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A variable-structure multiple-model (VSMM) estimator, called
model-group switching (MGS) algorithm, has been presented in Part
III, which is the first VSMM estimator that is generally applicable
to a large class of problem with hybrid (continuous and discrete)
uncertainties. In this algorithm, the model-set is made adaptive by
switching among a number of predetermined groups of models.

It has the potential to be substantially more cost-effective than
fixed-structure MM (FSMM) estimators, including the Interacting
Multiple-Model (IMM) estimator. A number of issues of major
importarice in the application of this algorithm are investigated here,
including the model-group adaptation logic and model-group design.
The results of this study are implemented via a detailed design for a
problem of tracking a maneuvering target using a time-varying set of
models, each characterized by a representative value of the expected
acceleration of the target. Simulation results are given to demonstrate
the performance (based on more reasonable and complete measures
than commonly used rms errors alone) and computational complexity
of the MGS algorithm, relative to the fixed-structure IMM (FSIMM)
estimator using all models, under carefully designed and fair random
and deterministic scenarios.
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I.  INTRODUCTION

The model-group switching (MGS) algorithm
presented in Part III [10] is the first variable-structure
multiple-model (VSMM) estimator that is generally
applicable to most state estimation problems
compounded with structural and/or parametric
uncertainties.

In the MGS estimator, the model-set in effect
is made adaptive by switching among a number of
predetermined model groups, each representing a
cluster of closely related system behavior patterns
or structures, according to certain “hard” rules (hard
decisions). As such, only one model group has to be
run at any time and thus substantial computational
reduction is achieved, compared with a fixed-structure
MM (FSMM) estimator based on the total model-set.

The key features of the MGS algorithm that make
it very promising include the following.

1) The switching between model groups is done
in two stages. The model group that is deemed likely
to be a good candidate at the time is activated first
without forcing the termination of the one currently
in effect. The algorithm then runs their union until
sufficient information is gathered to terminate one of
them. This two-stage switching (i.e., activation and
termination) provides a good strategy for completing
the conflicting tasks of simultaneously minimizing
the chance of false switching and the delay in
correct switching. The only cost paid for this is an
insignificant increase in computation for running the
union briefly instead of a single group.

2) The initialization of the newly activated model
group is done automatically due to the incorporation
of the variable-structure interacting multiple-model
(VSIMM) recursion of Part II [5]. This recursion
assigns the probabilities to the newly activated models
and initializes the filters based on these models in
a natural, systematic, and near optimal manner. It
also eliminates the need to design the transition
probabilities for each model group.

3) The decision concerning which model group
to terminate is made based on a combination of the
sequential mode-set probability ratio test and the
sequential model-set likelihood ratio test of Part II,
which are optimal in the sense of having the quickest
decision subject to prespecified lower bounds on type
I and type II error probabilities.

4) The use of the optimal fusion rule of Part II
in the MGS algorithm makes possible the prompt
(in fact, immediate) use of the estimates from the
newly activated models/filters without computational
waste.

Most of these features are general. They can be
and are actually incorporated into the other VSMM
algorithms to be presented in the subsequent parts of
this series.
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Fig. 1.

For details of the MGS algorithm, the reader is
referred to Part III [10]. A flowchart of the MGS
algorithm is found in Fig. 1.

In this paper, M, stands for the (random)
model-set in effect at time k; M, for the event that
the system mode at time k is in some model-set M;
and the discrete time is denoted exclusively by k or
k, unless otherwise stated. For example, MJ. stands for
the jth model-set, rather than the model-set in effect at
time j.

Although the MGS algorithm is general, its
successful application requires a proper design,
especially of the set of model groups and the logics
for model-group activation. Such design tasks are the
extra cost necessary to achieve the superiority of the
MGS estimator to the FSMM estimators.

The purpose of this paper is three-fold. First, it
is demonstrated how the MGS estimator should be
designed, via an example of tracking a target that
may undergo maneuvers. Although the design was

inevitably directed to the particular application under
consideration, general features of the procedure and
technique are illustrated. Second, in view of the fact
that the performance and computational requirements
of an MM estimator, especially of a VSMM estimator,
depend largely on the test scenarios, a carefully
designed random scenario, along with a deterministic
one, is proposed for the evaluation of MM estimators.
Third, some new performance measures of MM
estimators are presented based on the theoretical
results of [8].

The rest of the paper is organized as follows.
Section II presents a detailed design of an MGS
estimator for an example of tracking a maneuvering
target. The test scenarios under which the MGS
algorithm is compared with the Interacting
Multiple-Model (IMM) estimator are designed in
Section III. Several performance measures that are
useful for properly evaluating the performance and
computational requirements of MM algorithms are
proposed in Section I'V. Simulation results are given
in Section V, along with discussions. The last section
provides concluding remarks.

