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I.  INTRODUCTION

Multiple-model (MM) estimation, as a powerful
approach to adaptive estimation, has received a
great deal of attention in recent years due to its
unique power to handle problems with both structural
and parametric uncertainties and/or changes, and
to decompose a complex problem into simpler
subproblems.

In the MM estimation, a set of models is designed
to represent the possible system behavior patterns
or structures, called system modes, and the overall
estimate is obtained by a certain combination of the
estimates from the filters running in parallel based
on the individual models that match (or represent)
particular system modes. This approach was initiated
in [23]. The early work did not consider jumps in
system modes and led to the nonswitching MM
algorithms. In the more recent and more realistic
switching MM estimators, first proposed in [1], the
jumping of system modes is modeled by switching
among models. Most recently, an exact discrete-time
MM estimator was developed [10] with a finite but
exponentially increasing dimension.

Most existing MM estimators have a fixed
structure (FSMM) in the sense that they use a fixed
set of models at all times. They have found great
success in solving many state estimation problems
compounded with structural or parametric uncertainty
in many areas over the past three decades, in
particular target tracking (see [4, 5, 14] and the long
lists of references therein). Existing MM estimation
techniques with a fixed structure have, however,
arrived at such a stage that great improvement can
no longer be expected within their fixed structure,
especially for problems involving many structural
modes.

The limitation of MM estimation with a fixed
structure has been more or less perceived for some
time. Ad hoc remedies were proposed for particular
applications but few theoretical attempts were made to
break away from the fixed structure. The investigation
of the moving-bank MM estimators in [24] was
an early meaningful effort to go beyond the fixed
structure. A serious attempt was initiated in {17]
and continued in [16, 18] to lay down a theoretical
foundation for MM estimation without the limitation
of the fixed structure. Specifically, MM estimation
with a variable structure (VSMM) was proposed
in [16-18] to overcome limitations of the FSMM
estimators and to increase the cost-effectiveness,
in contrast to the existing effort of developing
better implementable FSMM estimators. Theoretical
results fundamental to the MM estimation with a
variable structure were also presented in [16, 18],
which include the optimal VSMM estimator, a
graph-theoretic formulation of MM estimators, and
a criterion for model-set selection.
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As manifested by the great impact of the
monumental success of the Interacting Multiple-Model
(IMM) estimator [6] on the application of MM
estimation techniques, it is fair to say that no matter
how promising VSMM estimation may appear, its
ultimate success relies on the development of good
practical VSMM algorithms that can be readily
implemented and are general enough to be applicable
to a large class of hybrid estimation problems (i.e.,
those with both continuous and discrete uncertainties)
[14]. If succeeded, such development will be a
new milestone in the history of MM estimation.

A primary value of the theoretical work on the
variable structure is to facilitate this development.
Development and design of VSMM algorithms have
received increasing attention recently due to their great
practical significance. Toward this end, three practical
VSMM schemes were outlined in Part I of this series
[18] that are general enough to be applicable to

many problems. Several ad hoc designs for VSMM
estimation were reported in [11-13, 22, 24-25] for the
particular applications considered.

In Part IT of this series [15], fairly satisfactory
theoretical results concerning several important
problems in VSMM estimation were presented. They
include an efficient and near optimal estimation cycle
for VSMM estimation, an efficient and optimal fusion
formula, and optimal sequential tests for model-set
termination. All these results are essential for the
development of the new VSMM algorithms presented
here and in the subsequent parts.

This work presents a VSMM estimator, called
model-group switching (MGS) algorithm, which
is the first VSMM algorithm that is generally
applicable to many hybrid estimation problems and
is easily implementable. It belongs to one of the
three VSMM schemes outlined in [16, 18]—the
digraph switching scheme. Its development relies
heavily on the theoretical results of Part IT [5]. In
this estimator, a set of model groups is first set up,
each representing (or covering) a collection or cluster
of closely related system modes (behavior patterns
or structures). The set of models is made adaptive
by switching among these groups to follow possible
jumps (across groups) of the system mode in such
a way that balances well between the needs to have
the smallest delay in correct switching and to have
a minimum false switching rate. Issues associated
with such an approach, such as the initialization of
the newly activated model group and the termination
of a model group, are solved fairly satisfactorily.
Simulation results presented in Part IV [21] for
target tracking as well as in this paper for fault
detection and identification indicate that the MGS
algorithm is substantially more cost-effective than the
fixed-structure IMM (FSIMM) estimator, especially
when the total model-set is large.
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The remaining parts of the paper are organized
as follows. Section II describes briefly the general
problem of VSMM estimation. The MGS estimation
algorithm is presented in Section III. Section IV
extends the MGS algorithm to overcome some of
its potential weaknesses. A simple example of fault
detection and identification is simulated in Section V
to demonstrate the superiority of the MGS algorithm
to the FSIMM algorithm. The last section provides
concluding remarks.

II.  VARIABLE-STRUCTURE MM ESTIMATION

Consider the following, one of the simplest
stochastic hybrid systems, known as the “jump linear
systems,”

Xee1 = Bl + GrlSiy )W (Se41) )]
e = Hy (s )x, + v (5p) 2)

where x is the (conventional) base state vector; 7 is
the noisy measurement vector; s, is the modal state
or system mode (system mode index) at time k, which
denotes the mode in effect during the sampling period
ending at 7,; w and v are the mode-dependent process
and measurement noise sequences, respectively.
The system mode sequence (s,) is assumed to be
a first-order homogeneous Markov chain with the
following transition probabilities

P{mp, |m}=m; ¥ m,m €S 3)
where the event that mode m; is in effect at time k is
denoted as

A
mj, ={s, = mj}.

S is the set of all possible system modes.

In the MM approach, it is assumed that the
nonlinear system (1)—(2) at any given time can be
adequately approximated by one or (a combination of)
more models in a set M consisting of the following
conventional linear models:

Y =Flx +Glwl ¥V myeM )

G =Hlx,+v] ¥V myeM (5

and a jump between the system modes can be
modeled by switching from one model to another,
governed by, say, the Markov law (3). Here
superscript j denotes quantities pertaining to model
m;. It is thus clear that the MM approach fits well into
problems that can be characterized by structural as
well as parametric uncertainties and/or changes.

The state estimate and its associated covariance
matrix may be calculated in an MM estimator using
the minimum mean square error (MMSE) criterion as
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follows:

Hp = Z%{,kf’{H;f [} (6)
-

P = ) (G = 50y — 5y)' + B IP{H] | 2
j
N

where %k is the optimal estimate at time k under

the hypothesis ij é{model sequence j through time
k matches the sequence of the true system modes
through time k}, and ijik is the associated covariance;
zF = (z.) .« is the measurement sequence through
time k, with z, denoting the initial information.

