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Numerically Robust Implementation of
Multiple-Model Algorithms

Standard implementation of multiple-model (MM) estimation
algorithms may suffer from numerical problems, especially
numerical underflows, which occur when the true model is vastly
different from one or more models used in the algorithm. This
may be devastating to the performance of the MM algorithm,
Numerical robust implementations of some of the most popular
MM algorithms are presented. Simulation results are provided
to verify the proposed implementation and to compare with the
implementations with a lower bound.

I. INTRODUCTION

Multiple-model (MM) method is a powerful
adaptive approach. It has received a great deal of
attention in recent years due to its unique power in
handling problems with both structural and parametric
uncertainties and/or changes and in decomposing a
complex problem into simpler subproblems. Its great
recent success ranges from target tracking to fault
detection and isolation, and from biomedical signal
processing to process control (see, e.g., [6]). In his
Bode Lecture given at the 1995 IEEE Conference on
Decision and Control, Kumpati S. Narendra advocated
this powerful, robust, and adaptive method.

In the MM approach, a set of models is designed
to represent the possible system behavior patterns
or structures, called system modes, and the overall
estimate is obtained by a certain combination of the
estimates from the filters running in parallel based
on the individual models that match (or represent)
particular system modes.

The MM method was initiated in [8]. Many
applications of this MM estimator can be found in the
literature under various names, such as the “multiple
model adaptive estimator,” “parallel processing
algorithm,” “partitioned filter,” “self-tuning estimator,”
“filter bank,” and “Gaussian sum adaptive filter” [4]
(see [6] for the long list of references therein). These
names suggest the structure, features, and capability of
this “first-generation” MM estimator, to be referred to
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as the static MM (SMM) algorithm. This early work
did not consider jumps in system mode and led to

the noninteracting algorithms in which individual
model-based filters do not interact with each other. In
the more recently developed interacting (or switching,
dynamic) algorithms, such as the Generalized Pseudo
Bayesian (GPB) and the Interacting Multiple-Model
(IMM) estimators [1-3], the system mode is more
generally assumed to be able to jump among members
of a mode set, which is usually modeled as Markovian
switching among models. For details, the reader is
referred to the books [1, 2, 16] and the survey work
[6, 10].

The standard (i.e., straightforward) implementation
of the MM algorithms may have numerical problems
in some situations. The most commonly encountered
one is that it may lead to numerical underflow or
overflow in the calculation of the model probabilities
for certain model sets under some scenarios. Such
underflows may cause unacceptable performance
of the MM algorithms if the true mode undergoes a
jump and has a large distance from at least one of the
models assumed. A typical application area of MM
estimation in which such situations usually occur is
fault detection and identification. Such situations may
also occur in target tracking. It is also not acceptable
for the development of commercial software.

A common technique to circumvent the numerical
problems of the standard implementation is to place
a lower bound on the model probabilities so as to
prevent any model probability from becoming too
small. Although this technique enables each model
to be practically activated quickly, it is only an ad
hoc trick without solid theoretical justification and
thus there is no guarantee that it will work well
in most cases. For example, how large should the
lower bound be? In addition, whenever it is used, the
implementation is not an exact implementation of the
MM algorithm.

This paper presents numerically robust and exact
implementations of the SMM, IMM and GPB1
(ie., first-order GPB) algorithms. The key idea 1s to
calculate recursively the various model probabilities
only in their exponential forms to avoid underflows
and overflows. In other words, only the exponents
of the model probabilities are calculated. These
implementations overcome the numerical problems
with the standard implementation. They are also
essential for the development of commercial software
of MM algorithms.

The remaining of the paper is organized as
follows. Section II describes the numerical problems
with the standard implementation of the MM
algorithms. The numerically robust implementations
are derived and presented in Section III. Simulation
results of a simple fault detection and identification
example are given in Section IV to verify the
numerical robust implementation and to compare with
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other implementations. The paper is concluded with a
brief summary of the results.

Il. NUMERICAL PROBLEMS WITH STANDARD
IMPLEMENTATION

There are several MM algorithms that are popular

- for adaptive estimation. Among them the.Interacting

Multiple-Model (IMM) algorithm [3] and the SMM
algorithm, sometime known as Multiple-Model
Adaptive Estimator (MMAE) (see, e.g., [9]), are the
most popular ones.

Consider the following jump linear systems:

Xear = Felsp )% + Gr(Ses Dy + D8 Wi (5241)
(D
7, = H ()%, + v (s) (2)

where s, is the true mode (behavior pattern) of the
system at time k. Denote by superscript i the quantity
pertinent to model m;. For example,

F;cl = Fk(sk+l)|sk+l=m,-'

Tables I and II give one cycle of the SMM and IMM
algorithms with a model set M for the above simplest
stochastic hybrid system, where z* é{z,,zz,...,zk}.

It can be observed that the IMM algorithm is a
generalization of the SMM algorithm in the following
sense:

SMM = IMM|

- $0i — 0f —pi .
i‘klk-l‘P‘k—l”‘z_uk_l ""k-nk-l ’f;c—llk—l =B 11

3

The major numerical problem with the standard
implementation of the SMM or IMM algorithm is the
possible underflow in the calculation of the model
probabilities. This problem usually exists when the
true system mode is very different from one or more
models used in the algorithm. A typical application
area in which such problems arise is fault detection
and identification where some models are necessarily
quite different from the system mode in effect.