II.  DESIGN OF MODEL-GROUP SWITCHING
ALGORITHM

Design of the total model-set is an important and
difficult issue, common to all MM estimators. See [4]
for the limited theoretical results that are available and
some general discussions.

The design of the model groups should be
integrated with that of the total model-set. Suppose
that the total set of models has been designed. Then
the design of an MGS algorithm consists of the
following two major elements: 1) design of the
model-set cover (i.e., model groups), and 2) design of
candidate model-group activation logic and selection
of the thresholds for the termination of model groups.
In addition, the following design elements should
also be completed, which are common to most
switching MM estimators: a) selection of the model
transition probability matrix, and b) tuning of the
process noise covariance matrix of each filter. These
design elements should be evaluated under carefully
determined test scenarios.

In the sequel, each of the above elements will be
discussed and our design will be presented.

A. An lllustrative Problem for Design

In our design, the following problem, adopted
from [1], is considered. A virtually same problem was
considered in [11, 12]. To track a maneuvering target
in a planar motion that may have a piecewise constant
acceleration with a maximum value of 4g (40 m/s?)
in any direction, [1] compared the performance of an
IMM estimator with that of a Viterbi algorithm based
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Fig. 2. Graph-theoretic representation of model-set (1)—(2).

on the following set of 12 time-invariant models,
characterized by the expected acceleration vector a,

m, :a=[0,07 m, : a=[20,0]

mq 1 a=[0,20} my :a=[-20,0]

ms : a=[0,-20] mg : a=[20,20} 0

my :a=[-20,20] mg 1 a=[-20,-20]

mq : a=[20,-20] my, : a=[40,0]

my, +a=[0,407 my, ta=[—40,0)
These models were obtained by a quantization of
the possible system mode set (space). To cover the
assumed acceleration range, an additional model

mys : a=[0,—40] (2)

is (and should be) added to the model-set in our
work. What transition relations among models (i.e.,

to which models a model is allowed to switch) were
used in [1] is unclear since only the diagonal elements
of the transition probability matrix of the assumed
Markov chain for the model sequence were specified
in [1]. Such ambiguity could have been avoided if a
directed graph (i.e., digraph) were used to describe the
topology of the model-set, as proposed in Part I [7],
rather than the model-set alone.

A graph-theoretic (digraph) representation (see [7])
of these 13 models is shown in Fig. 2, where an arrow
from one model to another indicates a legitimate
model switch and self-loops are omitted (i.e., each
model may stay in itself for some time). The topology
shown in this figure will be used in our design. Fig. 2
was plotted in the model space characterized by the
expected acceleration with the following nice features.

1) Each model can be viewed as a point in the
model space.

2) Model m, corresponds to the origin of the
model space.

3) Models m,,, my, m, m,, and m,, form the
horizontal axis, while models m,s, ms, m,, m,, and
my; form the vertical axis.

4) The graphical distance between any two models
in Fig. 2 is exactly proportional to the actual distance
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between the two models in their acceleration space.

Note that for simplicity a model is allowed to
switch to its nearest neighbor(s) only. Better results
could be obtained if other types of model switching
are allowed, such as those between second nearest
neighbors (e.g., m, and ms, and m, and m,,) (see
Part V [9]).

Please keep in mind that the application of an MM
estimator based on the above models, characterized
by the constant expected acceleration along x and
y directions, is not necessarily most effective for
tracking a target that may undergo a turning motion
[3]. For example, such a maneuver usually has an
almost constant lateral acceleration normal to the
velocity vector, rather than a constant acceleration in x
and y directions. Nevertheless, the above models were
adopted here to demonstrate how an MGS algorithm
can be designed and to compare its performance
and computational requirements with those of the
corresponding fixed-structure estimator. In fact,
the above vector a may actually be (treated as) a
parameter other than the expected acceleration that
characterizes a maneuver and the above model-set is
a quantization of the corresponding parameter space.
Then the MGS estimator developed and designed here
may be effectively applied to some other problems,
such as fault detection and isolation.

B. Model-Groups (Cover) Design

Model-group design is closely related to the design
of the total model-set and its topology (i.e., graphical
relation), both of which are highly dependent on the
particular application considered. Given the topology
of the total model-set, a set of models should be
grouped together only if the system modes (behavior
patterns or structures) represented by these models
are “closest” in some sense (except possibly for a
“nominal” or initial group). This is, however, only a
necessary condition. The model-group design should
also consider the following aspects.

1) It should provide a mechanism for switching
from one group to another if a corresponding mode
transition is not with an extremely low probability in
reality. It is because of this that model groups should
have common models.