The summations in (6)—(7) of a full-hypothesis-tree
(FHT) MM estimator are over all possible hypotheses
(model sequences). Due to the exponential increase in
computation and memory of the FHT estimator, one
of the following approximate hypothesis management
techniques is usually used in practice to limit the
growth in the number of hypotheses: 1) elimination
of the hypotheses unlikely to be true, which yields a
partial-hypothesis-tree (PHT) algorithm, 2) merging
of the hypotheses having a common history, which
yields a merged-hypothesis-tree (MHT) algorithm,
and 3) a combination of hypothesis elimination and
merging, which yields a reduced-hypothesis-tree
(RHT) algorithm.

Most existing MM algorithms have a fixed
structure (FSMM) in the sense that the model-set M
in (4)-(5) is assumed time invariant, even though the
models themselves may be time varying or adaptive.
A VSMM estimator is one with a time-varying set M
of models.

The FSMM approach has certain inherent
limitations, which stem from its fundamental
assumption that the system mode at any time can
be represented (with a sufficient accuracy) by one
of a fixed set of models that can be determined
before measurements are received in real time, and
its inability to incorporate certain types of a priori
information.

The FSMM estimators perform reasonably well
for problems that can be handled with a small set of
models. When they are applied to solve real-world
problems, however, it is often the case that use of only
a few models is not good enough. The computational
complexity increases considerably as the number of
models increases. More importantly, as shown in [16,
18], the use of more models does not necessarily
improve the performance; in fact, the performance
will deteriorate if too many models are used due to
the excessive “competition” from the “unnecessary”
(excess) models. Thus one may face a dilemma: more
models have to be used to improve the accuracy,
but the use of too many models will degrade the
performance, let alone the increase in computation.
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To find a way out of this dilemma, [17, 18] proposed
the use of a variable structure in MM estimation. ‘
Not only can a VSMM estimator take advantage of
the real-time system mode information contained

in the measurement sequence, but it also is able

to incorporate certain a priori information of the
system mode that would be difficult or impossible
for an FSMM estimator to include. An example of
such a priori information is that the system mode is
unlikely (but not impossible) to be in a certain subset
of the total mode set (mode space) for the particular
application under consideration. Another example is
the a priori knowledge of the magnitude of jump in
system mode.

As shown in Part I [18], a key difference between
the optimal VSMM and FSMM estimators is that
the former is a probabilistically weighted sum
of all estimators based on admissible mode-set
sequences,’ rather than of all estimators based on
possible mode sequences as in the latter. This optimal
VSMM estimator provides a theoretical basis for the
adaptation of the model-set. It also suggests the use
of variable structures as a direction of improving
performance, in contrast to the existing effort of
developing better implementable FSMM estimators.

Although the probabilistically weighted sum
of all estimators based on the admissible mode-set
sequences, as required by the optimal VSMM
estimator, is computationally infeasible, a practical
VSMM estimator may take advantage of its suggested
two-level hierarchical structure: multiple model-set
sequences at the higher level and multiple model
sequences at the lower level. For many applications,
the higher level with multiple model-set sequences
should be replaced, due to computational constraints,
with a single model-set sequence (most likely along
with a proper merging of model-set sequences)
obtained by model-set adaptation, which is hopefully
one of the best sequences. This is the recursive
adaptive model-set (RAMS) approach.

The RAMS approach has two functional
components: model-set adaptation and
model-sequence conditioned estimation. Part II [15]
deals with both components in a general setting.

A fairly satisfactory solution to the problem of the
model-sequence conditioned estimation was presented
there. For the model-set adaptation, however, it seems
that no solution may be found that is complete and
generally applicable. Nevertheless, the theoretical
results presented in [15] are important in that they
provide at least general principles and guidelines. In
fact, a major component of the algorithm proposed
here is an application of some relevant theoretical
results given there.

1A mode-set sequence is admissible if it is one that may contain the
true mode sequence as its element.
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Foreseeing the difficulty in obtaining a general
solution to model-set adaptation, [18] proposed
and outlined the following three practical VSMM
schemes: active digraph (active model-set), digraph
switching (model-set switching), and adaptive grid
schemes.

The active model-set scheme is quite general
and powerful. Its basic idea is to use a subset of
the total model-set as the “active” set for any given
time. A simple implementation is as follows. All
models in the current active set can be classified into
three categories: unlikely, significant, and principal.
As such, a reasonable set of rules for model-set
adaptation is: 1) discard the unlikely ones; 2) keep the
significant ones; and 3) activate the models adjacent
Sfrom the principal ones. A model is adjacent from
another one if it is allowed to be switched from the
latter model. By an appropriate design at any given
time at most a couple of models may be principal, but
the number of unlikely models could be very large.
This indicates that the active model-set is usually
much smaller than the total model-set and, therefore,
it may lead to a substantial saving in computation and
possibly improvement in performance. Part V [20]
of this series presents the only algorithm available in
this category. It was developed following the ideas
given in [17, 18] and utilizing the theoretical results
obtained in [15].

In the adaptive grid scheme, the space of the
parameters that characterize the possible system
modes is quantized (i.e., represented by a set of
models) unevenly and adaptively. A coarse grid is set
up initially and then the grid is adjusted recursively
according to an adaptation scheme based possibly
on the current estimates, model probabilities, model
likelihoods, and/or measurement residuals. This
approach is particularly advantageous in cases where
the set of possible system modes is large. In this
scheme, the total model-set need not (and usually
cannot) be specified in advance. Designs of such
algorithms were reported in [9, 11-13, 24]. While
following the same idea of making grid adaptive,
different adaptation rules were proposed in different
designs for applications characterized by different
parameter regions. While valuable, they have a
common weakness-—they are more or less ad hoc and
are not generally applicable.

The simple and efficient model-ser switching
scheme is the topic of this work. The designs
presented in [8, 22, 13] also belong to this class.

In [22], a so-called selected filter IMM design was
proposed. Simulation results showed that the proposed
design with a substantial reduction in computation
yields almost as good performance as that of the
FSIMM algorithm for a maneuvering target tracking
problem, similar to the one considered in Part IV
[21]. In [13], a digraph-switching (as well as an
adaptive-grid) IMM design for a maneuvering target
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tracking problem is developed based on coordinated
turn models. It was shown that great improvement in
performance as well as computation can be achieved
by the proposed design relative to the FSIMM
algorithm. All these designs are, however, ad hoc and
thus valid only for the problems considered in that no
general techniques were proposed for, e.g., when and
how a model subset should be switched to another one
and how new models should be initialized.

An ad hoc layered IMM architecture was proposed
in [8] for maneuvering target tracking in the presence
of glint noise under a fundamental assumption
that model-sets are independent. It is theoretically
equivalent to the FSIMM algorithm but may have a
reduced computational complexity. This algorithm
belongs to the soft switching of model subsets, to
be discussed in the next section. A more general and
effective layered IMM algorithm was developed in
[19], which does not require the assumption that the
layers are independent as made in [8] but is not really
of a variable structure.

