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I.  INTRODUCTION

Multiple-model (MM) estimation, as a powerful
approach to adaptive estimation, has received a
great deal of attention in recent years due to its
unique power to handle problems with both structural
and parametric uncertainties and/or changes, and
to decompose a complex problem into simpler
subproblems. In his Bode Lecture given at the 1995
IEEE Conference on Decision and Control, Professor
Kumpati S. Narendra advocated this powerful adaptive
method.

In the MM estimation, it is assumed that the
possible system behavior patterns or structures,
called system modes, can be represented by a set
of models; a bank of filters runs in parallel at every
time, each based on a particular model, to obtain
the model-conditional estimates; and the overall
state estimate is a certain combination of these
model-conditional estimates.

Initiated by Magill [32], the early work on
MM estimation considered only systems with a
time-invariant unknown or uncertain system mode.
Many applications (or reinventions) of this MM
estimator can be found in the literature under
various names, such as the “multiple model adaptive
estimator” [33], the “parallel processing algorithm”
[2], the “filter bank method” [7], the “partitioned
filter” [11, 19], the “self-tuning estimator” [7], and
the “modified Gaussian sum adaptive filter” [8].
These names suggest the structure, features, and
capability of this “first-generation” hybrid estimator
[20]. This method, however, cannot handle systems
with (frequent) mode jumps because its individual
model-based filters do not interact with each
other.

To overcome the above estimator’s inability
to handle systems with (frequent) mode jumps,
several algorithms were developed, such as the
generalized pseudo-Bayesian (GPB) estimators
[1, 9, 15], in which the system mode is more
realistically (and generally) assumed to be able
to jump between members of a mode set, usually
modeled as Markovian switching between models.
These algorithms, however, are not cost-effective
enough for most hybrid estimation problems,
regardless whether with a small or large mode set.

The development of the highly cost-effective
Interacting Multiple-Model (IMM) estimator {6]
was a monumental advance in MM estimation. It is
the first estimator that is general and cost-effective
enough to be practically applicable to most hybrid
(continuous-discrete) estimation problems with a
small mode set. Since its development, numerous
publications have appeared reporting its successful
applications to a variety of important hybrid
estimation problems with.a small mode set [20].
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Most existing MM estimators, including the IMM
estimator, have a fixed structure (FS) in the sense that
they use a fixed set of models at all times. They have
found great success in solving many hybrid estimation
problems (i.e., state estimation problems compounded
with structural or parametric uncertainty) in many
areas over the last three decades, in particular target
tracking (see [4, 5, 20] and the long lists of references
therein). Thrust by the tremendous success of the
IMM estimator, most current research efforts have
focused on three fronts: 1) to develop better real-time
implementable FS MM estimators; 2) to design better
model sets for the particular problems of interest;
and 3) to apply MM estimation techniques to solve
real-world problems.

It becomes more and more clear from the above
efforts that substantial improvement can no longer be
expected within the FS and most real-world hybrid
estimation problems have a large mode set and
cannot be handled satisfactorily by the FS. Ad hoc
remedies were proposed for particular applications
but few theoretical attempts were made to break away
from the FS. The investigation of the moving-bank
MM estimators in [34] was an early meaningful
effort to go beyond the FS. A serious attempt was
initiated in [24] and continued in [22, 25] to lay
down a theoretical foundation for MM estimation
without the limitation of the FS. Specifically, it
formulates the MM estimation in a more general
framework of variable structure (VSMM) to overcome
the FS estimators’ fundamental limitations and to
increase the cost-effectiveness. Other theoretical
results fundamental to the MM estimation with a
variable structure (VS) were also presented in {22,
25], which include the optimal VSMM estimator,

a graph-theoretic formulation of MM estimators,

and a test criterion for model-set selection. This
work shows theoretically the superiority of VS and
points out a promising new research direction, in
contrast to the existing effort of developing better FS
algorithms.

More and more researchers are convinced that
VS is probably the main practical approach that has
the potential to make MM estimators cost-effective
enough for real-world problems with a large mode set.

As manifested by the great impact of the
monumental success of the IMM estimator on the
application of MM estimation techniques, it is fair to
say that no matter how promising VSMM estimation
may appear, its ultimate success relies on the
development of good practical VSMM algorithms that
can be readily implemented and are general enough
to be applicable to a large class of hybrid estimation
problems (i.e., those with both continuous and discrete
uncertainties) [20]. If successful, such development
will be a new milestone in MM estimation. A primary
value of theoretical work on the VS is to facilitate this
development. .
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VSMM estimation is rapidly gaining momentum.
Several more or less ad Aoc VS algorithms/designs
have been presented in [10, 16-18, 29-31, 35-37]
for the particular applications considered:over the .
past few years. They all fall into either the digraph
switching or adaptive grid scheme outlined in Part I of
this series [24, 25].

In particular, the first general VSMM algorithm
has been developed, designed and evaluated in Parts
III and IV [29, 30]. It is uncomplicated, applicable to
many hybrid estimation problems, and substantially
more cost-effective than the IMM estimator. Its
successful development relies heavily on the fairly
satisfactory theoretical results concerning several
important issues in VSMM estimation presented
in Part II [21]. They include an efficient and near
optimal estimation cycle for VSMM estimation, an
efficient and optimal fusion formula, and optimal
sequential tests for model-set termination. These
results are also essential for the development of the
new VSMM algorithm presented here.

A VSMM estimator, called likely-model set (LMS)
algorithm, that is generally applicable to most hybrid
estimation problems and is fairly easy to implement
is presented here. It belongs to one of the three
VSMM schemes outlined in [25]—the active digraph
scheme. The basic idea of this algorithm is to use
the set of all models that are not unlikely at any
given time. Several versions are given. The simplest
is based on the following idea: Classify all models
in effect as either unlikely, significant, or principal
by their probabilities (e.g., P{m;} <t,€ [t;,6,]1,> 1,,
respectively). Then model-set adaptation is done by:
1) discard the unlikely ones; 2) keep the significant
ones; and 3) activate the models adjacent “from” the
principal ones. A model is adjacent from another if
the former may be switched from the latter. As such,
the inclusion of the models adjacent from the principal
ones almost surely guarantees superior performance
since future mode transition is anticipated; while the
elimination of the unlikely modes leads to substantial
reduction in computation without performance
deterioration.

Simulation results for a target tracking example
indicate that the LMS algorithm is substantially
more cost-effective than the model-group switching
(MGS) algorithm of VS [29, 30] as well as the FS
IMM estimator, especially when the total model set is
large. :

The remaining parts of the paper are organized
as follows. Section II formulates the problem and
describes briefly the general problem of VSMM
estimation. The LMS estimation algorithm is
presented in Section III. Section IV covers some
practical parts of the LMS algorithm for the examples
considered in this work. A simple example of fault
detection and identification is simulated in Section

449



V Simulation results of an example of tracking a
‘maneuvermg target are given in Section VI. These
-two examples demonstrate the superiority of the
LMS algorithm to the FS IMM and the VS MGS
-algorithms. The last section provides concluding
‘remarks.

éll. PROBLEM FORMULATION AND
! VARIABLE-STRUCTURE MM ESTIMATION

i
. For simplicity of presentation, consider one of
ithe simplest stochastic hybrid systems, known as the

|(time—varying) “jump linear systems,”
Xyt = Fpp1 k)% + Glspp 1, KIW(Sp 415 k) 1)
7 = H(sp, k)x, + (s, k) ?)

