3

X , and  



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
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Solution: 
 

( ) ( ) ( )( ) ( ) 281513831,3 22 =−−−−=−Q  
( ) ( )( ) ( ) 162522822,2 22 =−−−−=−Q  
( ) ( ) ( )( ) ( ) .203531813,1 22 −=−−−−=−Q  
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11. Aircraft nomenclature 
State variables 
Symbol: unit Definition 
α  rad angle of attack 
β  rad angle of sideslip 
γ  rad flight path angle 
u m/s longitudinal velocity 
v m/s lateral velocity 
w m/s normal velocity 
VT m/s total velocity 
p rad/s roll rate 
q rad/s pitch rate 
r rad/s yaw rate 
pN m position north 
pE m position east 
h m altitude 
φ  rad roll angle 
θ  rad pitch angle 
ψ  rad yaw angle 
nz g load factor, normal accel. 
nzp g pilot load factor 

Coordinate frames 
Symbol Defintion 

( )iiii zyxe ˆ,ˆ,ˆ=  inertial, Earth-fixed frame 
( )bbbb zyxe ˆ,ˆ,ˆ=  body-fixed frame 
( )wwww zyxe ˆ,ˆ,ˆ=  wind-axes frame 

Control surface deflections 
Symbol unit Definition 

rcδ  rad right canard 

lcδ  rad left canard 

roeδ  rad right outer elevon 

rieδ  rad right inner elevon 

loeδ  rad left outer elevon 

lieδ  rad left inner eleveon 

rδ  rad rudder 

Forces and moments 
Symbol unit Definition 
g m/s2 gravitational acceleration 
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FT N engine thrust force 

DSCqD =  N drag force 

lSCqL =  N lift force 

YSCqY =  N side force 

lSbCqL =  Nm rolling moment 

mCcSqM =  Nm pitching moment 

nSbCqN =  Nm yawing moment 

Aircraft data 
Symbol unit Definition 
m kg aircraft mass 










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





−

−
=

zxz

y

xzx

II
I

II
I

0
00

0
 

 
 
kgm2 

 
 
aircraft inertial matrix 

S m2 wing platform area 
b m wing span 
c  m mean aerodynamic chord 
zTP m zb-position of engine thrust point 
xP m xb-position of the pilot 

Atmosphere 
Symbol  unit Definition 
p kg/m3 air density 
q  N/m2 dynamic pressure 
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