Compared with the above available results
(some of which were developed simultaneously as
the algorithm proposed here), the superiority and
difference of our algorithm can be summarized as
follows.

1) It is the first algorithm of variable structure
that is generally applicable to a large class of hybrid
estimation problems, rather than being ad hoc for
special problems considered.

2) The switching between model subsets is
done in two stages. A candidate subset deemed very
probable is activated without forcing the termination
of the one currently in effect. The algorithm then
runs their union until sufficient information is
gathered to terminate one of them. This two-stage
switching provides a good strategy for completing
the conflicting tasks of simultaneously minimizing
the chance of false switching and the delay in
correct switching. The only cost paid for. this is an
insignificant increase in computation,

3) The initialization of the newly activated model
subset is done automatically using the variable
structure IMM (VSIMM) recursion of Part II [15].
This recursion assigns the probabilities to the newly
activated models and initializes the filters based on
these models in a natural, systematic, and near optimal
manner. It also eliminates the need to design the
transition probabilities for each model-subset.

4) Model-subset termination is done based on a
combination of the sequential mode-set probability
ratio test and the sequential model-set likelihood
ratio test of Part II, which are optimal in the sense
of having the quickest decision subject to prespecified
lower bounds on type I and type II error probabilities.

5) The incorporation of the optimal fusion rule of
Part II makes the proposed algorithm computationally
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even more efficient when using the estimates based on
the newly activated models.

With these techniques that are generally applicable,
what is proposed here is an algorithm, rather than
ideas of such an algorithm, as was done in [17, 18],
or ad hoc designs valid only for particular problems.

. MODEL-GROUP SWITCHING MM ESTIMATOR

The model-set used for an MM estimator can
be made adaptive by switching among a number of
predetermined model groups according to certain
rules. This is the basic idea of the model-group
switching (MGS) scheme. In this scheme, a
predetermined cover or partition of the total model-set
is designed first. This cover or partition consists
of model groups representing certain collections
(clusters) of closely related system modes. Since a
model “group” implies that its member models are
(closely) connected in some sense, “model-group
switching” is a more proper name for this scheme
than “model-set (or model-subset) switching.”? A
partition consists of mutually exclusive (disjoint)
and collectively exhaustive model groups (i.e., any
model in the total set is in one and only one of these
groups). A cover has its model groups collectively
exhaustive but not necessarily disjoint (some models
might belong to more than one group).

Two types of model-group switching are of major
interest: hard switching and soft switching. They both
have the following two-level hierarchical structure: a
higher level consisting of model groups and a lower
level consisting of models within a group.

The soft MGS scheme is based on the assumption
that each of the model groups at any time has a
certain probability of having a member model
matching (closely) the system mode currently in
effect and the overall estimate is the probabilistically
weighted sum of the MM estimators based on these
model groups. Assuming the sequence of the model
group in effect is a Markov or semi-Markov process,
it is possible to design the transition probability matrix
for this process and to apply the FSMM estimator to
it. This can be referred to as the soft switching of the
model group, just like the soft model switching in a
decision-free MM estimator [14]. In this scheme, the
FSMM approach with soft decision is applied in two
levels: model (lower) level and model group (higher)
level. Since probabilistic weights for the model
groups are used in this scheme, the model groups
have to be disjoint and thus a partition (instead of a
cover) has to be used. In the strict sense of variable
structure, this scheme is not really one with MGS, or
not even a VSMM algorithm since it is nothing but
a probabilistically weighted sum of a fixed number

2An even more appropriate name is “digraph switching,” as
described in [18], which is unlikely to become popular since it uses
graph-theoretic concepts, unfamiliar for practitioners.
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of fixed-structure estimators, each based on a model
group. In other words, this soft switching algorithm is
a degenerated VSMM (or disguised fixed-structure)
scheme. A proper name for it seems “multiple
model-group algorithm” rather than “model-group
soft switching algorithm.” Note also that in order to
use soft switching, all model groups have to be run
at all times and thus its computational complexity is
comparable with that of the corresponding FSMM
estimator based on the total model-set.

A. Hard Switching of Model Groups

In the hard switching of model groups, the
switching is done according to a set of certain “hard”
rules (i.e., by a hard decision). As such, only one
model group has to be run at any time and thus it
may provide a substantial saving in computation over
the FSMM estimator based on the total model-set.
The adjacent model groups should have common .
models since these models are valuable for the design
of adaptation logics and the initialization of newly
activated filters. It is thus clear that a hard switching
MGS algorithm is in general based on a cover rather
than a partition of the total model-set.

Following the idea proposed in Part IT [15], it is
advantageous to decompose model-set adaptation
(switching) into two separate tasks: model-set
activation and termination. As such, MGS is
completed in two stages: activation and termination.
The model group that is deemed likely to be a
good candidate at the time is activated first without
forcing the termination of the one currently in effect.
The algorithm then runs their union until sufficient
information is gathered to terminate one of them.
The advantage of such a two-stage switching is
clear: it can reduce the chance of false switching
dramatically at the cost of an insignificant increase
in computation, rather than a significant increase in
the delay in correct switching, which would be the
case for a single-stage switching algorithm. The use
of model-group activation and termination, rather than
a single-stage switching, is a key idea of the MGS
algorithm. It becomes clear that part of the superiority
of the proposed MGS algorithm comes from this
decomposition.

General speaking, one cycle of an MGS algorithm
consists of the following conceptual steps.

S1. Model-group adaptation. Decide whether a
candidate model group should be activated. If it is
activated, check if it should be maintained for the
next time cycle. The model group used in the previous
cycle should be retained for the current cycle but it
may be terminated for the next cycle by a logic.

~ S2. Initialization of newly activated models/filters.
If a candidate model group is activated, then assign
proper initial probabilities to the newly activated
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Initialization

MMO[My]

Activate a group? My = My —
Output
M, = newly activated group
Mo = My, My=M,UM,
Model probability (re)assignment
and filter initialization
MMO[M;]
Output
My =M, —
M1 =M, —
ki=k+1

Fig. 1. Introductory flowchart of MGS algorithm.
models and determine the initial estimates and error
covariances of the filters based on these models.

S3. MM estimation. Make MM estimate for the
current cycle based on all the models in the selected
group(s).

Step 3 is identical to a cycle of a recursive FSMM
estimator. Steps 1 and 2 are unique to the MGS
algorithm and thus are investigated in the sequel.
Steps 2 and 3 are actually integrated in our MGS
algorithm by using the VSIMM recursion of [15].

It seems virtually impossible to really derive
rigorously any nonoptimal algorithm with a hard
decision, although its properties and performance may
be derived rigorously. Fig. 1 gives an introductory
flowchart of the MGS algorithm proposed here.