‘where x is the (conventional) base state vector; z is
'the noisy measurement vector; s, is the modal state
‘or system mode (system mode index) at time k, which
‘denotes the mode in effect during the sampling period
.ending at t,; w and v are the mode-dependent process
.and measurement noise sequences, respectively.

‘The system mode sequence (s,) is assumed to be

‘a first-order homogeneous Markov chain with the
{transition probabilities

|
l P{sk+1=mj|sk=ml.}=7r,.j V m,m; €S

| - 3)
iwhere § is the set of all possible system modes.

i In the MM approach, it is assumed that the
'nonlinear system (1)—(2) at any given time can be
iadequately approximated by one or (a combination of)
imore models in a set M consisting of the following M

!
‘conventional linear models:
]

: X =Fx+Gw, VY meM 4
| ,
| . .
; L = ij xk‘+ Vi
'and a jump between the system modes can
‘be modeled by switching from one model to
:another, governed by, say, the Markov law (3).
iHere superscript j denotes quantities pertaining
‘to model m;. As a result, the MM approach fits
iwell into problems that can be characterized by
structural as well as parametric uncertainties and/or
ichanges
Although other optimality criteria may be used
|[12] the state estimate and its associated covariance
matnx are usually calculated in an MM estimator
'using the minimum mean square error (MMSE)
|criterion as follows:
|

i X = Zf‘iuf (B | 2} ' (6)
; ] |

V. m;eM )

&, IP{HS | 2}

P B = Z[Bc{k + (e — ;Cllc.lk)(%klk -
! @)
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where x{c| . is the opt1mal estimate at time k under

the hypothesis H" {model sequence j matches the
sequence of the true system modes through time k},
and Ii’lk is the associated covariance; z = (Z)u<s 18
the measurement sequence through time k with z,
denoting the initial information. The summations

in (6)—(7) of a full-hypothesis-tree (FHT) MM
estimator are over all possible hypotheses (i.e.,

model sequences). Due to the exponential increase

in computation and memory of the FHT estimator, one
of the following approximate hypothesis management
techniques is usually used in practice to limit the
growth in the number of hypotheses: 1) elimination
of the hypotheses unlikely to be true, which yields a
partial-hypothesis-tree (PHT) algorithm, 2) merging
of the hypotheses having a common history, which
yields a merged-hypothesis-tree (MHT) algorithm,
and 3) a combination of hypothesis elimination and
merging, which yields a reduced-hypothesis-tree
(RHT) algorithm.

Almost all existing MM algorithms have a fixed
structure (FSMM) in the sense that the model set M
in (4)—(5) is assumed time invariant, even though the
models themselves may be time varying or adaptive.
A VSMM estimator is one with a time-varying set M
of models.

The FSMM approach has certain inherent
limitations, which stem from its fundamental
assumption that the system mode at any time can
be represented (with a sufficient accuracy) by one
of a fixed set of models that can be determined
before measurements are received in real time, and
its inability to incorporate certain types of a priori
information [37]. The FSMM estimators perform
reasonably well for problems that can be handled with
a small set of models. When they are applied to solve
real-world problems, however, it is often the case that
use of only a few models is not good enough. The
computational complexity increases ccnsiderably as
the number of models increases. More importantly,
as shown in Part I [22, 25], the use of more models
does not necessarily improve the performance; in
fact, the performance will deteriorate if too many
models are used due to the excessive *“competition”
from the “unnecessary” (excess) models. Thus one
may face a dilemma: more models have to be used
to improve the accuracy, but the use of too many
models will degrade the performance, let alone the
increase in computation: It. seems the only way out
of this dilemma is the use of a VS as proposed in
Part I [24, 25]). Not only can a VSMM estimator take
advantage of the real-time system mode information
contained in the measurement sequence, but it also
is able to incorporate certain a priori information of
the system mode that would be difficult or impossible
for an FSMM estimator to include. An example of
such a priori information is that the system mode is
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unlikely (but not impossible) to be in a certain subset
of the total mode set (mode space) for the particular
application under consideration. Another example is
the a priori knowledge of the magnitude of jump in
system mode.

As shown in Part I [22, 25], a key difference
between the optimal VSMM and FSMM estimators -
is that the former is a probabilistically weighted
sum of all estimators based on admissible mode-set
sequences,' rather than of all estimators based on
possible mode sequences as in the latter. Although the
probabilistically weighted sum of all estimators based
on the admissible mode-set sequences, as required
by the optimal VSMM estimator, is computationally
infeasible, a practical VSMM estimator may take
advantage of its suggested two-level hierarchical
structure: multiple model-set sequences at the higher
level and multiple model sequences at the lower
level. For many applications, the higher level with
multiple model-set sequences should be replaced, due
to computational constraints, with a single model-set
sequence (most likely along with a proper merging
of model-set sequences) obtained by model-set
adaptation, which is hopefully one of the best
sequences. This is the recursive adaptlve model-set
(RAMS) approach.

The RAMS approach has two functional
components: model-set adaptation and
model-sequence conditioned estimation. Part II [21]
deals with both components in a general setting.

A fairly satisfactory solution to the problem of the
model-sequence conditioned estimation was presented.
For the model-set adaptation, however, it seems that
no solutions may be found that are complete and
generally applicable. Nevertheless, the theoretical
results presented therein are important in that they
provide general principles and guidelines. In fact, a
major component of the algorithm proposed here is an
application of some relevant theoretical results given
there.

The following three practical VSMM schemes
were proposed and outlined in [25]: active digraph,
digraph switching, and adaptive grid schemes. The
algorithm of this paper belongs to the active digraph
scheme, which is quite general and powerful.

In the adaptive grid scheme, the space of the
parameters that characterize the possible system
modes is quantized (i.e., represented by a set of
models) unevenly and adaptively. A coarse grid is set
up initially and then the grid is adjusted recursively
according to an adaptation scheme based péssibly
on the current estimates, model probabilities, model
likelihoods, and/or measurement residuals. This
approach is particularly advantageous in cases where

' A mode-set sequence is admissible if it is one that may contain the
true mode sequence as its element.

the set of possible system modes is large. In this
scheme, the total model-set need not (and usually
cannot) be specified in advance. Designs of such
algorithms were reported in [13, 14, 16, 17, 34].

It .was shown in [17] that an adaptive grid MM
algorithm can provide a substantial improvement

in performance at a greatly reduced computational
complexity for a maneuvering target tracking problem.
While following the same idea of making grid
adaptive, different adaptation rules were proposed

in different designs for applications characterized by
different parameter regions. While valuable, they have
a common weakness—they are more or less ad hoc
and are not generally applicable.

The algorithms presented in [10, 17, 30, 31]
belong to the simple and efficient digraph switching
scheme. In [31], a so-called selected filter IMM
design was proposed. Simulation results showed that
the proposed design with a substantial reduction in
computation yields almost as good performance as
that of the FS IMM algorithm for a maneuvering
target tracking problem, similar to the one considered
here. In [17], a digraph-switching (as well as an
adaptive-grid) IMM design for a maneuvering target
tracking problem was developed based on coordinated
turn models. It was shown that great improvement in
performance as well as computation can be achieved
by the proposed design relative to the FS IMM
algorithm. These designs are, however, ad hoc and
thus valid only for the problems considered in that no
general techniques were proposed for, e.g., when and
how a model subset should be switched to another one
and how new models should be initialized.