2) It should have as few common models among
groups as possible to reduce computation.

3) It should prevent frequent switching among
model groups in most scenarios for the application
under consideration.

4) It should not make difficult the design and
implementation of a proper and uncomplicated logic
for activating a model group.
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Fig. 3.

5) It should facilitate a proper assignment of the
initial probabilities to the newly activated models and
initialization of the filters based on these models.

These requirements are conflicting. For example, a
cover consisting of large groups of models will have
on the average a small probability of group switching
but high computational complexity within each model
group. Also, a larger overlap between two model
groups will make it easier to design a better group
activation logic and a better assignment of the initial
model probabilities.

For example, three candidate covers of the total
model-set given in Fig. 2 are

C = {Ml’le’M3l’M41’M51}

C, = {M,,M?, M2, M} ,MZ} (3)
C, = {My, M3, M3, M}, M3} )

where
M, = {ml,m2,m3,m4,m5} )

le = {my, myq,mg,my }

M31 = {my,m,y,mq,mg }

M41 = {my,myy,mg,my}

Msl = {ms,m3,mg,mg}

M = {my,myg,mg,m;,mg}
M32 = {my,myy,my,my,mg}
M} = {my,myy,mg,m;,my}
Ms2 = {ms,m3,mg,m,mg}
M3 = {my,m g, mg,my,mg,ms}
M33 = {mg,my,my,my,mg,m,}
M} = {my,my,mg,my,my,my}
Ms3 = {ms,m3,mg,my,mg,my}. (6)

A systematic labeling and ordering of the models
in a group, such as given above, will facilitate the
implementation of the MGS algorithm (and probably
most other VSMM algorithms).

Clearly, in the context of maneuvering target
tracking, M, in effect means that very likely the target
is not maneuvering and M,, M;, M,, and M; represent

|
@:?:@
@)

Three representative members of three candidate covers of Fig. 2.

different maneuvers. For fault detection and isolation,
M, represents the “nominal” mode while M,, M;, M,,
and M; correspond to different fault modes. In all the
three cover designs, M, is the “nominal” group, which
represents the nominal system mode with a proper
mechanism for switching to nonnominal groups.

This is a typical example of a multidimensional
problem, which usually requires a large number of
models.

Fig. 3 shows one typical member model group
from each of the three candidate covers. There are of
course other covers. Using the above criteria, cover C;
does not seem a good one since it does not provide
a good mechanism for switching from M, i # 1,
to M; and the switching among groups may be too
frequent. Cover C, may have trouble deciding which
model group (e.g., M} or M52) to use if the true system
mode has an almost equal acceleration in magnitude
in both x and y directions (e.g., a = [10,—10]’), in
which cases the union of two model groups (e.g.,

M? UM?) may have to be run in the MGS algorithm.
This is a case in which decomposition of model-group
switching into model-group activation and termination
is clearly beneficial. Cover C; overcomes these
problems at the cost of a higher computational burden.
Overall it is unclear whether C, is superior to C;. For
example, cover C; will have the smallest probability
of model-group switching but the highest computation
for each model group. Since the only apparent
problem with C, is for cases in which |a,|~ |a,|,
which is not a serious one since the proposed MGS
algorithm will take care of this problem by running
the union of the corresponding two model groups,

all design results presented here are based on cover
G,.

C. Design of Model-Group Activation Logic

Similarly to the design of any hard decision rule,
the design of the logic for the activation of the model
group has to satisfy the following requirements:

1) The average decision delay should be as small
as possible.

2) The probability of a false decision should be as
low as possible.

3) The logic should be as simple and
computationally efficient as possible.
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These requirements are conflicting and it seems that
no single optimality criterion is entirely reasonable.
As a result, there is no truly optimal design of such a
logic. Generally speaking, a good design can only be
obtained by starting from insights into the problem
(in particular the application under consideration)
and finding a good compromise among the above
requirements via a trial-and-error procedure. In doing
so, the following general guidelines are useful.

1) The average delay of a correct decision affects
mostly the peak estimation errors during the transition
of the system mode from one within a model group
to another mode that is best represented (covered) by
another model group. The greater the average delay
is, the higher the peak errors are and the longer the
large errors last. Note, however, that it is possible to
further reduce the peak errors in many cases by some
ad hoc techniques, such as tuning of process noise
covariance, adjustment of the error covariances (by
say, a fudge or forgetting factor), and modification of
the original algorithm (e.g., the instantaneous feeding
of [6]). These adjustments, however, were not used to
obtain the results presented here.

2) A false decision has its major impact on
the stationary (steady-state) estimation errors. A
significantly higher probability of false decision will
lead to a substantial increase in the steady-state errors.