In the flowchart, MMO [M,] stands for one cycle
of an MM estimator of zero memory depth based
on model group M, in effect at time k. An MM
estimator is of a zero memory depth if it calculates
all its quantities in the current time cycle using only
the quantities obtained in the most recent cycle as

well as a priori information. Notable examples of
the zero-memory-depth MM estimators include
the IMM and GPB1 (the first-order generalized
pseudo-Bayesian) algorithms. Even though MMO is
used in the flowchart, the algorithm actually works for
other MM estimators as well (with minor changes).
Note that once a model group is activated, it is
used starting right at that time, rather than from the
next time on (i.e., there is no time delay here). This
proves to be very important in reducing the peak
estimation error during mode transitions. This is
done in such a way that the computation of the old
model group (M, in the figure) is not wasted due to
the use of an optimal fusion rule, to be presented in
Subsection IIIE.
In this paper, M, stands for either the model-set
in effect at time k or the event {s, € M} for some
set M, which should be clear from the context; and
the discrete time is denoted exclusively by either k
or k and conversely, k and « are used exclusively
for discrete time. For example, M; stands for the jth
model-set, rather than the model-set in effect at time j.
Each of the functional steps in the proposed MGS
algorithm is discussed below.

B. Cover of Total Set

In the MGS algorithm, a cover is set up first.
This is closely related to the so-called set covering
problem, for which a solution can be obtained by
solving an integer linear programming problem [2,
71. The establishment of this cover is best integrated
into the model-set design process. For VSMM
estimation, however, such a cover can be obtained in
most cases from the physical meaning of the system
modes without too much difficulty. The resultant
family of model groups then act as the range of the
time-varying model group of the MGS algorithm.
Each group in this family is made up of a number of
models in the total set that are “close” to each other
in, e.g., an information distance measure [3] (such
as Kullback information) or some other measure of
similarity as in cluster analysis in statistics. It appears
that any effective closeness measure has to capture
the essence of the following: two models should be
deemed close if the state estimates from the filters
based on them are “close” given the system mode in
effect and the same measurement sequences (see Part
II [15]). For many practical problems, the meaning of
closeness is clear, as illustrated in Part IV.

C.  Model-Group Adaptation

With the decomposition of model-group switching
into activation and termination, the decision for
model-group adaptation includes the following.

a) Decision for candidate model-group activation,
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b) Decision for the termination of the newly
activated candidate model group M,

¢) Decision for the termination of the model group
M, currently in effect.

1) Model-Group Activation: In general, the
decision (logic) for model-group activation should
consist of a set of rules based on both a priori and
a posteriori information about the current system
mode in effect. The a priori mode information is
incorporated mostly in the topology of the total
model-set (more rigorously, digraph) and the
corresponding transition probability matrix, even
though they are also possible to be made time varying
or adaptive. Use of heuristic rules or tricks can also be
justified as utilizing the a priori information, which is
problem dependent. The a posteriori mode information
comes only from the measurement sequence and is
most compactly summarized (but not in full) in the
sequences of model probabilities and likelihoods
(since a mode may actually be different from every
model). As such, it can be expected that a more
or less general logic should rely primarily on the
model probabilities and/or likelihoods, based on the
model-set topology and possibly with the transition
probabilities taken into account.

Although some useful theoretical results were
presented in Part IT [15], the actual candidate group
activation logic should be problem dependent. How
to obtain it is a design task. Its design relies on the
topology of the total model-set, the particular cover
used, the physical meaning of the models, desired
performance versus computational constraints, etc.
This design should be integrated with the selection
of the thresholds for the model-group termination. A
detailed discussion of this logic is given in Part I'V.

2) Model-Group Termination: Part II [15]
proposed the sequential model-set likelihood ratio
test and the sequential mode-set probability ratio
test for model-subset termination and showed their
optimality. Based on these results, the following tests
are proposed for the termination of a candidate or a
current model group, which are generally applicable,
simple, and fairly satisfactory.

Candidate model-group termination: The candidate
model group M, is terminated for the next time (k + 1)
while competing with the current model group M,
if and only if either of the following two conditions
(criteria) is satisfied

M,
- ” 4
probability condition: ! fuo <t
oy
k LM!
likelihood condition: 1 2 <4
L.°
r=ko .

where k, is the time at which the candidate model
group is activated. In the above, the model-group
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probability ;M is the sum of all probabilities of the
models in group M, calculated based on M, UM,
given by

A a-+o n a
NkM' =P{Mkl | M 2} = Z P{my | My .2,
my €M
l=a or o

where M} (or M@*°, respectively) is the event that one
of the models in M, (or M, UM,, respectively) matches
the system mode in effect at k:

M| = {s, € M}
Mka+0 = {sk S (Ma UMO)}.

The (marginal) model-group likelihood LM at time &
is the probabilistically weighted sum of all (marginal)
likelihoods at « of the models in group M, given by,
forl=aoro,

L2 plz, | ML)

= > pla, [ miM) 2" P {m | M2

ma €M
P mn’Ml Ma+o, k—1
= Z p[znlm’;,z"‘l] { a lm| a-fo h‘Z—l }
o P{MI| Mz, 2T}
~n|M,
= Z Lzu:linl—l
my €My

where L” is the likelihood of model m,, at time &,
defined by
L; = plz, | mp,2*']

[Lzll;y_’ | is the predicted probability of model m,, at time

k based on group M;:

M,

A -
Hope—1 =P{my |Mkl’zk 1}

— 1 on
= 23 P10
klk—1

vV m,eM,

[}, is the predicted probability of model m, at time
k based on the total model-set M:

N A _ -
Hielk—1 ZP{mZ|Zk 1} =P{m1'cl|Mk,Zk 1}

= Z Tan,LLZLI

My €My
AM, . . . ~n|M; g '
and Hyje—y 18 @ normalization factor for Hji—1 within
M, given explicitly by
~M A I k=17 _ A
:ulc[;«—l =P{M, |M,z"" } = Z NZ|k—1-

myEM;

Note that if the IMM algorithm is used as the
MMO cycle, then ﬁZVc—l has been obtained in the IMM

cycle. See Part II [15] for details.
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The thresholds 7 and ¢ are design parameters,
which in most cases should be chosen (slightly)
smaller than unity. They may be chosen to be equal
in many cases.

Current model-group termination: The current
model-group M, is terminated for the next time (k + 1)
while competing with the candidate model-group M,
if and only if both of the following two conditions
(criteria) are satisfied

probability condition:

M,
likelihood condition: H L

L
10 > 1.
k=ky F

The thresholds tg and t% are design parameters,
which in most cases should be chosen (slightly)
greater than unity. They may be chosen to be equal
in many cases.