A layered IMM architecture was proposed
in [10] for maneuvering target tracking in the
presence of glint noise under a fundamental
assumption that model sets are independent. It is
theoretically equivalent to the IMM algorithm but
may have a reduced computational complexity. This
algorithm belongs to the soft switching of model
subsets. A more general and effective layered IMM
algorithm was proposed in [26] without the above
independence assumption, which is, however, not
really a VS.

The first general VSMM algorithm was proposed
in Part IIT [30]. It assumes that the total set of models
can be covered by a number of model groups, each
representing a cluster of closely related system
behavior patterns or structures, and a particular
group is running at any given time determined by
a two-stage (activation and termination) switching
between model groups. How this algorithm can be
effectively designed for a particular application was
demonstrated in Part IV [29]. Simulation results
showed that it is significantly more cost-effective than
the IMM estimator, which is the most cost—effectlve
FSMM algorithm developed so far.
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! Compared with the above algorithms/designs,
the superiority and difference of the proposed LMS
algorithm can be summarized as follows.

1) None of the above algorithms/designs belong
to the active digraph scheme while the proposed LMS
algorithm does.

2) The LMS algorithm can be applied to a larger -
class of hybrid estimation problems than the MGS
algorithm, which is much more general than all the
other VSMM algorithms/designs.

i 3) The design of the LMS algorithm is much
simpler than that of the MGS algorithm: In addition
to the design elements of an FSMM estimator,

only two thresholds need to be tuned in the LMS
algorlthm while the des1gn of the model groups and
the activation log1cs as well as termination thresholds
|are necessary in the MGS algorithm. This difference
may be crucial in practice.

I 4) Our simulation results indicate that the LMS
algorithm is more cost-effective than the MGS
algorlthm

I
|
. LIKELY-MODEL SET MM ESTIMATOR
i ‘ B
Note that an FS full-hypothesis-tree MM estimator
is not necessarily optimal because the model set
used in general does not match the set of all possible
system modes: M # S.
' Adaptation of model set has two opposite tasks:
reduction and- expansion of the model set.
¢ The basic idea of the proposed LMS algorithm?
is to use at any given time a subset of the models in
the total set that are not unlikely to be in effect at the
igiven time.

The key in the implementation of the above
idea is the concept of the state dependency of the
;mode set, as introduced in Part I [22, 25]. In plain
terms, it implies that given the current system
[mode the set of possible system modes at the next
itime is a subset of the total mode set, which is
‘determined by the Markovian mode transition law
(1 e., the graph-theoretic adjacence of the mode sets).
iMathemancally, the state-dependent system mode set
‘at time k + 1 with.respect to (wrt) the previous hybrid
'state & —(xk,mk) is defined by

S ={mi Pl = m 1€} = glk£m] >0}
@®)
Ewhere P{s;,; =m]x} is a more general version

of (3). A closely related but slightly simpler.
| , :

izUnfortunatcly, our proposed algorithm and the well-known Least
:Mean Square algorithm in adaptive signal processing have the
Isame abbreviation. In the case where a distinction between them is

‘needed or desired, the former is abbreviated as LMS-MM algorithm.
! ?
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concept is the mode dependency of mode set. The
mode-dependent system mode set wrt rnode m, is
defined by

Segr ={m: P{s,,, =m|s, =m,x} >0 for some x,}.
)]

Note that S, is a subset of Sj™,.

To derive the LMS algorithm, assurne that the
initial system mode s, is known a priori to be in
So C S, where S, is known (set it equal to S if S, is
not known). Note that if s, = m,, then the system
mode set at the next time (k = 1) would be S7™. Since
5o could be any element of S, the set of possible
system modes at time k = 1 is the union of all the
mode-dependent mode sets wrt all the elements of S,

given by
S, = U sm. (10)
meSy
This process can be repeated with the f ollowmg
recursion for k:
U se T (1D

meS;_;

Consequently, if an MM estimator is the optimal one
given the model set, it would be overall optimal using
the model-set sequence M* =S¥, where S = (5,),
is determined by (11). In reality, however, the model
set so determined would expand rapidly in size and
become equal to the total set S soon, which is usually
unknown or too large. This may be computationally
too expensive. This is because there is no model-set
reduction mechanism in the above model-set sequence
determination.

In view of this and the fact that the total model
set M used in practice usually does not match exactly
the set S of all possible system modes, a suboptimal
algorithm is to use at each time k a subset of the total
model set® M that has a good chance of capturing
the system mode in effect at k. Clearly, this implies
that models unlikely to match the system mode in
effect at the time considered are eliminated from the
“working” subset. This is the underlying idea of the
LMS algorithm. _

The question now is how to measure the chance
that a subset M, of the total set M captures the
system mode in effect at the time considered. Two
methods are available in principle, based on the
model-set (marginal) likelihood p(z, | 5, € M,,zF"1)
and the model-set probability P{s, € M, | s, € M,z*},
respectively. It was shown in Part II [21] that the
model-set probability and likelihood are given by

P{s,eM,|s, e M,Z*} = Z P{s, =m|s, e M,z*}
T meM,
(12)

3Not total mode set S, which could be unknown or too large.
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P&l s €M) = > ply | s =m, 2
meM,
Pl =mlse M,zk-1}
P{s, e M, |s, € M,zk-1}

where P{s, = m|s, € M,z*} and p(z, | 5, = m,Z*"")
are model probability and marginal likelihood,
respectively. Note that the model-set joint likelihood
p(Z* | s, € M,) is not appropriate here because the
model set is variant. Of course, more accurate
measures are obtained if p(z, | s, € M,, s <k) is used
or if the total model-set M in the above is replaced
with the total mode set S, which is however infeasible.
Note that a model m, that cannot be jumped from
any model in the set M,_, used for the previous time
should not be included* in the model set M,; that is,
it m, & Upem,_, Si'» then m, ¢ M,. In other words,
every model in M, can be jumped from some model(s)
in M,_, and thus its a priori probability before time
k is available. As a result, containing information
from previous time, the set probability is normally
a better measure than the set likelihood. However,
as shown in Part II [21], if the LMS estimator has
to be initialized without prior distribution of model
probabilities, then the set likelihood is equivalent
to the set probability assuming equal prior model
probabilities.

LMS1 Algorithm

S1. Model-set expansion: Obtain the union of the
system mode sets My = U,y Sp'» Where S is the
mode-dependent system mode set wrt m, defined by
(9), and M]_, is defined in Step 3 below. °

S2. Model-set sequence conditioned estimation:

a) Initialization: “Obtain predicted probability of
each model in M, and initialize all those filters based
on the newly activated models.

b) Mode-matched estimation: For each model
in M,, obtain estimates under the assumption that this
mode] matches the system mode in effect exactly, as
in an FSMM estimator using M,.

¢) Model probability evaluation: Evaluate the
probability of each mode in M,, as in an FSMM
estimator.

d) Estimate fusion: Obtain the overall estimate
and its associated covariance as in an FSMM
estimator. .

S3. Model-set reduction (unlikely model
elimination): Form M, as the subset of M, by
deleting all its unlikely models.

The following two methods may be used for the
elimination of unlikely models in the set M,.