In the SMM algorithm, this problem is caused by
the following calculation of the model probability

1
4
x eXpl—3 (2 — L) (S 7 @ — Zhge1 )btk

“

. L 1
pe = =Lty = —[2mS;| 72

where ¢ is a normalization factor. When the true
mode is very different from model i, z, —Zf,_, is
likely to be very large but S, will not be as large as

it should be since it is calculated under the assumption
that model i is the correct model. As a result, the
normalized measurement residual squared (z;, — E,ilk_l)’

SNz - 2,’;,,(_1) will be very large and thus
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TABLE I

One Cycle of SMM Algorithm with Kalman Filter

Model-conditional filtering [Vm ;i € M]:

predicted state:

predicted covariance:

measurement residual:
residual covariance:

filter gain:
updated state:

updated covariance:

Mode probability update [Vm; e M]:
likelihood function:

mode probability:
Combination:
overall estimate:

overall covariance:

5 = JoLk=1v . pJ J J
¥ =Elx | ml, " = B &y + Gl + T W

P LB, - )5, — B | m, 21

= F}cj—lﬁc—ﬂk—l(ﬁcj-l)/ +T, 0, @)

A . h
# 2~ Elg | m,2" ) =g - H{¥ ~%,

i 2 cov(z/ | mi, 211 = HIP (HIY + R
Ki= P’(H;)'<SJ)-
:rlilk SElx, |m], 21 =% + K7/
klk _E[(xk lc'lk)(xk k|k) Imk’zk] =P - KIiSiKIY

L& plz | ml, 271 = NTZ30,89)
[
Zi“;;—llj
X —E[Xk |2] = Z, k|k/’
P = E[(xk —xklk)(xk - xk|k) 12]
= Z 5 et Goege _“%ch)()}ka —}I{lk)’]“i

s
Wl EPim] 12 =

TABLE II

One Cycle of IMM Algorithm with Kalman Filter

Model-conditional initialization and remltmhzatlon (mixing) [\/m eM]:

predicted mode probability:
mixing weight:
mixing estimate:

mixing covariance:

Model-conditional filtering [V ;€ M]:

predicted state:

predicted covariance:

measurement residual:
residual covariance:

filter gain:
updated state:

updated covariance:

Mode probability update [vm; e M1
likelihood function:

mode probability:
Combination:
overall estimate:

overall covariance:

k=1
e 2P im0y = Z, i1
#[“ =P{mk—l |mk,Z _l} =7rijl"'k—|//1'k|k—l
k=17 = ki ili
m =308 Y

P 2 E[(x, — 2)(x, - 2%) [ m],251]

=) R We— | HEY -F |k~ DG —

woi B
M ZEx,_, |

% tk— Az

b éE[Xk Iml, 2 1= F} 3% +G_u_ +T] Wl |
P L B, - F)(x, - B | m], 2]
ZFLPIELY D0 ()
4 =Zk ~Ely | m,2") = 4 ¥ -7,
SIS covlz! | mf, k") = HIF (HJY + R}
Ki =P (H]Y(s))"!
%”;V‘ éE[xk 'mlj;,lk] = fj +Kj2j
Bl S ElCx, = # )~ %, | m] 2] = P/~ Ksi (i

U £ plz | m], 2] = NT2:0,57)
'“'i[k—lu

Zi%k—nl‘i

e éE[xk |21 = Z;%k“i

Bk 2 B[y _}k]k)(xk =) 12

= Z (5] Kl * G — Ic|k)(xklk k|k) 1]

A .
1y =P{m, |2} =
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the likelihood Lj will be extremely small, which may
lead to underflow by itself or by the cumulative effect
of the recursion (4).

In the IMM algorithm, the problem is less severe
but underflow may still occur if certain transition
probabilities are zero. The model probabilities are
updated in the IMM algorithm using the recursion

A 1 -
#i = 'C'Li»“/]qk-l = ;|27TS£I 1/2

x exp[—3 (g — 21{|k—l)l(sl‘£)—l(zk - 2/{|k-l)]“1{|k—l

where the predictéd model probabilities are given by
’J‘i|k-—l = Z”rijﬂ;.c—l‘

If m;; —P{mk | mk J#0 and pj_, was not small,
then 1 ¢ is not extremely small even if 1/ |, =0
and there will be no cumulative effect resulting
in underflow and thus an underflow may-only be
caused by an extremely small (underflow or close to
underflow) likelihood value. If, however, ;= 0 for
all models i whose previous probability xi_, was not
small, then g, | is zero or extremely small and the
cumulatlvc ef%ect may lead to an underflow for both
”k|k , and z;. When an underflow occurs to ,uklk 1
an overflow will occur when calculating the mixing
weight 'u’;clj—l[k—l'

This paper presents an implementation of the
SMM and IMM that avoids the above-mentioned

numerical problems.

oy

IIl.  NUMERICALLY ROBUST IMPLEMENTATION

Common practice to avoid the above-mentioned
numerical problems of the SMM algorithm is to place
a lower bound (say 10~%) on each model probability
at each time so that none of the models are “dead”
[9, 12, 15]. This trick kills two birds with one stone.
It also makes it much faster to revive a model that
would be “dead” without such a lower bound (i.e.,
to increase the model probability to a significant level)
if the situation deems it appropriate. This trick is also
applicable to the IMM algorithm.