Based on theoretical results of Part IT [15], the
two separate tasks of termination of the candidate and
current model groups can be combined by using the
Sequential Model-Set Likelihood Ratio Test and/or the
Sequential Mode-Set Probability Ratio Test, which
is optimal in the sense of most efficient use of the
information in the observations with guaranteed
expected type I and type II error (false alarm and
miss) probabilities.

The rationale for the use of “and” logic (for
the probability and likelihood) in the current group
termination and “or” logic in the candidate group is
because the model-group probabilities and likelihoods
are calculated more accurately for the current group
than for the candidate group in the MGS algorithm
since the candidate group is newly initialized.

In the above tests, the probability ratio ukM“ / /,Li”"

and the likelihood ratio TT%_ 1o Lo /LYo may be
replaced by the following probability and likelihood
ratios of the model groups with the corresponding

core models of their competing group deleted:

At Pls, € (M,—C,) | Mf*e. 2
E;cua P{Sk € (Mo - Ca) JMka+o’Zk}

¥

ﬁ Z_i/[“ = fI p[ZK. ‘ 5. € (Ma — Co)’z‘c“lj (9)
r=ko Znn k=ko p[nk ' S € (Mo B Ca)7ZK_1]

where C, and C, are the core or kernel model(s) of
groups M, and M,, respectively. Core models of a
group are those that are central and most essential of
the group. For example, the core model of the group
M}, M7, or M3 of Fig. 3 of Part IV [21] is model ;.

With such a replacement, the performance and/or
computation of the model-group termination should
be improved more or less in most cases at the price of
extra design effort.
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D. Initialization of a Model Group

Initialization of the newly activated filters consists
of the following.

Assign the probabilities, at one time cycle before,
to the newly activated models,

Determine the state estimates and the associated
error covariances for these filters, at one time cycle
before.

The concept of state-dependent system mode
set, established in Part I [18], is a powerful one,
particularly useful for filter initialization. It implies
that in plain terms, given the current system mode,
the set of possible system modes at the next time is
a subset of the total mode-set, which is determined
by the Markovian mode transition law (i.e., the
graph-theoretic adjacence of the mode sets). As
applied to filter initialization, the assignment of
the initial probability to a model should account
only for the probabilities of those models from
which the former model is allowed to be switched;
and the initial state estimate of a filter based on a
model should be determined only from the estimates
(and the probabilities) of those filters based on the
models from which the former model is allowed to be
switched.

Specifically, if m, is a newly activated model
at time k, then its probability of being true (more
precisely, matching to the system mode in effect) at
k —1 is (has to be) zero:

ppoy =P{mp | |IM* 21 =0, ¥V m,eM,

where M, is the set of new and only new models;
M* = (M), ., is the sequence of the model-sets
through time k. The expected probability of m, being
true at k without information in the observation at k
(i.e., the predicted mode probability) is given by

M1 =P{m} | M* ' 251}

il

S° P | ml_ YP{m] | | M* )

ijE,,

= Z ﬂ—jniu’i——l

m;€E,

where E,, is the set of models in M,_; that are allowed
to switch to m,;:

E,={m :meM,_,, m, #0} (10)

The initial probabilities of all the models in the
current group M, should be kept unchanged.

The previous estimates and associated covariances
of the filters based on models in the current group M,
should be kept unchanged:

~la

: b
Xl-1 =N g ¥ M EM,
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TABLE [
VSIMM [M,,M,_,] Recursion for RAMS Estimation with Zero Memory Depth

1. Model-conditional initialization and reinitialization {Vm; € Mj]:

predicted mode probability:
ad A i -
Py = P{mi| M, Mi—1, 2577} =

>

miEMy_y

Tij 1

. . Q7 A i i _ .
mixing weight: ¢ £ P{m}_,|m}, My_1, 25} = mijul_1/ By,

mixing estimate: £% 4 Elzealml, My, 2= 3

mixing covariance:

ii [L'l',
k—1|k~1
Mi€Mpe—1 l

PY 2 B [z~ 89)(zi — 2% i, M-, 271

= X [P)Z—ltk—l + (@Y -2}y )3Y - ifc—uk—l)l] wh

mi€My-1 -
2. Model-conditional filtering {Vm; € My]:
predicted state: -

& & Blwi|mi, Me_1,271) = F{_,8% + Gl_y0]_,

predicted covariance:

B3 & E [(a - ) (mx — &) i, Mo, 2271 = B PY(FL) + GLQfy (Gl

measurement residual:
residual covariance:
filter gain:

updated state:

updated covariance:

i1

# & 5~ Elaglm], M-y, 2% = 2 - Hiz? - o]
57 & covls|m], My_1,247) = HLPI(H]) + R
Ki = Pi(H])(S)"

i’ilk = E[:Ck[mi,Mk_.l,Zkl =/ + KI5

P, 2E [(xk - #,) (e — &1, ) |mi, Mk_l,zk] = Pi - KiSi(Kiy

3. Mode probability update [Vm; € My):
likelihood function:

mode probability:

4. Combination:

overall estimate:

overall covariance: -

o)
j A j k LT
g, = P{mi | M, My, 2"] = —Z-L—;,fl Y3
klk—~1

L3 & plzimi, My1, 2571 2 N[350, 57

Li

miEMy,

Ery £ Blog| My, Mio1, 2 = 5 i}qkﬂi

m €My

P2 E [(xk — Ee) (@ ~ Epgp) | M, Mi-1, Z’“]

- =

;€M

[Pl + Gape — 81, @ — 2] 1k

= Pl,b

lLa
B k-1k-1°

k-1 vV o m EM,
where superscripts b and a denote quantities before
and after the reinitialization, respectively.

The initialization of every filter based on a newly
activated model in the candidate group should be done
as follows. In general, when calculating E[x, | m{],
only the previous estimates in the set {X, _ -1 EE,}
should be (and need be) used, where E,, is the set
of models in M, _, that are allowed to switch to m,,,
given by (10). Specifically, the initial estimate for the
filter based on model m, at time k can be obtained by,
similarly to the mixing step in the IMM estimator,

%531111(71 = Elx,_ | mp,M* 1]
= E[E[x,_, | my_,m},M* 2] | mi, M* 1)

= Y Elxey | mp M2 {mi_ | mi, M1
meE,

> Bt
X1~ 1M -1k -1

my€E,

1l

where conditioning on z*~! has been dropped for
simplicity; the mixing weight is given by

1
TinHr—1

l|n — P{ml !mn Mk—l} _ _ MinFk-1
= k-1 F M = -
2 mieky Tinki—1

k-1
The associated error covariance can be calculated
accordingly. In simpler words, if model m, can only
be switched from model m, in M,_,, then X;_,, , and
Pkl—1|k4 should clearly be used as the initial estimate
and covariance for the filter based on m, at time k. If
m, can be switched from several models in M,_;, then
the probabilistically weighted sum of the estimates at
k — 1 from the filters based on these models should
be used as the initial estimate for the filter based on
m, at k and the initial covariance can be determined
accordingly.