3) The simplicity of the logic affects primarily
the central processing unit (CPU) time and has a less
significant effect on the floating point operation (flop)
count.

Based on the above considerations and the general
discussion of Subsection IIIC1 of Part Il and after a
brief trial-and-error adjustment, the following simple
activation logic was adopted in our design.

1) Activate group M; while M, = M;, where j # 1,
if both of the following two conditions are satisfied

likelihood condition: L = max,, , L}

probability condition: ] > 1,

where 1/ and L/ are the probability and likelihood of
model m;, respectively. For example, if model m, has
the highest likelihood and its probability exceeds the
threshold ¢, while group M; is in effect, then group M,
is activated.

2) Activate group M, while M, = M;, where j # 1,
if both of the following two conditions are satisfied

likelihood condition: L} = max,, .,, L}

>
For example, if model m, has the highest likelihood
and its probability exceeds the threshold #; while
group M, is in effect, then group M, is activated.

3) Activate group M; while M, = M;, where
i,] # 1, if both of the following two conditions are

probability condition:
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satisfied for some m, € M;, m, # m,,

likelihood condition: ~ L? = max,, ., L}

My > 1.
For example, if model m, has the highest likelihood
and its probability exceeds the threshold ¢, while
group M, is in effect, then group M is activated.

4) Direct switching between M, and M,, or M; and

Ms is not allowed. Such transition may go through M,
as an intermediate group.

probability condition:

In our design, t, = t; =1, = 0.3 were used for
simplicity.

Other activation decision rules are possible. Some
theoretical results were presented in Part IT [S] for
model-set activation. They should lead to better
performance, however, at a higher computational cost.
This is studied later.

D. Selection of Group Termination Thresholds

The design of the candidate model-group
(activation) logic is best integrated with the selection
of the thresholds for the termination of model groups.

In most cases, the threshold pairs {r{’,7}’} and
{tF,¢L} should be selected to yield a low probability of
running the union of the model groups. In some other
cases, if computational resources permit, they may
be chosen such that the above probability is not low.
Our experience indicates that the performance and
computation of the MGS algorithm are not sensitive
to the selection of these thresholds provided that the
system mode does not stay in the central area of the
union of two model groups for a long time.

It is our experience that after the candidate model
group is activated, the ratio of its probability (or
likelihood) to that of the current model group varies
following a definite pattern: it either increases or
decreases dramatically, depending on whether the
candidate group is the right one or not. Thus, it is
quite easy to determine the thresholds by observing
first the average ratio data.

Although in general, different sets of
thresholds {r{',1f,14, 15} may be needed for
different pairs of model groups to yield the best
performance-to-computation ratio, our experience
indicates that a single set of thresholds usually
works well enough because the probability and/or
likelihood ratios increase or decrease rapidly enough.
If, however, the core models of the competing group
are deleted from the model groups, as shown by
(8)—(9) of Part III, then different threshold sets may
have to be used. Note that for this example, if M, is
the current model group M, and M is the candidate
model group M, then :

M, —C, =M, —C3 = {my,my;,my,mg}
M, - C, = My —Cy = {my,my,my, ms}
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where C, and C, are the (sets of) core models of
the model groups M, and M,, respectively. Thus,

better results should be obtained if (8)—(9) of Part
III were used. If, however, M, is the current model
group M, and M; is the candidate model group M,,

then

M,~C,=M,—Cs =M,

M,—C,=M;—C, =M.

That is, (8)~(9) of Part IIT reduces to the ratios of

model-set likelihoods and probabilities.

In our design, the core models were not deleted
and the following values were used for simplicity:

= =095,

tg: 1.1,

E. Other Design Elements

The following transition probability matrix was

L_
ty =1

used in our examples given in the next section:

r116/120 1/120 1/120
002 095 0 0
0.02 0 095 0
0.02 0 0 095
0.02 0 0 0
0 /30 1/30 0
m= 0 0 1/30 1/30
0 0 0 1/30
0 130 0 0
0 0.1 0 0
0 0.1 0
0 0.1
L 0 0 0

1/120 1/120

0
0
0

0.95
0
0

1/30

1/30
0
0
0

0.1

The diagonal terms were chosen based on the

expected sojourn time of the corresponding

0
0.01
0.01

0

0
28/30

0

0
0
0
0
0
0

acceleration [2, 6]. The other terms were determined
either by symmetry or their expectation from the

physical relation among models. Equation (7) was
used in both the MGS and the fixed-structure IMM

(FSIMM) algorithms.