Delete all the models in M, except the K
models of the largest probabilities, where X is a

4Although it is still possible (but with a small probability) that it
matches the system mode in effect at k.
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constant, determined on the basis of computational
considerations. .

Rank all the models in M, by their model
probabilities and delete those whose ratio of model
probability to the largest one is below a certain
threshold. This is more general and requires less
tuning of the threshold than thresholding the model
probabilities directly (i.e., rather than the ratio).
This can be justified by the sequential ranking test
of Part II. :

Note that the first method is equivalent to
the second one with a time-varying threshold
such that the number of remaining models is K.
Thus, the first method has fixed computation but
variant “performance” while the second has fixed
“performance” but variant computation.

The following combinations of these two methods
may be more reasonable for certain applications.

“AND” combination: A model is deleted only if
its probability is below the threshold and not among
the largest K model probabilities. This leads to at least
K models that are not deleted.

“OR” combination: A model is deleted if its
probability is either below the threshold or not among
the largest K model probabilities. This leads to at
most K models that are not deleted.

The AND combination seems more reasonable in
most cases because it guarantees “performance” and
relaxes computation while OR combination guarantees
computation and relaxes “performance.”

The model probability evaluation step above can
be done based on the following

1 _
P{my | m_,,M,,2*} = EP[Zk | myomy_y, 251

x P{my | my_,,M,,2*"'}

V meM, (14)

where ¢ = plz, | my_;,M;,z*"1] is a normalization
factor; plz, | my,m,_,,2¥7'] is the likelihood
function; and P{m, | m,_,,M,,z*"'} is the predicted
mode probability, which can be obtained from
P{m,_, | z*"1} and M,. Note that M, is used for
notational simplicity to denote the model set,

along with the mode transitions governed by a
(state-dependent) Markov chain.

To further reduce computation, elimination of the
unlikely models can be done based on the predicted
model probabilities P{m, | m,_,,M,,z*~'} rather than
the posterior model probabilities P{m,|m,_;,M,,z*}.
This leads to the following algorithm.

LMS2 Algorithm

S1. Model-set expansion: Obtain M, exactly the
same as M, of the LMSI1 algorithm.

S2. Model-set reduction (unlikely model
elimination): Form M, as the subset of M; by
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{
deleting all its unlikely models on the basis of the
:predicted model probabilities.

S$3. Model-set sequence conditioned estimation:
Same as the LMS1 algorithm.

Note that the use of the predicted instead of
posterior model probabilities reduces substantially
the size of the “working” set M,: M, of the LMS2
|alg0r1thm does not include unlikely models whereas
M, of the LMS1 algorithm does.

' The LMS2 algorithm can be further simplified
based on the following idea. It is usually desirable

to classify all models into three categories: unlikely,
significant and principal. Consequently, a reasonable
set of rules for model-set adaptation is: 1) discard

the unlikely ones; 2) keep the significant ones; and
3) activate the models adjacent from the principal
ones. A model m ; is adjacent from m; if the transition
probability from m; to m; is not zero. This leads to the
LMS3 algorithm in which the model-set adaptation
has the following recursive relation:

U 4,

eMP
m.eMk_l

M, =M., -U._DU ( (13)

where U,_, is the set of unlikely models in M,_,; M? ,
is the set of principal models in M,_; and A, is the
iset of models that are adjacent fror model m,, defined

by

i

} Am‘;:{mjeM-:.P{sk=mj|sk_l =m;} #0}. -
} (16)

g

‘Note that

)
1

' M, = M UV (

t

U )

eMP
meM,”,

#M_ Ul U A | -Uor (17)
. meM |

'That is, the unlikely models are deleted first, then
‘the models adjacent from some principal models
lare activated and thus those unlikely models that are
:adjacent from a principal model will be retained.

| LMS3 Algorithm
| S1. Model classification: Identify each mode in
'Mk , to be unlikely (if its probability is below ¢,),
i(if its probability is in between ¢, and ¢,).

S2. Model-set adaptation: Obtain M, according to
'(15) In plain words, this consists of the following two
'steps:

! a) Unlikely model ehmmatlon Delete all the
;unhkely models of M,_,.

|
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|prmcnpal (if its probability exceeds #,) or significant -

b) Possible model activation: Activate all the
models adjacent from some principal model of M, _,.

S3. Model-set sequence conditioned estimation:
Same as the LMS1 algorithm.

Note the differences between the LMS3 and LMS2
algorithms. a) The models that are adjacent from a
significant model but not from a principal model
may be activated in the LMS2 but not in the LMS3
algorithm. b) The models that are adjacent from a
principal model are always activated in the LMS3
algorithm but may not be activated in the LMS2
algorithm if deemed unlikely. »

Table I gives one cycle of the LMS3 algorithm
with the AND logic for the elimination of the
unlikely models. In fact, the model classification in
Step 2 can be done based on the predicted model
probabilities. Step 3 is based on the optimal fusion
of [21, Theorem 4]. VSIMM cycle is given in [21].

It should be emphasized that the LMS estimator
is general and needs only to tune the two thresholds
t; and ¢,, which is much simpler than the design
of model groups and activation and termination
logics as in the MGS algorithm. It seems that the
only potential drawback of the LMS estimator is its
weakness in handling jumps between two widely
separated modes that are connected only through
several intermediate modes in the total mode set. Such
jumps occur rarely or the topology of the total model
set was designed improperly. A possible cure or
alleviation of this weakness is by repeatedly applying
the three adaptation rules in each time step until
nothing changes. For example, if a newly activated
model turns out to be a principal one at the time when
it is activated according to the posterior probabilities,
then activate the models adjacent from it immediately,
and this process can be repeated within one time step
(note that every model probability may change once
the model set varies).

Similar to the MGS estimator, since there is
no guarantee that the model-set adaptation is done
correctly and timely, such adaptation rnay introduce
errors in the state estimate and the associated
covariance of the filters based on the newly activated
models. Three remedies may be used. A good and
systematic technique is to go back several steps
in time to initialize the newly activated models
and their filters. If a model is activated at k, then
n-step back means that it has zero probability at
k —n—1 but in general non-zero probability at k — n.
Thus, we may run the generic VSIMM recursion of
Part IT [21] several times, VSIMM[M, _,,M,_,_,],
VSIMMIM, _, ., M,_,),...,VSIMM[M,, M, _,], to
obtain the current estimates of the model. Of course,
old overall estimate (and everything that has already
been sent out) may not be overridden unless the -
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TABLE I
One Cycle of LMS3 Algorithm with AND Logic

S1. Increase the time counter k by 1. Run the VSIMM[M,‘,M,‘ 1] cycle.
S2. Classify all the models m;’s in M, to be principal (i.e., pz, >1,), unlikely (i.e., /‘k <1t,), or significant (i.e., f; < “k £1,). Let the set
of unlikely models be M,. If there is neither unlikely nor pnnc1pa1 model, then output xk'k, B and {,uk b My let M, =M, and

go to Step 1.

S3. If there is no principal model, then let M, = @ and go to Step 4. Otherwise, identify the set M, of all the models adjacent to any
principal model. Find the set of new models M, = M, n_ﬁk (where M, is the complement pf M,) and the union set M, := M, UM,.