Incorporation of group initialization into estimation
cycle: 1f the VSIMM recursion of [15] is used for
the MMO cycle, then the initialization discussed above
can actually be omitted because it is incorporated
by the VSIMM recursion automatically. For the
completeness of the MGS algorithm, the VSIMM
is given in Table I, where N (y;¥,P) stands for the
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(multivariate) Gaussian (normal) density of y with
mean y and covariance P. Due to space limitation, the
reader is referred to Part II [5] for details.

For some practical problems, to avoid a high false
model-group activation rate so as to acheive good
accuracy and maintain a low computational burden,
it may be inevitable to have a delay in activating the
correct model group. This will introduce errors in
state estimate (and the associated covariance) and
mode identification, for which little can be done
other than to design a good activation mechanism. An
indirect consequence of this delay is that the initial
conditions used for the newly activated models (and
possibly some other models) may not be accurate
enough, which will introduce additional errors. Three
techniques may be used to reduce these latter errors.
A generally good and systematic technique is to
go back several steps in time to initialize the newly
activated models and their filters. Specifically, if a
model is activated at k, then n-step back means that
it has zero probability at k —n — 1 but in general
non-zero probability at kX —n. Thus, we may run
VSIMM [M,_,,M,_, 1, VSIMM [M,_, .. M,_,],...,
VSIMMIM,,M, ;] to obtain the current estimates.
Note, however, that old overall estimate (and
anything else that has already been sent out) may
not be overridden unless the problem at hand is
smoothing, instead of filtering. Our design used
one-step back.

A theoretically more appealing technique is to
replace the VSIMM [M,,M,_,] of zero memory
depth with a generic VSMM [M;, M, _;,....M,_, ;]
cycle of n memory depth for such an initialization:
This, however, requires the implementation of such a
VSMM cycle.

A less systematic technique is to increase all the
(re)initialized error covariances B -1 whenever
a model] group is activated, to some degree (e.g., by
using a fudge or forgetting factor) to account for
the extra uncertainties of the estimates of the filters
based on the current group caused by possible delay
in activating the correct model group. For example,
a time-varying forgetting factor A\, may be used as
follows:

p’ =

k—1[k—1

Blipa/ et my€ MNM,_))

where M, is the complement of M, , and )\, may be

given by
A =1=X+ XN,

and 0 < Aj, A° < 1 are design parameters that control
the initial and variation rate of the forgetting factor.
Note that this technique does not alter the estimates
directly. However, no such technique was used in our
design of the MGS algorithm for the results presented
here or in Part IV.

E. Fusion of Estimates Based on Current and Newly
Activated Models

In general, the current and newly activated group
may have models in common. When this is indeed
the case, the MGS algorithm as outlined in Fig. 1
has some waste in computation because the estimates
based on these common models as calculated in
the second MMO [M, ] should not differ from those
calculated in the first MMO [, ]. But how to combine
the estimates from two model-sets to yield the overall
estimate? The following theorem on optimal fusion
provides a satisfactory answer.

THEOREM 1. (Optimal Fusion, from Part II [15])
Given two MM estimators based on two model-sets M,
and M, at time k, respectively:

Al\Ml iMy pilMy il
T o Bpe oL s g 1Y meent,

AilMe My M AV
{x/]clykzpkjulc Lﬁ “/jj\k 1}m,€M2

n|M; ~n|M;

where L, and My are model likelihood and
predicted mode probability, respectively, of model m,,
in model-set M. The optimal MM estimator based on
M*! and M, = M = f[M,,M,), where f is some. set
operation (i.e., union, intersection, or difference), is
given by

A ~ilM M
Bo= > 11
m;EM
M M ~i|lM ~ iM
Bl = DB + G~ TG — 3w
meM
(12)
where
~ilM llM _ ~i|M, fM ~ilM. tMo
{xklk’ klk }weM = {xkikl’ klk 1}m,eM1 {xlj[kz’ kllk }m eMa
(13)
A _
lM P{mk |Mk,M" I’Zk}
1 l l
L 1> vV omeM (14)

where ¢ is a normalization factor given by

Z Licfigpe1-

meM;

¢ = plg, M, | M¥1, 2571 =

See [15] for details. In our case, set union is
of interest, that is, f[M;,M,] = M; UM,. Thus (13)

becomes
Mo z ~iM M
klk = Kk P -
meM

(15)
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Note that if m; € (M; N M,), then, under the stated
assumptions,

My ailMy
Yele = Xk
M il
B = B
M _ ilMs
Lk - Lk

~iMy _ il
Hrg—1 = M1
Following this theorem, the above-mentioned
computational waste can be eliminated as follows.

1) Replace the second MMO [A,] in Fig. 1 by
MMO [M, ], where M, = M, — M, is the set of new and
only new models.

2) Use the optimal fusion of Theorem 1 to obtain
the overall estimate from M, UM, = M, UM,.

F Initialization of MGS Algorithm

How the MGS algorithm should be initialized
depends on what a priori information is available
concerning the initial system mode. If a priori
information indicates that the initial system mode is
likely to be in a certain subset of the total mode-set,
then the MGS algorithm should start from the
corresponding model group. In general, one of the
following procedures may be used for initialization if
no a priori information for the initial system mode is
available.

1) Run an FSMM estimator using all models for
a few cycles and then choose the model group which
has the highest group probability as the initial one.

2) Run a set of the MGS algorithms using the
same total model-set but different initial model groups
for a few cycles and then choose the one with the
highest group likelihood as the initial model group.

3) Choose as the initial one the “nominal” model
group that represents the nominal system mode(s)
with a mechanism to switch to other nonnominal
groups. A good example of such nominal model
groups is M;, defined by (5) of Part IV [21].

4) Calculate all model likelihoods and choose
the set having the largest set likelihood as the initial
set. This is equivalent to assuming all models have
an equal prior probability, which differs from the
assumption that all groups have an equal probability.

C. MGS Algorithm

Summarizing the results of this section and
assuming that an IMM cycle is used as the MMO
estimation cycle, the flowchart of the MGS algorithm
is given in Fig. 2 and one cycle of the proposed MGS
algorithm is listed in Table II, where VSIMM cycle
was given in Table 1. Note the following.

TABLE II
One Cycle of MGS Algorithm

S1.  Increase the time counter k by 1. Run the VSIMM
(M, M,_,] cycle.

S2.  Check if a candidate model-group is activated. If no
model group is activated, then output )Ack]k, Pk]k, and
{I’L;c}m,'EMk obtained from the VSIMM [M,,¥,_,] cycle.
Let M, ., =M, and go to Step 1.