The use of a lower bound reduces the maximum
possible probability of a model from 1 to 1 —(N —
1)b, where N is the number of models used and
b is the lower bound value. This will degrade the
(steady-state) performance of the MM algorithm at
least to some degree if the dominating model actually
matches the true mode, which is usually the case
most of the time. This is the price paid to have a fast
revival capability. Probably more importantly, the
performance of the MM algorithm usually depends
on how large the lower bound is set to and the lower
bound value is usually obtained via a trial-and-error
design process. How this value should be set to is
affected by many factors, such as how many models
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are used, how quickly the revival process should

be and how good the steady-state performance is
expected. There are no general guidelines for choosing
the lower bound values.

The IMM algorithm has a built-in fast revival
capability due to the fundamental assumption that the
true mode of the system may jump. This possibility
of mode jumps is accounted for by the use of a

non-zero probablhty of mode transition. Thus even
if gy, =0, ,uk‘k will still be non-zero provided that

the transition probablllty m;; # 0 for one of the models

with a non-zero probablhty at k— 1. As aresult, it is

not necessary to place a lower bound on the model

probabilities. Rather, it is more reasonable to place a

lower bound (say 107°%) on the transition probabilities

to avoid the numerical underflow mentioned above.
The basic idea of our numerically robust

' implementation of the SMM and IMM algorithms

is to put the various model probabilities in their
exponential forms and calculate only the exponents.
Since SMM algorithm can be obtained from the
IMM algorithm using (3), only the numerical robust
implementation of the IMM algorlthm is derived
below.

Assume it is known from cycle k — 1 that oy =
e %1 or ak | = = —Inpyt_,, Vi, are given. Let

A; =da;_; =min{gj_, : 7; # O}. 5)
Then, -
A A AL — LA i
Hrp—1 = €7 Hype—y = € Z”ij“k—l
i
=3 me @ > 1, > 0. ©6)
i
Hence there cannot be an underflow for ;L:l’}c_l and
thus let
A; —a Aj
Mgy = € Y= o= —ln/jkl’k_1 > 0. @

The mixing weights are given by

i P
i _ Tijfk-1 _”ijeA’#k—l
P—1 = 7 T ey
Hipe—1 Flk—1
~(@,_,~4)
e G174 .
2] - —(a,_, ~Aj+o;
= ————————AI— = Wije @, —Aj+e)) (8)
Frgike—1

and thus 42 will not have an overflow, although
it may have an underflow. The underflow of u
does not matter at all since p,kl | is never used in the
calculation of the model probabilities and when it
underflows the corresponding weight in the estimate
and covariance mixing is extremely small and can be
treated as zero.

Next let

LL=eh ©)
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where L is the likelihood of model i at k. Then the
model probability at k is updated as follows:

) J Aj o J J

i Hrk-1la ey L
k"~ i i T LA i i
Zirulqk—l[‘k € ’Eiﬂk\k-llﬂc

- "Q\Ik—le—ﬂi _ e~%eFi
St Al e B L eve e el
_ 1
2iexpl(A; + B, + o)) — (A, + B, + )]
Now let
m= argmjin(Aj +0;+a)). 10)
Then it is clear that
gt = max il # 0
J
and thus 44* can be calculated by
W= 1
1
I (12)

although some (but not all) terms in the denominator
of (11) may underflow, which, however, poses no
problem here.
Note now that
_/L_fc_ B u;'clk—lL;; _ eAmeAiﬂL|k—1e_ﬂi

HE g LY

Ai pAm 1 —Bm
etietmpy, eP

A
= FHECL (B~ AB) A+ o+ B)—CAi b )
Am °
Fgjge—y

Thus,

e 8 fh = elAm+om+ Bn)~(Aick i i)

which leads to

a;;=a;c"+(Ai+a,-+ﬂi)—(Am+am+ﬂm)’
Voo (13)

This completes the cycle.
For the SMM algorithm, the following can be
derived similarly:

= l"’l{—.lLlj(.- _ e"‘”‘:—{e‘ﬁf
XL, e e h
_ 1
2iexpl(aq_ + 6)) —(d_, + B)]

m= argmjn(a,{_l + ﬂj)
J
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1

= max J = - 75 0
He = = S expl(a, + By) — @y + B))
ag = ~Iny ‘
S Y. ST S el
k pr L e %1e~Pn

= P +Bn)~ (a4, + )

afC =ay + (a;;_l +B)— (@, +B,)

Note that model m in the last equation above has the
highest probability at k& but not necessarily at k — 1;
that is, ' | is the negative exponent of the probability
of model m at k — 1 rather than those of the highest
model probability at k — 1. That is, af and a} | have
the same m.

Based on the above derivation, the numerical
implementation of the SMIM algorithm is simply to
replace the mode probability update step with the
following

B, =@ () 'Z + Lin|2ns|
m = argmin(d,_, + ;)

mo_ 1
He = S~ explay , + By) — @, + )]

ay = —lrip,'c"
= A + (@G + B) — (& + B,
1k éP{mi |4} = e,

The numerically robust implementation of the IMM
algorithm is given in Table III. Obviously, dropping
the mixing step in the above implementation of

the IMM algorithm results in a numerically robust
implementation of the GPB1 algorithm.