Then
+ Run the VSIMM[M

",Mk_l] cycle, where M, is the set of new and only new models. +

+ Fusion: Calculate the estimates, error covariances, and mode probabilities for the union set M,:

k”kuc 1

= S
Zm,EMk k-1

. ai i
X = E :Xklk“k

m;EMy

vV meM,

Fow = Z [Bci|k + (‘%;.:u: _’%qu)('g;lqk “;‘klk)l]ﬂi

m;eM,

where the estimates {Xi, }, error covariances {P},}, likelihoods {Li}, and predicted probabilities {fl;;lk_l} were obtained in the

above VSIMM[M,‘,M,‘ 1] and VSIMM[Mn,Mk_J cycles.
S4. Output X X B Xk and {pk}m M

S5. If there is no unlikely model, go to Step 1; otherwise, identify the discardable model set M, = M, ﬂM that is, the set of unlikely

models that are not adjacent from any principal model.

S6. Eliminate the models in M, from M, _that have smallest probabilities such that M, has at least K models; that is, let the likely-model

set be M; = M,
S7. Let M, =M,. Go to Step 1.

—M,, where M, is the set of models in M, with smallest probabilities such that M, has at least K models.

problem at hand is smoothing, instead of filtering.
One-step back is recommended and was used in our
examples.

A theoretically more appealing technique is to
replace the VSIMM[M,,M,_,] of zero memory depth
with a generic VSMM[M,,M;_,,...,M;_,_,] cycle
of n memory depth. This, however, requires the
implementation of such a VSMM cycle.

A less systematic technique is to increase all the
error covariances B, _, of the filters based on a
newly activated mode{ to some degree (e.g., by using
a fudge, forgetting, or discount factor) to account for
the extra uncertainties in the estimates of these filters.
For example, a time-varying forgetting (discount)
factor A, may be used for all newly activated models
as follows:

rhi € (Mk ﬂﬁkkl)
(18)

where M,_, is the complement of M,_, and ), may be
given by

Jj = pJ
Pk—llk—l T k—l]k—l/Ak—l’

Ae=1=2742N_, (19)
and 0 < ), \? < 1 are design parameters that control
the initial and variation rate of the forgetting factor.
Note that this technique does not alter the estimates
directly. :
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IV. DESIGN OF LMS ALGORITHM AND
PERFORMANCE MEASURES

A. Design of LMS Algorithm

In the sequel, MGS stands for the MGS algorithm
developed in Part III [30] and designed in Part
IV [29] using IMM algorithm for the model-set
conditioned estimation; IMM stands for the FSIMM
estimator, with a lower bound 1073% on the mode
transition probabilities [28]; GPB1 and GPB2 are
the abbreviations of the first- and second-order
generalized pseudo-Bayesian estimators, respectively;
SMM denotes the nonswitching (static) MM estimator,
with a lower bound 10~3 on the mode probabilities
[28]; LMS stands for the LMS3 algorithm of Table I
using IMM algorithm for the model-set conditioned
estimation; the corresponding algorithm with a
time-varying forgetting factor with A? = 0.70 and

= 0.30 is denoted as LMS()). The forgetting factor
is activated whenev er the estimated acceleration
magnitude exceeds a threshold; that is,

o \? P \?
ak=\/( k Tvk—1> +<Vk Tk—l) o

= activate forgetting factor

(20)
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'}where RARS [‘A’/ﬁk’f’;{;k]’ is the estimated velocity
ivector; T is the sampling period and r is the variance
‘of measurement noise along each axis.

The two thresholds for model classification
were set at t; = 107 and #, = 0.3 for all examples
considered. An AND combination of the two methods
for eliminating unlikely models was used, where
K was chosen to be 5 for topology A and 9 for
topology B.
~ Using the VSIMM cycle of [21] there is no need
ito design the transition probability matrix for each
‘model set in the LMS and MGS algorithm given the
{transition probability matrix for the total model set.
The VSIMM cycle will automatically use the right
'submatrix of this transition probability matrix and
iscale appropriately to preserve the relative ratios
lof the transitions within the set. All these are done
inaturally and systematically. See Part IT [21] for
idetails.
'B. Performance Measures
| The three most essential components of the
ievaluati_on of an MM estimator are its state estimation
‘quality (e.g., rms position and velocity errors), mode
identification capability (e.g., mode probabilities) and
‘computational complexity (e.g., flops and CPU time).
.General considerations and specific criteria for such
'an evaluation were given in [27]. Other components
‘may include robustness, parallelism, implementability,
retc.
i In this work, some additional measures of the
.mode identification capability were used for the
‘evaluation of the proposed LMS algorithm. They are
'the same as in Part IV [29] for the MGS algorithm.
For the reader’s convenience, they are described
‘briefly here. For details, the reader is referred to [27,
129]. These measures are as follows.
! 1) the percentages of correct mode identification
:(CID), incorrect mode identification (IID), and no
'mode identification (NID):
| a) a CID is obtained if the model closest to the
'system mode in effect at the given time has the
‘highest probability that exceeds a threshold (say 0.5);
! b) an IID is obtained if the model with the highest
|probability that exceeds the threshold is not closest to
the system mode in effect at the given time;
:, ¢) it is indecisive (NID) if no model has a
'probability above the threshold.
' 2) the average distances (over N Monte Carlo
;runs) between the system mode s, in effect at time
-k and the models m, used in the MM algorithm at %,
|given by

| average modal distance at k

|

- N

! 1

i =ﬁ§ , E sy —myllP{s, = m; | 5, € My, 2}

; n=1mEeM; . (21)
|

iwhere ||s, — m;|| is the Euclidean distance.
|
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Fig. 1. Topology of total model set.

3) The rms error of mode estimation and the
average rms error, defined by

1g .
rms mode error at k = J N ; llse = Seel>  (22)

K

1
average rms error = X ;(rms error at k) (23)

where the mode estimate is defined by

Se = Z mP{s, =m, | s, € M,z*}.

m;eMy

24

All simulation results presented in this paper are
over 500 Monte Carlo runs.

V. EXAMPLE OF FAULT DETECTION AND
IDENTIFICATION ‘

A simple example of fault detection and
identification was simulated as presented in [30].

Consider the following simple scalar system with
2-dimensional measurements

xk+1 = 1.1xk+Wk (25)
0.5
g = [1.2] X + Vi (26)

with w, ~ N(0,0.12), v, ~ N(0,). A total failure or
partial fault may occur to sensor 1, that is, 0.5 may
become O (total failure) or any number in between 0
and 0.5 (partial fault). Suppose that sensor 2 may also
suffer from a total or partial fault.

Assume that the following 5 models constitute the
total model set for the MM approach:

0.5 0.257. 0.5
milial e li] o)
12 1.2 0.6

[0 0.57
e [1.2} mS'[o_
The digraph (topology of the model set with model
transition probabilities) assumed is shown in Fig. 1,
where the self-transition probabilities can be obtained
from the unity requirement for the sum of all
transition probabilities from a model.

The following simple fault scenario was
considered. The system has no fault from k =0 to
k = 160, except that a sensor 2 total failure occurs at
k =100 and lasts until £ = 120.