Note that if the VSIMM cycle of Part II is

used, then there is no need to design the transition
probability matrix for each model group given the
transition probability matrix for the total model-set.
The VSIMM cycle will automatically use the right
submatrix of this transition probability matrix and
scale appropriately to preserve the relative ratios of
the transitions within the group. All these are done

naturally and systematically. See Part II [5] for details.
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The true process noise covariance was set to zero
and the following simple process noise covariance
matrices were used in our work: Q' = (0.003)?1,

Q' = (0.008)2, i # 1. The filter used measurement
noise covariances R’, Vi, are set equal to the true
R =1250I.

The MGS algorithm was initialized by the model
group M, with evenly distributed model probabilities.
To have a fair comparison, the FSIMM estimator was
initialized with the same initial conditions as those of
the MGS algorithm, including uf = 1/5 fori =1,...,5
and pf, = 0 for i = 6,...,13. Note that were the IMM
estimator initialized with evenly distributed model
probabilities, poorer results would be obtained for the
random and deterministic scenarios considered here.

IIl.  DESIGN OF TEST SCENARIOS

It should be emphasized that a comparison
between an FSMM algorithm and a VSMM algorithm

0 0 0 0 0 0 07
0 0 00l 001 O O O
001 0 0 0 001 0 0
001 001 0 0 0 001 O
0 00l 001 0O 0 0 001
0 0 0 0 0 0 0
28/30 0 0 0o 0 0 0 (7)
0 28/30 0 0o 0 0 0
0 0O 28/30 0 0 0 0
0 0 0 09 0 0 0O
0 0 0 0 09 0 0
0 0 0 0 09 0
0 0 0 0 09

depends to a large degree on the scenarios used for
the evaluation.

Both deterministic and random scenarios were
designed and used for testing and comparing the
performance and computational requirements of the
proposed MGS algorithm with the FSIMM estimator
using all 13 models.

For the random scenario, it is assumed that the
acceleration vector a(?) = a(r)/0(¢) is a semi-Markov
process; specifically, it is a 2-dimensional process that
would be Markov were the sojourn time 7 for each
of its states not random. The amplitude a and angle 6
are both random. In simple terms, it implies that the
acceleration process undergoes sudden jumps from
a state with a magnitude a and phase  to another
one after staying in it for a random period of time.
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ak41

bk gy R+l

Fig. 4. Semi-Markov process model for acceleration sequence.

Referring to Fig. 4, the following model for a is
proposed.

1) Denoting by 7, the sojourn time for the state
a = a, its conditional probability density is
1 = 2
p(r | @) = ZN(Tk;T,O'T), 7. >0 (8)
where A (x;¥,0?) stands for Gaussian (normal)
probability density function of x with mean X and
variance o2; ¢ is a normalization constant; and 7 and
o, are two constants, depending on q,. In plain terms,
the random sojourn time is assumed to be truncated
Gaussian which is state dependent.
2) Denoting by a,_; the magnitude of acceleration

over the period (#,#,,,], its conditional probability
densities are

Py | a) = By6(agyy) + By 8(ayq — Gpgy)

1
+[1—P0—PM]a

max

1 [ak+l ) (0’ amax)]

®

where Fy and Fy, are in general functions of g,; § is
the delta function; and 1(x;R) is the indicator function,
defined by

1 XER

0 x¢R’
In other words, the acceleration magnitude has
probability masses of Ry and P, to be zero and
maximum, respectively, and is uniform over the values
in between.

3) Denoting by §,,; the angle of acceleration over
the period (#,%., ], its conditional probability density
is

1(x;R) = { (10)

1

POy lay=0)= %1(9“1;(—7777@)

1w

ie., 6, (conditioned on @, = 0) is uniformly
distributed over (—m, 7], and

POrsr | @ >0) = N8, 136,.09). (12)

Equation (11) is reasonable since every angle is
equally likely. Equation (12) is assumed in view of
the fact that the angles of the consecutive accelerations
are not necessarily equal but usually coupled.
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The following parameters were used in our design:

7 =Ty + IR - T),
max (13)
1 _ _ _
o, = ETG, Ty = 10, 7o = 30
B, =0.1, Aoy = 37, oy =w/12,
(14)
PO:{O.6 ak;éamax.
0.8 G = Qo

The random sojourn time 7 was rounded to its nearest
integer and the initial acceleration a; was set to zero.
A random scenario similar to the above is also
proposed for testing fault detection and identification

algorithms in [13].