IV.  EXAMPLES OF FAULT DETECTION AND
DIAGNOSIS

A. Simple Example

A simple example of fault detection and diagnosis
is given first,

Consider the following simple scalar system with
dynamics

X = Llx +w, (14)
and two-dimensional measurements
0.5
g = [I.Z]x,fkvk 15)

with w, ~ N(0,0.12), v, ~ N(0,1), and initial
condition x;, = 0.1, 1, or 10. The initial state
covariance was as Ry = 99 for all scenarios. The initial
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TABLE III

One Cycle of the Numerically Robust IMM Algorithm with Kalman Filter

1.  Model-conditional initialization and reinitialization (mixing) [Vm eM}:

mixing estimate:

mixing covariance:

2. Model-conditional filtering [ij eM]:

predicted state:

predicted covariance:

measurement residual:
residual covariance:

filter gain:
updated state:

updated covariance:

3. Mode probability update [ij eMl:

A»-ak l--mm{a,( 1 sy # 0}
a; =—In Zw .€ ~ 1A
'|J _(";( 1_‘4!"‘“)

Hy— 1‘7r i€

3 _E[xk—l | my, 2] = Zi%—l[k—l‘u"ll

poJ QE[(xk — 3%)(x, - 399 |mj -1
=2 R o + Y X 1k— DEY =% AT

E[x|m’ #=F 3% +G]_u_ +T] #_,

P’ =E[(xk—xf)(xk—x/)’]mk,z""]
=F/ pYiF/ ¥y +T/ J 1" ’
IS Al
=cov[z1 |mk,zk"] = H,(’PJ(H[)' +Ri
i =P )y sy
x,"l,‘ ﬁE[xk |mi, 2] =% + Kizi

Ry 2Bl ~ ¥, — 5 | 21 = P~ Kisi(ly

:8 - l(zi)((si)—lzi+ llnizﬂ_sil

m = argmin;(4; + 5; +a)

1

He =

m =

ak-A +o;+Pital —(A

> oexpl(A,, + B, + a,,,> A+ B+ )]

"

—Inpy
+a, +06,)

m m

I P{mk Iz"} = e"“l

4.  Combination:
overall estimate:

overall covariance:

. A N
xk|k =E[xk |Zk] = iji“cﬂi

a . N
P =Elx, = xk|k)(xk _xlc|k)l 2]

=32 1B+ G = 5 )Gy — Al;\k)l]“i

state estimate for every model was set to be equal
and as a random variable: 5:010 ~ N (xy,B). System
and measurement noise covariance matrices were

set as @ = 0.12 and R = diag(1, 1). The initial mode
probability for each model was set uniformly as pf) =
1/5 fori = 1,...,5. The mode transition probability
matrix was designed as

095 0.025 0025 O 0

005 090 0 005 0 |
M=005 0 09 0 005| (16)
0 01 0 '090 0
0 0 01 0 090

Note that the measurements are noisy scaled versions
of the state from two separate sensors. Suppose that
a total failure or partial fault may occur to sensor

1; that is, 0.5 may become 0O (total failure) or any
number in between 0 and 0.5 (partial fault). Suppose
that sensor 2 may also suffer from a total or partial
fault.
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Fig. 1.

Topology of total model set.

Assume that the following 5 models constitute the
total model set for the MM approach:

[0.5] [0.25] [O,S]
my my my :
1.2 1.2 0.6

e [1(.)2] s [065]

The topology of the model set assumed is shown in
Fig. 1, where the self-transition probabilities are not
shown.

Consider the following simple fault scenarios.

7)

S1. The system has no fault throughout the time.
S2. The system has no fault from & =0 to
k = 160, except that a sensor 2 total failure occurs at
k = 100 and lasts until k£ = 120.
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TABLE IV
Comparison of Various Implementation of SMM and IMM Algorithms for Scenario S1