The fault detection and identification results
over the time period considered depend to a large
degree on the initial state of the system because

27
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TABLE II
Comparison of LMS, MGS, IMM, GPB2, GPB1, SMM Algorithms

FLOP CID IID NID Modal Mode RMS Max
Ratio (%) (%) (%) Distance Error Error Error
x, = 100:
LMS 0.546 100 0 0 0 0 0.418 0.869
MGS 0.546 100 0 0 0 0 0.418 0.869
IMM I 100 0 0 0 0 0418 0.869
GPB2 3.792 100 0 0 0 0 0418 0.869
GPB1 0.829 100 0 0 0 0 0418 0.869
SMM 0.795 99.4 0.625 0 0.0065 0.0060 272373 5734169
xq = 10:
LMS 0.546 99.9 0.08 0 0.0004 0.0011 - 04214 1.236
MGS 0.546 99.9 0.08 6] 0.0004 0.0011 0.4215 1.236
IMM 1 99.9 0.08 (07 0.0004 0.0011 04214 1.236
GPB2 3.792 99.9 0.08 0 0.0004 0.0011 04213 1.236
GPB1 0.829 99.9 0.08 0 0.0004 0.0011 0.4221 1.236
SMM 0.795 99.3 0.70 0 0.0069 0.0069 27260 573897
X =1
LMS 0.572 94.9 1.78 3.34 0.0211 0.0239 0.443 1.13
MGS 0.573 94.8 2.24 2.96 0.0228 0.0366 596.5 8448
IMM 1 94.5 1.66 3.79 0.0225 0.0251 0.445 1.18
GPB2 3.792 946 1.64 3.74 0.0223 0.0249 0.442 1.18
GPB1 0.829 93.5 291 3.6 0.0285 0.0341 0.464 1.07
SMM 0.795 928 3.99 3.21 0.0288 0.0301 2801 58967
X, =0.1:
LMS 0.608 84.8 2.10 13.1 0.0668 0.0813 0.4674 1.069
MGS 0.573 89.8 1.98 8.24 0.0518 0.0619 0.4570 1.069
IMM 1 83.1 1.99 149 0.0724 0.0829 0.4697 1.116
GPB2 3.792 83.2 1.92 14.8 0.0721 0.0824 0.4669 1.116
GPB1 0.829 80.6 6.75 12.7 0.1070 0.1318 0.5247 0.921
SMM 0.795 80.2 797 11.8 0.0738 0.0819 640.41 1348
the noise levels are fixed but the magnitude of v
. . « ey N TN e 081
the state is dependent of its initial value. Table IT i
gives comparison of the LMS, MGS, IMM, GPB2, 0.8 ,
GPBI1, and SMM algorithms for the fault detection i
and identification results for the true initial state g °° '
xy = 0.1, 1, 10, and 100, respectively. In the table, § o ] :
the MGS algorithm was designed as in [30]. All :
the switching/interacting algorithms used the same 0.2 {
transition probabilities. No decision (detection) delay
was observed for any algorithm for this example. o0

Clearly the LMS algorithm is most cost-effective.
Note also that the case with a smaller initial x; is
more difficult for fault detection and identification
since the noise levels are relatively higher. The SMM
algorithm has huge base state estimation errors. Note
that when x, = 0.1, the measurements' are dominated
by the noise.

Fig. 2 shows for x, = 1 the probabilities of the
model that match the true mode at each given time, -
as calculated in the LMS, MGS, IMM, GPB2, GPB1;
and SMM algorithms. Note that after the initial
transients, only the SMM algorithm suffers from a
significant error in the mode probability around the
time when the fault is removed.

[+] 20 40 80 80 100 120 140 160
Time .

Fig. 2. Average probability of model matching true mode.

VI. EXAMPLE OF MANEUVERING TARGET
TRACKING

Following [29], consider the following target
tracking example, adopted from [3]. To track a
maneuvering target in a planar motion that may have a
piecewise constant acceleration with a maximum value
of 4g (40 m/s?) in any direction, the performance of
several MM estimators was compared in [3, 29, 31,
35] based on the following set of 13 time-invariant
models, characterized by the expected acceleration
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‘vector a,

! m, : a=[0,0) m, : a =[20,07

I .
l my : a=[0,20] my : a=[-20,0]
i ms :a=[0,-201" mg:a=1[20,20]
m, : a=[-20,207

mg :a=1[20,-20] my,:a=[40,0]

" my,:a=[0,40  my,:a=[-40,07

i mys : a = [0,~40].

‘These models were obtained by a quantization of the
,possible system mode space in acceleration.

. Two graph-theoretic (digraph) representation
i(see [25]) of these 13 models are given in Fig. 3,
;where an arrow from one model to another indicates
:a legitimate model switch and self-loops are omitted
l(i.e., each model may stay in itself for some time).
Fig. 3 was plotted in the model space characterized
'by the expected acceleration with the following nice

features.

1) Each model can be viewed as a point in the
imodel space. :
' 2) Model m, corresponds to the origin of the
imodel space.
| 3) Models m,,, my, m;, m,, and m,,, form the
lhorizontal axis, while models m,5,ms,m;,m;, and m;,
iform the vertical axis.

' 4) The graphical distance between any two
imodels in Fig. 3 is exactly proportional to the actual
'distance between the two models in their acceleration

'space.

‘Note that in topology A, a model is only allowed

to switch to its nearest neighbors as well as itself,
‘while in topology B, switches to its second nearest
meighbors (e.g., m, and ms, and mg and m,) are also
-allowed.

' Experience indicates that the use of (second-order)
‘nearly constant velocity (CV) models [4] with
ispecified expected accelerations led to significantly
ibetter results than (third-order) nearly constant
lacceleration (CA) models [4]. Also, poor results
lwould be obtained if the accelerations of a model
iwere taken as part of the state. Therefore, only CV
imodels with the specified accelerations are considered
there.

I

iA. Test Scenarios
! It should be emphasized that the evaluation and

thus comparison of MM algorithms depend to a large
idegree on the scenarios used. Both deterministic and

rrandom scenarios were designed for this example.

mg : a=[-20,-20] (28)

(b)

Fig. 3. Two topologies of model-set (28). (a) Topology A.
(b) Topology B.

For the random scenario, it is assumed that the
acceleration vector a(?) = a(t)£6(t) is a semi-Markov
process; specifically, it is a 2-dimensional process that
would be Markov were the sojourn time 7 for each of
its states not random. In simple terms, it implies that
the acceleration process undergoes sudden jumps from
a state with a magnitude a and phase ¢ to another
one after staying in it for a random period of time.
Specifically, the following models of a, as proposed in
[29], was used.

1) The sojourn time 7; of the state a, conditioned
on a, has a truncated (7; > 0) Gaussian density with
mean 7 and variance o2.

2) The acceleration magnitude a; . has probability
masses of By and P, to be zero and maximum,
respectively, and is uniform over the values in
between, where By and P, are in general functions
of a.