S3.  If a model group M, is activated, then let k, =k, M, = M,
and
e Run the VSIMM [M,,M,_;] cycle, where

‘M, =M, —M, is the set of new and only new models.
o LetM, =M UM, =M UM,
e Fusion: Calculate the estimates, error covariances, and
mode probabilities for the union set M,:
L
Wfﬁ;—’ Y omeM, (16)
mpeMy, kP klk—1

5(k\k = Z )A‘;;[kl‘i an

m;EMy,

B = Z (Gl = X Ee = Tge) + B+ 1k (18)
myEMy

where the estimates {x! }, error covariances {P;ci|k}’

likelihoods {L}, and predicted probabilities {[:,j(lk_l}
were obtained in the above VSIMM [M,,M, ] and

VSIMM [M,,M,_,] cycles.

n?

S4.  Output Xy, By and {1}, cpy -
S5.  For model groups M, = M, M,, compute

m' ="k (19)

meM;
M i )
Fyle-1 = Z Fige-1 (20)
m;eMy
M 1 -
L= N7 Z L By @D
Mk[k—l mieM;
If
HM“ k IMa
k b 3 L
be<tt o [ 3 <d 22)
He =k Ls
)

then terminate group M, : Let M, = M, and go to

Step 1.
If
HM“ k LM”
k » & L
“s awd ] > (23)
H, rokg L

then terminate group M : Let M, , =M, and go to
Step 1.

S6.  Increase the time counter k by 1 and let M, = M,. Run
the VSIMM [M,,M,_,] cycle. Go to Step 4.

1) The use of VSIMM cycle eliminates the need to
initialize the newly activated models and filters.

2) Equations (16)—(18) are based on the optimal
fusion of Subsection HIE.

3) Equations (19)—(23) are based on the sequential
model-set likelihood ratio test and the sequential
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Initialization

VSIMM[ M, My_y]

Activate a group? M1 = Mg

Output

Mg = newly activated group
My =My, My =M, — My
VSIMM([ M, My_;)
Fusion of My and M,
My == M), UM,

Output

Y

Terminate group M, ? My =M,

Mi1 =M,

Mit1 = My,

|

VSIMM[ My, My_1]

|

Fig. 2. Flowchart of MGS algorithm.

ki=k+1

w o

Run candidate group M,

Fig. 3. Graphic illustration of model-group termination logic.

mode-set probability ratio test of Subsection IIIC2.
Fig. 3 illustrates the sequential test of (22)—(23).

IV.  EXTENDED MODEL-GROUP SWITCHING
ALGORITHM

The MGS algorithm of Table II has the following
potential weakness. At most, one model group may
be activated at any time and no model group may
be activated while running the union of two model

236

groups. This may be a problem if one of the following
situations occurs.

1) The system may stay in a mode with a very
brief sojourn time before it jumps to another mode
that is outside the coverage of the above-mentioned
union. Note, however, that such a jump usually has to
have a large jumping distance in the mode space and
should usually be avoided by model-group design.

2) The MGS algorithm may activate a wrong
model group. An incorrect model group usually will
be terminated right away and then the correct group
may be activated. Nevertheless, this would introduce
an undesirable delay in correct activation, which
is the most serious potential weakness of the MGS
algorithm.

3) Sometimes there is a need to activate more
than one model group simultaneously. For example,
this would be the case if the system mode jumps
to a place that is in the intersection of two or more
candidate model groups.

To enhance the performance of the MGS algorithm
under such situations, an extended version, called
extended MGS (EMGS) algorithm, is proposed. It
allows the activation of one or more candidate model
groups even while running a union of model groups.
The flowchart of this extended MGS algorithm is
given in Fig. 4.

In Fig. 4, M, stands for the set of newly activated
one or more model groups; M, is the set of new and
only new models; M, is the set of model groups in
effect at k; M, is the set of newly terminated one or
more model groups, which is a subset of M,.

Note that the ability of the EMGS algorithm to
activate more than one model group may reduce the
delay in activating the right group, which is the most
serious potential weakness of the MGS algorithm. For
example, this may be done by using a significantly
lower activation threshold that would be inappropriate
for the MGS algorithm since it would have increased
the risk of activating a wrong group significantly.
How and when more than one model group should
be activated is in general application dependent.

Termination of a set of model groups in M,
may be done simply by the sequential ranking tests
proposed in Part II [15].

S1. At any time k, rank and order the members
of M, such that the set of their model-group

probabilities %, VM, € M,, is in a decreasing order:
M M
w2t

S2. Terminate those model groups whose ratios
of probabilities to the highest one are below a certain
threshold #; that is, for any i # 1,

M;
i

M,
My

< t* = terminate M,
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Initialization

VSIMM[ My, Mj.—1]

Activate one or more groups?

Ma = set of newly activated groups
M, = Union of groups in M,
Mpn = Ma ~ My,

My = M UMa

L

l VSIMM[Mp,, M_1)

I

Fusion of M, and My
M = MUM,

|

Qutput

Mgy = My
Mity = Mi

Terminate one or more groups?

My = set of groups to be terminated
Mgy =M~ ) (MinMy)
M€M,

Mpp1 =M =M

Fig. 4. Flowchart of EMGS algorithm.

Alternatively, the following may be done based on the
theoretical results of Part II.

S1. Atany time k, rank and order the members
of M, such that the set of their model-group joint
likelihoods TT%_, LM, VM, € M, is in a decreasing
order, where k, is the activation time of the most
recently activated group.

S2. Terminate those model groups whose ratios
of joint likelihoods to the highest one are below a
certain threshold ¢£; that is, for any i # 1,

k A
ITeio L2

TT5 o, LY

K=ko

< £ = terminate M,.

There are two reasons for the use of &, as the
starting time for the joint likelihoods: 1) Unlike
probabilities, to compare joint likelihoods, they should
have the same number of terms in the product (i.e.,
they should be over the same time period), and 2) an
activation is a strong indication that mode may have

TABLE III
One Cycle of EMGS

S1.  Increase the time counter k by 1. Run the VSIMM
M. M,_,] cycle.

S2.  Check if one or more candidate model groups are
activated. If no model group is activated, then go to
Step 4.

S3.  If one or more model groups are activated, then let their
union be M. Let ky =k, M, =M —M,.

e Run the VSIMM [M,,M, ] cycle.

¢ Combine estimates from the VSIMM [M,,M,_;] and
VSIMM [M,.M,_,] cycles using (16)-(18).

Let M, := M, UM,.
S4.  Output }k\k’ By and {”;c}m;eMk'
S5.  Rank and order the model groups currcntlby in effect in an
ordered set such that their probabilities ,uk" are in a
decreasing order.
S6.  Rank and order the model groups currently in effect in
another ordered set such that their joint likelihoods
Hn:ko L™ are in a decreasing order, where ky is the
activation time of the most recently activated group.
S7.  Terminate those model groups if
o their ratios of probabilities to ukM‘ are below a
threshold #; and/or

e their ratios of joint likelihoods to H:=k Li’ll are
below a threshold 7£. °

Go to Step 1.

jumped and thus old (marginal) likelihoods are better
ignored. In view of this second reason, it seems that
the second procedure may outperform the first one
because the model-group probabilities in general
carry (no matter how little) information of the system
mode in effect before k;,, which could be misleading.
However, if the activation has a delay (i.e., if k; is not
the first time at which a mode change is reflected

in the observation), then the use of the mode-set
probabilities may be better than the likelihoods.