The use of such a random test scenario alleviates
the dependence of the MM algorithm performance on
various artifects of a scenario. With such a random
scenario, it is difficult, if not virtually impossible,
to design a VSMM algorithm with subtle tricks that
are effective only for certain scenarios. Of course, it
cannot prevent intentional cheat. ,

The most serious drawback of such a random
scenario is that the peak estimation errors and the
steady-state errors are no longer separable when the
results are averaged over multiple Monte Carlo runs.
For this reason, several deterministic scenarios were
also used so that the peak and steady-state errors
can be seen well. Due to space limitation, however,
only some results for the random scenario and the
following deterministic scenario are included here.
The system mode sequence, characterized by the
sequence of accelerations a,, is specified by

{0,071 1 <k<30
[18,22} 31<k<45
[2,37) 46 <k <55
[0,0V 56 <k <80
a, =< [25,2] 81 <k <98 (15)
[-2,197 99 <k<119
[0,-17 120 <k <139
[38,—17 140 <k <150
(0,01 151 <k <160

Note that both the random and deterministic
scenarios designed here have more frequent mode
transitions than in most practical situations. This-is
less favorable to a VSMM algorithm, including the
MGS algorithm, than to an FSMM estimator. This
is explained later. Scenario (15) with so frequent
mode transitions was designed so that many different
mode transitions are.incorporated into a single mode
sequence.
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IV.  PERFORMANCE MEASURES OF
MULTIPLE-MODEL ESTIMATORS

The three most essential components of the
evaluation of an MM estimator are its state estimation
quality (e.g., rms position and velocity errors), mode
identification capability (e.g., mode probabilities), and
computational complexity (e.g., flops and CPU time).
General considerations and specific criteria for such
an evaluation were given in [8]. Other components
may include robustness, parallelism, implementability,
etc.

In this work, the following additional measures
of the mode identification capability based on the
theoretical results of [8] are used.

1) The first additional measure is the percentages
of correct mode identification (CID), incorrect mode
identification (IID), and no mode identification
(NID).

a) A correct identification (CID) is obtained if the
model that is closest to the system mode in effect at
the given time has the highest probability that exceeds
a threshold (say 0.5).

b) An incorrect identification (IID) is obtained if
the model with the highest probability that exceeds the
threshold is not the one closest to the system mode in
effect at the given time.

¢) It is indecisive (NID) if no model has a
probability above the threshold.

This measure is extended to include percentages of
missed fault detection and false alarm in [13].

2) The average distances between the system
mode in effect at a given time k and the models used
in the MM algorithm at k, given by

average modal distance at k

N
1
= I_V—Z Z s, —my||P{sy = m; | 5, € My, 2"}

n=1meMy;

(16)

where N is the number of Monte Carlo runs and
lls, —m,|| in the current example is simply the distance
in the acceleration space (i.e., the distance between
the true acceleration and the acceleration assumed in
model m,).

3) The rms error of mode estimation, defined by

N
1 R
rms mode error at k = \J N Zl lise _SklkHZ (17)

where the mode estimate is defined by

Sge= Y. mPls,=m|s eM.Z}  (18)

m;eM;
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and the average rms error is defined by
K

average Ims €rror = Z(rms error at k).
k=1

In the above sy, §;;, and m; could be vector-valued
and thus if Euclidean norm is used, then

19)

5, = Seell> = (5 = Se) (s — S

and similarly for ||s, —m;].

Note the difference and similarity between the
modal distance and mode error. For our example, the
mode space is simply the acceleration space. Thus, the
modal distance is the weighted sum of the distances
between the true acceleration and the acceleration
vectors used in the models at the time, while the rms
mode error is the rms deviation of the weighted sum
of the accelerations assumed in the models from the
true acceleration.

Use of the CID, IID, and NID for the comparison
of MM estimators with different total model-sets
in general does not make sense. In fact, misleading
results may be obtained. For example, it is almost
always the case that a 2-model MM estimator has
better CID, IID, and NID than a 100-model MM
estimator for the same problem because these
percentages do not consider how fine the mode
space is quantized by the model-set. The use of the
average modal distance or rms mode error does not
have this limitation. It is, however, less revealing
and less handy. Also, for some practical problems,
it may be hard to define such a distance or error
if different models are characterized by distinct
quantities, rather than different values of the same
quantity.

V. SIMULATION RESULTS AND DISCUSSIONS

All results presented in this section are over 500
Monte Carlo runs.

It was found that the use of (second-order)
nearly constant velocity (CV) models [2] with
specified expected accelerations led to significantly
better results than (third-order) nearly constant
acceleration (CA) models [2] for both MGS and IMM
algorithms. Also, poor results would be obtained if
the accelerations of a model were taken as part of
the state. This is due to the fact that the accelerations
of all models in the group would be driven by the
measurement sequence from their specified (expected)
values towards the true system mode and thus the
model-set (group) would no longer be able to provide
a coverage wide enough to handle effectively sudden
jumps in the system mode that may occur later.
Therefore, the results reported here are based on CV
models with specified accelerations.