CID (%) IID (%) NID (%) RMS Error Max Error Flops Modal Distance  Mode Error
x, =0.1:
SMM 80.94 7.74 11.32 0.4266 1.078 984 0.0658 0.0747
SMM-nr 79.89 14.68 543 0.4074 0.6263 1084 0.1384 0.1464
SMM-1b 80.81 7.34 11.84 42.900 620.6 1089 0.0699 0.0779
IMM 77.36 14.11 8.53 0.4812 1.078 1247 0.0825 0.0972
IMM-nr 81.56 3.99 14.45 0.4427 1.222 1336 0.1011 0.1095
IMM-lb 83.14 1.99 14.87 0.4267 1.116 1394 0.0724 0.0829
Xy =1
SMM 93.46 3.41 3.13 0.4031 1.138 984 0.0222 0.0240
SMM-nr 93.42 2.65 3.96 0.4059 1.043 1084 0.0297 0.0296
SMM-Ib 93.42 3.36 3.21 186.9 2715 1089 0.0248 0.0261
IMM 92.22 4.82 2.96 0.4314 _ 1.138 1244 0.0264 0.0337
IMM-nr 92.98 2.63 4.39 0.4060 1.229 1325 0.0321 0.0334
IMM-Ib 94.54 1.66 3.79 0.4014 1.175 1394 0.0225 0.0251
X =10:
SMM 99.92 0.08 0 0.3783 1.259 984 0.000397 0.001002
SMM-nr 99.92 0.08 0 0.3783 1.259 1084 0.000397 0.001002
SMM-Ib 99.92 0.08 0 1817 2.643e4 1089 0:002932 0.002902
IMM 99.92 0.08 0 0.3786 1.259 1241 0.000396 0.001007
IMM-nr 99.92 0.08 0 0.3785 1.248 1312 0.000433 0.001079
IMM-Ib 99.92 0.08 0 0.3784 1.236 1394 0.000407 0.001052
TABLE V
Comparison of Various Implementation of SMM and IMM Algorithms for Scenario S2
CID (%) 1ID (%) NID (%) RMS Error Max Error Flops Modal Distance Mode Error
xo =0.1:
SMM Diverge »
SMM-nr 71.77 22.81 543 548.2 8.447¢3 1084 0.1946 0.2027
SMM-1b 80.19 7.97 11.84 640.4 1.348e4 1089 0.0738 0.0819
IMM Diverge
IMM-nr 81.56 3.99 14.45 80.55 2.202e3 1336 0.1011 0.1095
IMM-1b 83.14 1.99 14.87 0.47 1.116 1394 0.0724 0.0829
X =L
SMM Diverge .
SMM-nr 85.30 10.78 3.93 2397 3.696¢e4 1084 0.0859 0.0859
SMM-1b 92.80 3.99 321 2801 5.897e4 1089 0.0288 0.0301
IMM Diverge
IMM-nr 92.98 2.63 439 351.3 9.633e3 1325 0.0321 0.0334
IMM-1b 94.54 1.66 3.79 0.4445 1.175 1394 0.0225 0.0251
X =10:
SMM Diverge
SMM-nr 91.80 8.20 0 2.333e4 3.597e5 1084 0.0567 0.0573
SMM-Ib 99.30 0.70 0 2.726e4 5.739¢5 1089 0.0069 0.0069
IMM Diverge
IMM-nr 99.92 0.08 0 3417 9.376e4 1312 0.0004331 0.001079
IMM-1b . 99.92 0.08 0 04214 1.236 1394 0.0004073 0.001052
S3. The system has no fault from k = 0 to The fault detection and identification results over
k = 160, except that a sensor 1 or 2 (with equal the time period considered depend to a large degree
probability) total failure occurs at a random time on the initial state of the system because the noise
k = 7, and lasts for a random period of time 7,, where levels relative to the magnitude of the state vary with
7, ~N(100,5%) and T, ~ N(20,2%). the initial value. Tables IV-VI give comparison results
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TABLE VI
Comparisons of Various Implementation of SMM and IMM Algorithms for Scenario S3

CID (%) IID (%) NID (%) RMS Error Max Error Flops Modal Distance Mode Error
x5 =0.1:
SMM Diverge
SMM-nr 73.01 21.59 5.40 738.3 4.718e3 1084 0.1752 02175
SMM-Ib 81.75 7.37 10.88 935.8 6.867€3 1089 0.0695 0.0824
IMM Diverge
IMM-nr 82.71 4.17 13.12 115.1 1.011e3 1335 0.0995 0.1034
IMM-Ib 84.21 1.81 13.99 0.4484 1.093 1394 0.0705 0.0765
xy =1
SMM Diverge
SMM-nr 85.28 1115 3.57 3190 2.317e4 1084 0.0740 0.1173
SMM-1b 93.03 4.18 2.79 4036 3.218e4 1089 0.0293 0.0422
IMM Diverge
IMM-nr 93.05 3.00 3.95 497.2 4.399¢3 1325 0.0339 0.0360
IMM-1Ib 94.23 2.08 3.69 0.4347 1.089 1394 0.0245 0.0280
X = 10: .
SMM Diverge
SMM-nr 91.76 8.24 0 3.145e4 2.232eS 1084 0.0423 0.0847
SMM-1b 99.54 0.46 0 3.989¢e4 3.206e5 1089 0.0051 0.0151
IMM Diverge
IMM-nr 99.87 0.13 0 4.937¢3 4.334e4 1312 0.0005017 0.001159
IMM-Ib 99.88 0.12 0 0.4037 0.9496 1394 0.0004673 0.001117

of the SMM and IMM algorithms with standard
implementation (SMM and IMM), numerically robust
implementation (SMM-nr and IMM-nr) and with
lower bound (SMM-1b and IMM-Ib), for the initial
state x5 = 0.1, x, = 1, and x; = 10, respectively,
where SMM-Ib had a lower bound 1073 on the mode
probabilities and IMM-Ib had a lower bound 1073%
on the mode transition probabilities.

In the tables, a correct identification (CID) is
obtained if the model that is closest to the system
mode in effect at the given time has the highest
probability that exceeds a threshold (say 0.5); an
incorrect identification (IID) is obtained if the model
with the highest probability that exceeds the threshold
is not the one closest to the system mode in effect at
the given time; it is indecisive (NID) if no model has
a probability above the threshold; the average modal
distance and mode error over L Monte Carlo runs are
defined, respectively,

average modal distance at time k

L
%ZZHS,( = mi||P{s, = m; | 2"}

n=1 m;

(18)

rms mode error at k =

1
I Z [l — sk[kllz

n=1
(19)

where n is the Monte Carlo run index, ||s, — m;|| is the
Euclidean distance between the true mode and the
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model m;, and the mode estimate is defined by
§k[k = th‘P{sk =m; |2}
ni

The reader is referred to [7] for a more complete
discussion of these performance measures.

Figs. 2 and 3 show, for x; = 1, the probabilities of
the correct model (i.e., the model that corresponds to
the true mode in effect at the given time) and the rms
errors of the two implementations of the SMM and
IMM algorithms that did not diverge under scenarios
S2 and S3, respectively, over 100 Monte Carlo runs.
Under scenario S1, all three implementations of the
SMM and IMM algorithms had probability curves
similar to that of the IMM-Ib in Fig. 2(a). Their
rms errors are similar to that of the IMM-Ib in
Fig. 2(b) except that SMM-1b was diverging after
time 60.