It is also possible to terminate the groups based on
a combination of these two procedures, such as done
in Subsection I1IC2.

In the above, t* and - are design parameters,
which control the probabilities of making termination
errors (and indirectly, the number of model groups
in effect). They should be chosen according to the
available computation resource and the amount of
overlap among model groups.

Based on the above, one cycle of the extended
MGS algorithm is given in Table III.

The advantage of the EMGS algorithm over the
basic MGS algorithm is achieved at the cost of a
slightly heavier computational burden and complexity
of the algorithm.

Note that even when the activation logic activates
at most one model group and the termination
thresholds are such that at most two model groups
are not terminated, the EMGS algorithm is still better
than the MGS algorithm because activation is allowed
while two model groups are in effect. The EMGS
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Fig. 5. Digraph associated with total model-set.

(

algorithm reduces to the MGS algorithm only if in
addition to the above conditions, the activation logic is
such that it may activate a model group only when no
more than one model group is in effect.

V. AN ILLUSTRATIVE EXAMPLE OF FAULT
DETECTION AND IDENTIFICATION

A simple example of fault detection and isolation
is simulated here. A much more careful and complete
design and evaluation of the MGS algorithm for a
generic problem of tracking a maneuvering target is
given in Part IV [21].

Consider the following simple scalar system with
dynamics

X = Llxg +wy (24)

and two-dimensional measurements
{0.5} 25)

Zp = X, +v

k 1|V

with wy, ~ N(0,0.12), v, ~ N(0,1), and initial
condition x, = 100. Suppose that a total failure or
partial fault may occur to sensor 1; that is, 0.5 may
become 0 (total failure) or any number in between 0
and 0.5 (partial fault). Suppose that sensor 2 may also
suffer from a total or partial fault.

Assume that an IMM estimator based on the
following 5 models is used for the detection and
identification of the sensor fault:

0.5
e {0.6}

{0.5} [0.25}
my my :
1.2 1.2

weft) )

The digraph (topology of the model-set with
model transition probabilities) assumed in the IMM
algorithm is shown in Fig. 5, where the transition
probabilities to the models themselves can be obtained
from the requirement that all transition probabilities
from a model have to sum up to unity. A simple
MGS algorithm with the following model groups was
designed and evaluated

M, = {m,my,ms},
M, = {m;,m,,m,},
My = {m,m3,ms}

where the VSIMM cycle is used for each model
group. The choice of these model groups is intuitively
appealing. The following simple activation logics were
used.
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Fig. 6. Model probabilities of MGS and IMM algorithms under
deterministic scenario S1.

1) Model group M, is activated while M; is in
effect if p? > ¢, and similarly for the activation of M,
from M,. '

2) Model group M, is activated- while M, or M; is
in effect if p} >1,.

In our design, #; =1, = 0.3. It was found that the
results of this example are virtually unchanged with
respect to different activation logics provided that they
are not unreasonable.

The rationale for such a design of model groups
and activation logic is discussed in Part IV.

Consider the following simple scenarios.

S1. The system has no fault from &k = 0 to
k = 160, except that a sensor 2 total failure occurs at
k =100 and lasts until £ = 120.

S2. The system has no fault from & = 0 to
k =160, except that a sensor 1 or 2 (with equal
probability) total failure occurs at a random time
k =7, and lasts for a random period of time 7,, where
7, ~ N(100,5%) and 7, ~ N (20,2?).

Fig. 6 shows the model probabilities of the MGS
and the FSIMM (with all 5 models) algorithms under
the deterministic scenario S1 over 100 Monte Carlo
runs.

Figs. 7 and 8 and Table I'V show the rms errors of
state estimation of the MGS and the IMM algorithms
under the deterministic scenario S1 and the random
scenario S2, respectively, over 100 Monte Carlo runs.

Note that the MGS and IMM algorithms have
identical performance for this example. However, the
computational complexities, in terms of FLOPs, of the
MGS algorithm for the two scenarios are only about
54% of that of the IMM algorithm. This reduction
in computation is much more significant if more
models are used, as demonstrated in Part IV [21]. This
is very important because the applications of MM
estimators to most practical problems, especially to
fault detection and identification, require the use of a
large number of models.

GPB2 and the nonswitching MM algorithms
were also implemented for this example. GPB2
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Fig. 7. RMS errors of MGS and IMM algorithms under
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8. RMS errors of MGS and IMM algorithms under random
scenario S2.

Fig.

TABLE IV
Comparison Between MGS and IMM Algorithms
RMS Probability
flops Error Error

Deterministic scenario S1:
MGS 0.5375 0.4041 0
IMM 1 0.4041 0
Random scenario S2:
MGS 0.5375 0.4224 0
IMM 1 0.4223 0

algorithm has the same performance as that of

the IMM algorithm, while the nonswitching MM
algorithm is substantially worse. Note also that there
is no need to use the extended MGS algorithm for this
example since there is virtually no delay for the MGS
algorithm to switch to the right group.

VI.  CONCLUSIONS

An MM estimator, called MGS algorithm, has been
presented. It is the first MM estimator with variable
structure that is general enough to be applicable to a
large class of state estimation problems compounded
with structural and/or parametric uncertainties or
changes and is easily implementable. The algorithm
runs at any given time a time-varying set (group)

LI ET AL.: MULTIPLE-MODEL ESTIMATION WITH VARIABLE STRUCTURE—PART III

of closely related models of the total model-set.

The determination of which model group to use is
done by a hard decision, which consists of two-stage
switching logics (hypothesis tests) for activation

and termination of model groups. The model-group
termination is done by a combination of the sequential
mode-set probability ratio test and the sequential
model-set likelihood ratio test of Part II {15], which
have some desirable optimality properties. The general
VSIMM recursion of Part II [15] is adopted in the
MGS algorithm, which initializes the newly activated
filters and assigns the initial probabilities to the
corresponding models naturally, systematically, and
near optimally. An extended version, called EMGS
algorithm, has also been presented to overcome

a potential weakness of the MGS estimator. For

the simple simulation example of fault detection

and identification presented, the proposed MGS
algorithm was shown to be significantly superior to
the fixed-structure IMM estimator using all models.
The same performance was achieved by the former at
a substantially reduced computational complexity. A
more careful and complete design and evaluation of
the MGS algorithm for a maneuvering target tracking
example is presented in Part IV [21], which also
supports this conclusion.
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