The rms position errors, velocity errors, and
their corresponding standard deviations of the MGS
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Fig. 5. (a) RMS position errors and standard deviations for

random scenario. (b) RMS velocity errors and standard deviations
for random scenario.

estimator and the FSIMM estimator that uses all 13
models are shown in Fig. 5 for the random scenario
and in Fig. 6 for the deterministic scenario. Note that
both algorithms have their rms errors significantly
higher than their corresponding standard deviations
during the mode transition transients, which is the
thrust for model switching. Since the acceleration is
specified in m/s®, the results are in meters and seconds
(the sampling interval T = 1 s). In fact, the same
results hold for any physical dimension, such as feet,
depending on the dimension used for the measurement
z and the O and R matrices.

Figs. 7 and 8 show the average modal distances,
defined by (16), and the rms mode errors, defined
by (17), where |[s, — S| is actually the acceleration
estimation error (i.e., the difference between the true
and estimated accelerations) obtained in nth run,

s = Suell® = (ap —ap)* + (@} — a2)? (20)

~1

a .

~ k| _ i _ k

a, = {Az} = g aP{s,=m;|s, €M,z"}
i my My,

and a' is the acceleration vector assumed in model m;.
Note also that each model used is a nearly constant
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Fig. 7. RMS mode errors and average modal distances for
deterministic scenario.

velocity one with a specified acceleration and thus the
acceleration is not part of the state.

Fig. 9 shows for the deterministic scenario, the
probabilities of the models that are closest to the
system mode in effect at the given time, given by, for
the scenario (15),

1 1 6 6 1 1
/,bl,...,/,t30,l,b31,...,ﬂ45,.,.,/_1/151,...,/,1/160.

It provides a compact way of presenting the model
probabilities when many models are used in the MM
estimator.
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TABLE I
Percentages of Correct (CID), Incorrect (IID), No (NID) Mode Identification, Relative Flop Ratio, Average Modal Distance, RMS Mode
Errors, Average RMS Position (RMSPE) and Velocity (RMSVE) Errors of MGS and IMM Algorithms

Modal Mode
flops CID (%) 1ID (%) NID (%) Distance Error RMSPE RMSVE

Random scenario:

MGS 0.366 75.32 20.19 4.49 7.25 8.50 38.98 17.55
IMM 1 75.24 19.59 5.17 7.31 8.45 38.50 17.33
Deterministic scenario:

MGS 0.356 75.97 20.72 3.31 8.05 7.17 37.84 19.68
IMM 1 76.24 20.15 3.61 8.05 7.09 37.11 19.32

N
=3

— modal distance (IMM)
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— - mode error (IMM)
—** mode error (MGS)
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g. 8. RMS mode errors and average modal distances for
random scenario.
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Fig. 9. Average probabilities of model closest to true mode for
deterministic scenario.

Table I lists the computational complexity in terms
of relative FLOP ratios, the quality of maneuver
(mode) status reports, in terms of the percentages of
CID, IID, and NID, average modal distances, rms
mode errors, and rms position and velocity errors of
the MGS and IMM estimators. 0.5 was used as the
threshold for the mode identification percentages. The
CPU time used for the two algorithms could not be
reported because of a bug in the MATLAB “cputime”
function (it may report negative time).

Note that our design is fairly general (not quite
specific to the problem considered and no ad hoc
tricks were used), except for the candidate activation
logic, because our purpose is to compare the general

MGS algorithm with the IMM algorithm. Better
results can be obtained for the MGS algorithm by
fine tuning the design according to the specifics of
the problem.

It should be emphasized that a comparison of
the computational complexity between a VSMM
algorithm and an FSMM algorithm depends to a large
degree on the test scenarios used and the complexity
of the single-model-based filters. This is clear for
the MGS algorithm since it operates fewer filters
at any given time than the FSMM algorithm at the
cost of computing group adaptation logic and filter
initialization (which are virtually independent of how
sophisticated the model-based filters are). A scenario
with more frequent mode transitions, as those used
here, will increase the computation of the VSMM
algorithm significantly while that of an FSMM
algorithm will remain unchanged. Furthermore, the
more sophisticated each model-based filter is, the
more superior the MGS algorithm is to the IMM
algorithm. In view of these facts, the test scenarios
considered here are in favor of the IMM estimator
rather than the MGS algorithm since 1) second-order
(nearly constant velocity) Kalman filters were used,
which are among the simplest; 2) the system mode
undergoes frequent jumps in our test scenarios.

As such, it can be reasonably concluded that the
superiority of the proposed MGS algorithm will be
more substantial when tested with more realistic
scenarios using more sophisticated single-model-based
filters.

Next, assume the target being tracked may be a
fighter aircraft that may have a piecewise constant
acceleration up to 8g (80 m/s?) in any direction.
Suppose that the same 13 models of (1)-(2) are used,
except that the expected accelerations are scaled up by
a factor 2. Consider the following MM estimators.