Scenario S1 illustrates that the use of a lower
bound on mode probabilities in the SMM algorithm
may lead to an unacceptable estimation error of the
base state. It is clear that under all the scenarios,

1) for the SMM algorithm, the implementation with

a lower bound has the best detection and identification
results but worst base state estimates; 2) for the IMM
algorithm, the implementation with a lower bound

has the best results. Under scenarios S2 and S3 in
which the system mode undergoes sudden jumps,

the standard implementations of the SMM and IMM
algorithms both diverge.
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Fig. 2. Correct model probabilities and rms errors of various implementations of SMM and IMM algorithms under scenario S2.
(a) Probabilities of correct model. (b) rms errors.
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Fig. 3. Correct model probabilities and rms errors of various imp]eméntations of SMM and IMM algorithms under scenario S3.
(a) Probabilities of correct model. (b) rms errors.

B. Two Aircraft Examples with Sensor and Actuator
Failures

1) Aircraft Model: Two types of aircraft models
were used for the sensor and actuator fault detection
and diagnosis (FDD) in [17] (two other papers that
use IMM algorithm for FDD are [5, 11]). These
examples are used here to evaluate the performance
of the different implementations of the MM
algorithms.

The dynamics of both an F/A-18 aircraft [14] in
a given region of the flight envelope, level flight at
10,000 ft with a speed of Mach 0.6, and of another
high performance aircraft [13] with a high subsonic
cruise speed (Mach = 0.8) at an altitude of 35,000 ft,
can be linearized and their motion can be described by
the continuous-time state variable equations

(20)
2D

x(2) = Ax(r) + Bu(t) + £.(1)
z(8) = Cx(t) + n(2).

For F/A-18 aircraft, the model has eight (four
longitudinal and four lateral) state variables with
the longitudinal and lateral motions completely
decoupled. It is represented by state vector x =
[uwq6vr py), where u,v,w represent velocities
in forward, lateral, and vertical directions of the
body axes, respectively; p,q,r represent roll, pitch,
and yaw angular rates, respectively; 4, ¢ are pitch
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and roll angles, respectively. The aircraft utilizes

five pairs of control surfaces (some of which can

be used symmetrically and asymmetrically) to
achieve seven different control inputs, represented
by U =1{6, 64, 6.0 Oust Oure 6a 6,1'- The seven control
input variables, three for longitudinal control and
four for lateral control, are symmetric stabilator (or
elevator, denoted by §,), symmetric leading edge flap
(64.), symmetric trailing edge flap (6,,,), asymmetric
stabilator (6,,), asymmetric trailing edge flap (6,.),
aileron (6,) and rudder (6,). The system and control
matrices at the given normal flight condition are
represented, respectively, by A and B given in [17].
A more detailed description of the F/A-18 aircraft can
be found in [14]. )

For the second aircraft, the model has eight (four
longitudinal and four lateral) state variables, with the
longitudinal and lateral motions completely decoupled,
represented by state vector x=[aqu 8 8 pr ¢,
where u represents forward velocity; p,q,r represent
roll, pitch, and yaw angular rates, respectively;

a, 3 denote angle of attack and angle of sideslip,
respectively; 8, o are pitch and roll angles,
respectively. The control input vector is represented by
U = [6g; 6gr OcL 6cr Osi 6sg 64 6g). They are left and
right elevators (denoted by g, and 6gz), left and right
canards (6., and 6cp), left and right spoilers (65, and
8sg). aileron (6,), and rudder (6z). Only two control
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TABLE VII
Performance Comparison of FDD for Simultaneous Sensor and Actuator Failures

Algorithm CID FA IID MFD NID Delay Flops
IMM 94.50 0.005 0.025 0.065 541 0.413 9.121
IMM-nr 96.52 0.02 0.075 0.165 322 0.490 8.822
Case 1 IMM-1b 94.50 0.005 0.025 0.065 5.41 0.413 9.121
SMM Diverge
SMM-nr 61.62 13.35 0 245 0.53 -0 4.767
SMM-1b 20.61 34.22 11.08 0.71 33.38 4.387 4.836
IMM 94.34 0.005 0.095 0.035 5.53 0.439 9.121
IMM-nr 96.59 0.015 0.115 0.08 3.19 0.469 8.822
Case 2 IMM-Ib 94.34 0.005 0.095 0.035 5.53 0.439 9.121
SMM Diverge
SMM-nr 61.62 13.35 0 24.5 0.53 0
SMM-Ib 20.62 34.34 11.22 0.64 33.18 4.492
IMM 92.30 0 0 1.02 6.68 1.228
IMM-nr 90.84 0.005 0.02 4.41 4.725 0.855
Case 3 IMM-1b 92.30 0 0 1.02 6.68 1.228
SMM Diverge
SMM-nr 61.60 13.29 0 245 0.61 0 4,767
SMM-Ib 16.27 33.97 8.38 1.46 39.92 3.630 4.836
10— T—— SN - S
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Fig. 4. Correct model probabilities and various implementations of SMM and IMM algorithms.
(a) Impiementations of IMM algorithms. (b) Implementations of SMM algorithms.