3) The angle 6,,, of acceleration is uniform
over 2x if g, = 0 and is Gaussian with mean 6, and

variance o7 if a; # 0.
The following parameters were used in our design:

-

T=Ty+ (?0 - ?M),
amax
(29)
0, =157, Ty =10 T;=30
Py =0.1, Aoy = 37, og=7[12,
(30)

{0.6 4 #a
B = .
0-8 ap = Quax

The random sojourn time 7 was rounded to its nearest
integer and the initial acceleration a; was set to zero.
The use of such a random test scenario reduces the
dependence of the performance of an MM algorithm
on various artifacts of a scenario. With such a random
scenario, it is difficult to. design an MM algorithm
with subtle tricks that are effective only for certain
scenarios. For such a random scenario, however, the
peak and steady-state estimation errors are no longer
separable when averaged over Monte Carlo runs. For
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TABLE III
Deterministic Scenarios (Sequence of Accelerations)

Time Period 1-30 31-45  46-55  56-80  81-98  99-119 120139 140-150 151-160
Scenario 1: a, 0,0/ 1822 [2,377  [0,0] {252 [-2,197 [0,—1F [38—1)  [0,0
Scenario 2: a, [-20,0Y {22,22] [-22,22F [0,0  (30,2) [-2,39] [0,-20F [2,40]  [0,0

Note: Second scenario has several large jumps in system mode.

this reason, several deterministic scenarios were also
used so that the peak and steady-state errors can be
seen well. Due to space limitation, however, only
some results for the above random scenario and the
following two deterministic scenarios are reported
here: The system mode sequence, characterized

by the sequence of accelerations a,, is specified in
Table IIL.

B. Design of Adjacency Index Matrices

A unique feature of the proposed LMS3 algorithm
is that it relies quite explicitly on the adjacency
relations among the models in the total model set
(or more precisely, in the total digraph). A model is
said to be adjacent from another if the former may be
switched from the latter. Based on the adjacency of
the total model set designed for a particular problem,
such as topology A and topology B in this paper, it is
easy to define an adjacency index matrix to describe
the adjacency relations. The following adjacent index
matrices ) were used in the LMS algorithm, for
topology A

1 1 1 1 1

2 2 3 4 5

Q=13 9 6 7 8

4 10 11 12 13

5 6 7 8 9

and for topology B,

m 1 1 1 1 1
2 2 3 4°'5 2
35 2 3 410
4 9 6 7 8 6
Q=[5 10 11 12 13 11
6 6 7 8 9 3
7 3 4 5 2 6
8§ 2 3 4 5 6
9 2 3 4 5 6
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12

In these matrices, the ith column lists all models that
are adjacent from model m;, including m; itself. The
repetitions of the same numbers in a given column
is made such that a rectangular matrix, rather than a
ragged two-dimensional array, is obtained. Note that
these adjacency index matrices are different from the
adjacency matrix commonly defined in graph theory.

The adjacency index matrix for the above simple
example of fault detection and identification is
similarly obtained.

Note that the adjacency index matrix follows
immediately from the underlying digraph. Although
the matrix is not unique, different matrices
corresponding to the same underlying digraph are
equivalent in that they lead to identical results.
Design of underlying digraph (and the adjacency
index matrix) is a basic task of applying any
interaction/switching MM estimator, as described in
Part I [25].

C. Other Design Elements

The following transition probability matrices were
used for all the IMM algorithms considered: For

345 2 3 4 5
7 8 9 10 11 12 13
4 5 2 10 11 12 13 31
7 8 9 10 11 12 13
7 8 9 10 11 12 13
1 1 2 3 4 5]
3 4 5 9 6 7 8
12 13 10 11 12 13
7 8 9 6 7 8 9
13 10 10 11 i2 13 (32)
4 5 2 10 11 12 13
7 8 9 10 11 12 13
7 8 9 10 11 12 13
7 8 9 10 11 12 13}
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'topology A,

; [116/120 1/120 1/120 1/120 1/120 0 0 0 0 0 0 0 017

5 002 095 0 0 0 001 0 0 001 001 0 0 O

002 0 09 0O 0 00l 000 O O 0O 001 O O

| 0.02 0 0 095 0 0 001 001 O 0 0 001l O

; 0.02 0 0 0 095 0 0 001 00l 0O O 0 001

| 0 1/30  1/30 0 0 28/30 0 0 0 0 0 0 0

‘m=| o 0 1/30 1/30 0 0 28/30 0 0 0 0 0 0

0 0 0 1/30 1/30 0 0 28/30 0 0 0 0 o0

! 0 1/30 0 0 1/30 0 0 0 28/30 0 0 0 O

0 0.1 0 0 0 0 0 0 0 09 0 0 0

| 0 0 0.1 0 0 0 0 0 0 0 09 0 0

! 0 0 0 0.1 0 0 0 0 0 0 0 09 0

; L o 0 0 0 0.1 0 0 0 0 0 0. 0 09l
(33)

Earid for topology B,

| F348/360 2/360 2/360 2/360 2/360 1/360 1/360 1/360 1/360 O 0 0 0 7

E 2/140 . 095 1/140 0 1/140 1/140 O 0 1/140 1/140 0 0 0

; 2/140 1/140° 095 1/140 0 1/140 1/140 0O 0 0 1/140 0 0

! 2/140 0 1/140 095 1/140 O 1/140 1/140 0 0 0 1/140 0

| 2/140 1/140 0  1/140 095 0 0 1/140 1/140 0 0 0 1/140

, 6/180 2/180 2/180 ‘0 0 28/30 0 0 0 1/180° 1/180 0O 0

i =] 6/180 .0 2/180 2/180 0 0 28/30 0 0 0 1/180 1/180 O

: 6/180 -0 0 2/180 2/180 0 0 28/30 0 0 0 1/180 1/180

’ 6/180 2/180 0 0 2/180 0 0 0 28/30 1/180 0 0 1/180

i 0 0.05 0 ] 0 0.025 0 0 0.025 09 0 0 0

! 0 0 0.05 0 0 0.025 0.025 0 0 0 0.9 0 0

| 0 0 0 005 0 0 0025 0025 O 0 09 0

| Lo 0 0 0 005 0 0 0025 0025 0 0 09 |

i (34)

|

|

The diagonal terms were chosen based on the
expected sojourn time of the corresponding
acceleration {4, 23]. The other terms were determined
either by symmetry or by their expectation from the
physical relation among models.

5 The true process noise covariance was set to zero
and the following simple process noise covariance
matrices were used: Q!'= (0.003)27, Q' = (0.008)?1,

i # 1, where superscript i denotes quantities pertaining
to model m;. The filter-used measurement noise
covariances R, Vi, are set equal to the true one R =
rl = 12501,

i To have a fair comparison, all the MM

algorithms used the same initial assignment of model
|
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probabilities. Each of the models m; for i = 1,2,3,4,5
in topology A and for i = 1,...,9 in topology B, has
initial probability of 1/5 and 1/9, respectively.