IMM13: Uses all 13 models of Fig. 2 with
transition probability matrix of (7).

MGS: Uses all the 13 models of Fig. 2 with Cover
C,, defined by (3), and transition probability matrix of
).

IMMS: Uses the 5 models of Fig. 10(a).

IMM9: Uses the 9 models of Fig. 10(b).
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TABLE II
Percentages of Correct (CID), Incorrect (IID), No (NID) Mode Identification, Relative FLOP Ratio, Average Modal Distances, RMS
Mode Errors, Average RMS Position (RMSPE) and Velocity (RMSVE) Errors of MGS and IMM Algorithms

Modal Mode
flops CID (%) 1ID (%) NID (%) Distance Error RMSPE RMSVE
MGS 0.392 72.87 23.84 3.29 15.60 18.34 5048 41.55
IMM13 1 72.83 23.56 3.61 15.65 18.25 49.86 41.16
IMM9 0.572 77.67 17.15 5.18 18.68 18.82 58.21 38.53
IMM35 0.250 80.53 18.15 1.32 23.46 26.23 55.60 52.73

Note: Warning: Do not compare CID, IID, and NID for algorithms with different total model-sets.

m11
I
0.2]].01
|
m—l\g, {1 ) @

Fig. 10. Digraph assumed in IMMS and IMM9 algorithms.

In Fig. 10, all the other transition probabilities
are given by symmetry and the self-transition
probabilities may be obtained from 1 minus the sum
of all transition probabilities from a model. Note that
all models are allowed to switch only to its nearest
neighbors directly.

Consider the semi-Markov random scenario of
Section 3 with a maximum acceleration ¢, = 75 and
B=F,=03.

This example demonstrates the benefit of using
a large number of models and the performance
superiority of the MGS estimator to the FSIMM
estimator with comparable computational
requirements.

Note that as explained in the previous section,

a comparison of the CID, IID, and NID of MM
estimators with different total model-sets is
misleading, as in Table II. The average modal distance
and rms mode error are better in this case.

Fig. 11 shows, for the second random scenario, the
rms position errors of the MM estimators.

In fact, comparisons between the MGS and IMM
algorithms were also conducted for several other
deterministic scenarios in which the mode transitions
occurred less frequently and/or with a smaller jump
in magnitude (i.e., with a smaller jump distance
in the mode space). The results showed additional
improvement of the MGS algorithm on the IMM
algorithm. Due to space limitation, these results are
not presented here.
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From our simulation results, including those not
presented here, it is clear that the MGS algorithm
has computational complexity only about one-third of
that of the IMM estimator while they have essentially
identical performance. If the total model-set is larger,
then this computational reduction can be expected to
be more substantial. On the other hand, if the same
computational constraints are imposed on the MGS
and IMM algorithms, then the MGS estimator will
outperform the IMM algorithm significantly.

It should be pointed out that the actual mode
identification quality of the algorithms is more or less
better than those listed in Tables I and II, especially
for the random scenario, because the system mode
may locate somewhere which has an almost equal
distance to more than one model.
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It should also be pointed out that although only
jump linear systems are considered for simplicity, the
MGS algorithm is applicable to other hybrid systems.
It’s applicability is in principle as wide as that of the
IMM algorithm.

VI. CONCLUSIONS

An attractive MM estimator, called MGS
algorithm, has been presented in Part III [10]. It is
the first MM estimator with variable structure that is
general enough to be applicable to a large class of
state estimation problem compounded with structural
and/or parametric uncertainties or changes and is
easily implementable. The potential improvement in
cost-effectiveness of the MGS algorithm on the IMM
estimator has been illustrated via a simple example of
fault detection and identification in [10]. It has been
demonstrated in this paper how this algorithm can be
designed via an example of tracking a maneuvering
target. General guidelines for such a design have
also been presented. Simulation results in terms of
e.g., rms state and mode estimation errors, mode
probabilities, percentages of correct, incorrect and
no mode identification, average distance between the
true mode and the models used, and computational
requirements, have been presented for both a fairly
complicated deterministic scenario and a more realistic
random scenario in which the acceleration is a
semi-Markov process. They demonstrate that the MGS
algorithm is substantially more cost-effective than
the IMM estimator using all models: Compared with
the IMM algorithm for the example considered, the
MGS estimator has either a substantial reduction in
computation while having the same performance or a
significant improvement in performance while having
lower or comparable computational requirements. In
view of the great dependence of the performance and
computation of an MM algorithm on the test scenarios
and performance measures, the random test scenario
and the new performance measures proposed will also
prove to be useful for the evaluation of many other
MM algorithms.
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