inputs, left elevator 6z, and right elevator &g, are
relevant to the longitudinal movement of the aircraft
under the normal flight condition. The system and
control matrix A,B are given in [17]. A more detailed
description of the aircraft can be found in [13]. It was
assumed for simplicity that all the state components
are directly measurable and C is an identity matrix.
2) FDD with Deterministic Test Scenario for Second
Aircraft Example: The FDD of longitudinal aircraft
sensor and actuator failures under a deterministic test
scenario is considered here. To simulate different
and complicated failures situations, the total and
partial sensor/actuator failures, simultaneous partial
sensor and actuator failures were included in one
deterministic test scenario. The designed faulit
sequence is: total pitch rate failure between k = 31
and k = 40; simultaneous 20% partial angle of attack
and right elevator failures between k = 71 and 80; a
40% partial left elevator failure between k = 101 and
k = 111; a 40% partial pitch angle failure between
k =141 and k = 149; and a total left elevator failure
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between k = 176 and k = 185. The designed set of
models which includes the normal and possible fault
modes consists of 21 models: one normal, four total
sensor failure, four 40% partial sensor failure, two
total actuator failure, two 40% partial actuator failure,
and eight simultaneous sensor and actuator failure
models. The initial state estimate for every model
was set to be equal and as a random variable: 5:0|0 ~
N(xy,991), where x; = [5,10,50,5]'. Q = 0.01%L,,,
and R = 0.221, ;. The initial mode probability for
each model was set to be equal. The mode transition
probability matrix was designed based on the mean
sojourn time 7, =3 s and 7, = 1 s for all test
sceanrios: my; =29/30, m; = 1/600, i # 1 and ;; =
9/10, 7;; = 1/10 and zero for the other elements.
The reader is referred to [17] for more details of the
design parameters used.

The FDD performance indices and the flops (in
10%) are given in Table VII. The corresponding correct
model probabilities for case 1 are plotted in Fig. 4. It
should be noted that, in addition to the performance
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TABLE VIII
Performance Comparison for Random Fault Scenarios

Fault Design Algorithm CID FA 1D MFD NID Flops
IMM-nr 96.10 1.01 1.66 1.23 0 0.7789
1 IMM-1b 95.48 1.13 2.19. 1.20 0 0.7792
SMM-nr 66.12 10.78 2.65 2045 0 0.6925
actuator SMM-1b 87.86 597 4.52 1.66 0 0.6916
IMM-nr 94.72 1.52 2.98 0.78 0 1.392
2 . IMM-Ib 94.40 1.74 3.21 0.65 0 1.401
SMM-nr 27.66 47.88 20.84 3.62 0 1.157
SMM-Ib 80.66 9.34 8.53 1.465 0.005 1.158
IMM-nr 92.46 3.11 1.58 2.175 0.675 2.845
1 IMM-1b 86.02 8.245 3.43 1.725 0.585 2.888
SMM-nr 66.46 2043 8.175 4.005 0.925 2.095
sensor SMM-1b 66.20 20.72 8.26 © 3985 0.825 2.103
IMM-nr 87.68 6.455 3.395 1.765 0.705 6.652
2 IMM-1b 84.81 8.975 4.145 1.355 0.715 6.843
SMM-nr 45.84 -34.46 15.07 2.905 1.73 3.996
SMM-1b 45.70 34.80 15.16 2.88 1.45 4.039

indices, CID, IID, and NID, given in the above simple
example, more FDD performance indices, such as the
false alarm (FA) and missed fault detection (MFD),
‘have been adopted from [17] and used in these two
aircraft examples. Case 1 represents the situation

in which the model set and the noise statistics are
known exactly. Case 2 differs from Case 1 in that a’
5% modeling error exists in the system dynamics. In
Case 3, the noise matrices Q and R used for the filter
are 4 times of the true ones so that the performance
impact due to the uncertainties in noise statistics can
be evaluated. It is clear that the numerically robust
implementations are significantly better than the other
implementations and the SMM algorithms have much
worse results than the IMM algorithm. However,

the numerically robust implementation of the SMM
algorithm, SMM-nr, has much better performance than
the one with a lower bound, SMM-1b. In Table VII,
“delay” stands for the latency from the time the true
mode changes to the time it is detected and correctly
identified among the cases in which the system mode
is (eventually) identified. It is interesting to note that
the standard implementation of the SMM algorithm

in this example gave extreme performance only; it
either completely failed to detect or identify the mode
change correctly or it provided a detection and correct
identification without any delay.

3) FDD with Random Test Scenarios for F/A-18
Aircraft Example: In this example, a number of
random test scenarios have been designed for the
evaluation of the proposed numerically robust
implementations. Actuator or sensor failures with
total and partial faults were designed separately. The
magnitude of a partial fault was designed as uniformly
distributed over (0, 1). Since the FDD performance
depends largely on model-set design, two choices
of the quantization of the partial fault magnitude as
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M, ={0,0.5,1} and M, = {0,0.25,0.5,0.75,1} were
considered. Other quantization level may of course

be used. The FDD performance indices and the flops
(x10*) are given in Table VIII for these two designs.
Design 1 used quantization M; while Design 2 used
M,. For example, for the case of a sensor fault, Design
1 used 9 models (one normal, four 50% partial sensor
failure, four total sensor failures) and Design 2 used
17 models (one normal, four 25% partial sensor
failure, four 50% partial sensor failure, four 75%
partial sensor failure, four total sensor failures). For
an actuator fault, only primary control surface failure
was considered. This leads to 3 models for Design

1 and 5 models for Design 2. Essentially the same
design parameters as those in Subsection IVB2 were
used except x, = [500,100,10,57, Q = 0.01%1;,,,

R =0.2%1,,,, and that the transition probability matrix
is different for different model sets. The reader is
referred to [17, 18] for more details of the design
parameters used.