D. Simulation Results and Discussions

Table IV lists the computational complexity in
terms of relative FLOP ratios, the quality of maneuver
(mode) status reports, in terms of the percent of
CID, IID, and NID, average modal distances, rms
mode errors, and rms position and velocity errors
of the LMS, MGS, and IMM estimators. The
threshold for the mode identification percentages was
0.5.
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TABLE IV
CID, IID, NID Mode Identification Percentages, Relative Flop Ratios, Average Modal Distances, RMS Mode Errors, RMS Position
(RMSPE) and Velocity (RMSVE) Errors, and Average Peak Position (MAXPE) and Velocity (MAXVE) Errors of LMS(A), LMS, MGS,
IMM Algorithms

Mode Identification Mode Estimation
Base State Estimation Measure Measure Measure

FLOP CID IID NID Modal Mode

Ratio RMSPE RMSVE MAXPE MAXVE (%) (%) (%) Distance Error
Random scenario for topology A: N
LMS(\) 0.386 37.83 2334 46.03 30.95 74.73 19.91 5.36 7.44 8.51
LMS 0.384 40.10 24.38 50.32 33.23 74.18 21.26 4.56 7.49 8.79
MGS 0374 " 40.06 24.49 50.02 32.93 74.17 21.70 4.13 7.48 8.83
IMM 1 39.56 24.14 48.86 32.17 74.19 21.08 4.73 7.53 8.75
First deterministic scenario for topology A:
LMS(\) 0.362 35.85 19.48 73.45 66.98 75.69 20.90 3.41 8.19 7.17
LMS 0.358 37.58 19.58 73.79 66.93 75.95 20.54 3.51 8.05 7.15
MGS 0.355 37.93 19.85 74.16 67.12 75.78 20.92 3.30 8.08 7.24
IMM 1 37.15 19.42 72.88 66.63 76.06 20.31 3.63 8.08 7.14
Second deterministic scenario for topology A:
LMS()) 0.423 37.86 26.05 70.11 84.65 68.12 28.38 3.50 11.63 10.94
LMS 0.382 42.43 26.53 71.61 84.33 69.54 26.70 3.76 11.29 10.72
MGS 0.388 43.21 27.17 74.61 84.40 69.05 27.38 3.57 11.39 10.90
IMM 1 41.52 25.89 70.03 84.33 70.18 25.85 3.97 11.19 10.57
Random scenario for topology B:
LMS() 0.654 35.79 21.47 43.01 30.76 74.94 15.66 9.40 7.67 8.22
LMS 0.651 36.94 22.20 44.59 30.76 74.80 17.30 7.90 7.67 8.45
MGS 0.673 36.94 22.20 44.64 30.76 74.83 17.33 7.84 7.65 8.44
IMM 1 36.93 22.20 44.52 31.01 74.76 17.26 7.98 7.69 8.44
First deterministic scenario for topology B:
LMS(\) 0.604 35.29 19.48 64.61 65.36 74.07 18.30 7.63 8.73 7.33
LMS 0.596 3530 19.21 64.22 65.25 74.44 18.24 7.32 8.53 7.30
MGS 0.626 35.48 19.33 64.26 65.28 74.39 18.33 7.28 8.53 7.32
IMM 1 35.28 19.20 64.20 65.21 74.45 18.17 7.38 8.55 7.31
Second deterministic scenario for topology B:
LMS(\) 0.579 36.28 2495 61.08 85.48 67.07 24.46 8.47 11.88 10.82
LMS 0.556 36.73 23.78 65.83 85.23 70.30 2231 7.39 11.10 10.21
MGS 0.650 3765 = 24.65 65.51 85.33 70.00 22.90 7.10 11.14 10.46
IMM 1 36.47 23.54 62.56 85.17 70.64 21.84 7.53 11.06 10.15
Note: LMS() is LMS algorithm with forgetting (discount) factor.

It can be observed that topology B is slightly The rms position and velocity errors of the
better than topology A for all MM algorithms; the LMS, LMS()) (i.e., with forgetting factor), MGS,
LMS is slightly more cost-effective than the MGS and IMM estimators are shown for topology A in
algorithm; the LMS and MGS algorithms are much Fig. 4 for the random scenario and in Fig. 5 for
more cost-effective than the IMM estimator; the LMS  the first deterministic scenario. The corresponding
estimator can handle large jumps (as,in the second errors for topology B are given in Fig. 6 for the first
deterministic scenario) somewhat better than the MGS  deterministic scenario. The corresponding errors for
and IMM algorithms; the use of forgetting factor topology B for the random scenario are similar to
improves the performance of the LMS algorithm Fig. 4, except somewhat lower, and thus are omitted.
slightly, which is more significant for base state The rms position and velocity errors, along with their
estimation in the random scenario. Note that although  corresponding standard deviations of the LMS()\)
the LMS algorithm does depend on the underlying and IMM estimators are shown for topology A in
digraph, this dependence is at the same level as Fig. 7 for the second deterministic scenario. Clearly,
for other MM (e.g., the IMM) estimators. This is the LMS estimator has the smallest rms errors. Note
supported by a comparison of Topologies A and B also that although both LMS and IMM estimators
in Table IV. have their rms errors significantly larger than the
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Fig. 8. Average probability of model closest to true mode for
deterministic scenario.

corresponding standard deviations, especially during
the mode transition transients (which is a thrust for
model switching), the LMS estimator is more credible
than the IMM estimator in that its error standard
deviations are closer to the actual errors.

Fig. 8 shows, as calculated in the LMS, LMS()),
MGS, and IMM algorithms for topology B, the
average probability of the model that is closest to
the system mode in effect at the given time; that
is, pdyee o pdor 815 s 5o s tilsysn e, pulgo for the
first deterministic scenario. Such a plot is a compact
presentation of the model probabilities when many
models are involved. Clearly, all algorithms have
virtually the same correct model selectability.

Fig. 9 shows for topology B, the average modal
distances and the rms mode errors of the LMS,
LMS()), MGS, and IMM algorithms for the first
deterministic scenario. Similar results were obtained
for topology A.

A comparison of the computational complexity
between a VSMM algorithm and an FSMM algorithm
depends largely on the test scenarios used and the
complexity of the single-model-based filters because
a VSMM estimator uses model-set adaptation and
filter initialization (which are independent of the
sophistication of each filter) to yield a reduction
in the number of filters at any given time. Both
the random and deterministic scenarios used here
have more frequent mode transitions than in most
practical situations. Such a scenario with frequent
mode transitions is in general less favorable to a
VSMM algorithm in that it increases its computation
significantly while that of an FSMM algorithm will
remain unchanged. Scenarios with so frequent mode
transitions were designed so that many different mode
transitions could be incorporated into a single mode
sequence. Furthermore, the more sophisticated each
model-based filter is, the more superior the LMS
algorithm is to thé IMM algorithm. In view of these
facts, the test scenarios considered here are in favor
of the IMM estimator rather than the LMS or MGS
algorithm since 1) nearly-constant-velocity ‘Kalman
filters were used, which are among the simplest,
and 2) the system mode undergoes frequent jumps
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Fig. 9. Average modal distances and rms mode errors and
average modal distances for first deterministic scenario.
(a) Average modal distances. (b) RMS mode errors.

in our test scenarios. As such, it can be reasonably
concluded that the superiority of the proposed LMS
algorithm will be more substantial when tested with
more realistic scenarios using more sophisticated
single-model-based filters.

VII.  CONCLUSIONS

A VSMM estimator, called LMS algorithm,
has been presented. It is fairly simple and easily
implementable but completely general to be applicable
to virtually all state estimation problems compounded
with structural and/or parametric uncertainties or
changes. The basic idea of the algorithm is to use
only a set of models that are not unlikely. Several
versions of the algorithms have been discussed. The
simplest one is to delete the unlikely models based on
predicted model probabilities and to activate models to
which a principal model may jump so as to anticipate
the possible mode transition.

A simple example of fault detection and
identification and an example of tracking a
maneuvering target in a 2-dimensional space have
been simulated. The results demonstrate that the
proposed LMS estimator is much more cost-effective
than the most cost-effective FS IMM algorithm. It
also outperform slightly the MGS algorithm proposed
before. The ease in design and implementation is the
major advantage of the LMS estimator over the MGS
algorithm.
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