It is obvious from Table VIII that the performance
indices, especially CID, vary with the design of the
model set.

It should be noted that the performance indices
given above should not be applied to different model
set designs; otherwise they may be misleading: the
more models, the worse the performance. From
fault detection and isolation point of view, the above
performance indices are for each of the possible fault
and normal modes. It may be more interesting in
some practical applications to know the performance
indices for each faulty actuator or sensor, rather than
for each mode. Thus, the above CID, FA, IID, MFD,
and NID are also calculated based on the fault models
corresponding to each sensor (or actuator) instead of
based on each fault mode. As-such, average modal
distance was calculated only over the modes for the
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TABLE IX
Performance Comparison With Modified Indices

Fault Design Algorithm CID FA IID MFD NID D
IMM-nr 97.80 0 0.97 123 0 0.0337

1 . IMM.-1b 97.30 0 1.50 1.20 0 0.0333

3 SMM-nr 76.90 0 2.65 20.45 0 0.0645

actuator SMM-Ib 95.59. 0 2.74 1.67 0 0.0647
IMM-nr 97.10 % O 2.12 078 0 0.0209

2 IMM-Ib 97.00 0 2.345 0.65 0.005 0.0214

‘ SMM-nr 78.62 0 17.76 3.62 0 0.1305

SMM-1b 91.38 0 7.15 1.465 0.005 0.0532

IMM-nr 89.52 0 1.58 8.23 0.675 0.0341

1 IMM-Ib 88.92 0 3.195 7.305 0.585 0.0907

SMM-nr 83.32 0 6.845 8.905 0.925 0.1323

sensor SMM-1b 83.38 0 6.93 8.86 0.825 0.1323
IMM-nr 90.81 0 3.25 5.23 0.705 0.0594

2 IMM-Ib 90.59 0 4.00 4.695 0.715 0.0637

SMM-nr 78.82 0 14.31 5.14 1.73 0.0901

SMM-1b 79.07 0 14.40 5.08 1.45 0.1323

corresponding sensor (or actuator), given by

L kmax
D= %Z{Eﬁ—uZ{Zlm—mi"P{sk:m[skEM,zk}}}
n=1

k=1 neM

where M represents the model set consisting of the
partial and total fault models pertaining to a given
sensor (or actuator); and L is the number of Monte
Carlo runs.

The corresponding FDD results are given in Table
IX. It can be seen that similar results were obtained
for the two model-set designs. Compared with the
results in Table VIII, much better performance was
demonstrated for SMM-nr and SMM-1b. But the
performance of the IMM algorithm is still much better
than that of the SMM. For both sets of performance
indices, the numerically robust implementation of
the IMM algorithm, IMM-nr, has better performance
than the one with a.lower bound on model transition
probabilities, IMM-1b.

The reader is referred to [17] for robustness
analysis and performance comparison of the different
MM-based FDD approaches to the design of model
transition probabilities, modeling errors, and noise
statistics.

V. CONCLUSIONS

It has been shown that numerical problems,
especially numerical underflows, may devastate the
performance of MM estimation algorithms with a
standard (i.e., straightforward) implementation if the
true mode of the system undergoes a jump and has
a large distance from some of the models assumed.
Numerically robust implementations of the SMM,
IMM, and GPBI1 algorithms have been proposed
in this paper. The key to their robustness is that
various model probabilities are calculated recursively
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only in their exponential forms. That is, only their
exponents are calculated recursively. Simulation
results of several fault detection and identification
examples illustrate the following. The “steady-state”
performance of the numerically robust implementation
of the SMM algorithm is significantly superior to the
implementation with a lower bound on the model
probabilities; whereas the latter may outperform the
former if the true mode undergoes frequent jumps.
For the IMM algorithm, the numerically robust
implementation and the one with a lower bound on
mode transition probabilities are substantially superior
to the standard implementation. No general conclusion
can be drawn for the IMM algorithm as to whether
the numerically robust implementation is better than
the implementation with a lower bound—it is problem
dependent.
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Ranging Airport Pseudolite for Local Area
Augmentation

This paper discusses the integration of an airport pseudolite
(APL) into a local area augmented differential GPS (DGPS) based
precision approach system. A prototype architecture is described
that is being used to develop requirements for the Local Area
Augmentation System (LAAS). Key features of this prototype
system are presented along with its current performance. Key
features discussed include the use of a multipath limiting antenna
(MLA), APL signal structure factors, a unique APL automatic
gain control (AGC), and GPS blanking technique to maximize
APL tracking performance, while minimizing the electromagnetic
interference (EMI) to nominal DGPS performance.

BACKGROUND

The concept of ground-based GPS-like
transmissions, now called pseudolites, has been
around ever since the early development of the GPS
(i.e., 1977 Yuma, AZ test) [1]. Research over the past
seven years has concentrated on the addition of an
airport pseudolite (APL) to increase the availability
of a Local Area Augmentation System (LAAS). It
has been demonstrated that a code-based system,
with code and carrier measurements being passed
on a VHF data link [2], can provide the accuracy,
continuity, and integrity for a CAT III system. In
order to realize an increase in availability with the
addition of an APL(s) to a LAAS, the APL must be of
high quality and able to be used as a ranging source.
Awvailability is a qualitative indication of the ability of
the navigation systems to provide the required level of
performance at the beginning of the intended precision
approach operation. This level of performance for
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