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An intégrated-fault detection, diagnosis; and-recoiifigurable
control scheme based on interacting multiple model (IMM)
approach is proposed. Fault detection and diagnosis (FDD)

is carried out using an IMM estimator. An eigenstructure
assignment (EA) technique is used for reconfigurable

feedback control law design. To achieve steady-state tracking,
reconfigurable feedforward controllers are also synthesized
using input weighting approach. The developed scheme can deal
with not only actuator and sensor faults, but also failures in
system components. To achieve fast and reliable fault detection,
diagnosis, and controller reconfiguration, new fault diagnosis and
controller reconfiguration mechanisms have been developed by
a suitable combination of the information provided by-the mode
probabilities from the IMM algorithm and an index related to
the closed-loop system performance. The proposed approach is
evaluated using an aircraft example, and excellent results have
been obtained.
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I.  INTRODUCTION

The growing demand for reliability,
maintainability, and survivability in safety critical
systems has drawn significant research in fault
detection and diagnosis (FDD) [4, 9, 10, 29, 34] over
the last two decades. Such efforts have led to the
development of many FDD techniques, unfortunately,
little attention has been paid to the related problem,
i.e., reconfigurable fault-tolerant control, until the
mid-1980s {8, 17]. Only recently, the fault-tolerant
control problem has begun to receive more attention
[3, 14, 15, 27, 28, 35, 37].

A fault-tolerant control system (FTCS) is a control
system that possesses the ability to accommodate
systemfailures:automatically;zand to-maintain :
overall:system:stability.and-acceptable: perforance. -~
Generally-speaking; fault-tolerant control-systems
can be classified as passive [15, 33] and active [17].
An active fault-tolerant control system compensates
for faults either by selecting a precomputed control
law (projection-based approaches) [19, 21] or by
synthesizing a new control strategy on-line (on-line
automatic controller redesign approaches) [17].

Both approaches use FDD schemes to detect and
diagnose faults and to activate control reconfiguration
mechanisms. Such systems are also known as
reconfigurable [11, 13, 19], restructurable [12, 17],

or self-repairing control systems [8]. Typically, an

.active FTCS consists of three parts: a reconfigurable

controller, an FDD scheme, and a control law
reconfiguration mechanism. Key issues are how

to design: 1) a robust reconfigurable controller,

2) an FDD scheme with high sensitivity to faults
and robustness to model uncertainties and external
disturbances, and 3) a reconfiguration mechanism
which can organize the reconfigured controller in such
a way that the prefault system performance can be
recovered to the maximum extent. This work focuses
on the development of a new integrated approach to
active fault-tolerant control system design.

In general, the existing active fault-tolerant control
system design methods can be categorized based on
the following approaches: linear quadratic regulator
(LQR) [17, 21]; eigenstructure assignment (EA)
[13]; multiple model (MM) (7, 19, 24, 31]; adaptive
control [6, 31]; pseudo-inverse [11]; model following
[12, 22]; and neural networks [23]. Among these,
the study on MM-based reconfigurable control
has drawn increasing attention recently [7, 19, 24,
30, 31]. One of the approaches developed in [19],
known as MM adaptive estimator/MM adaptive
control (MMAE/MMAC), synthesizes each of the
reconfigurable controllers using LQR technique. In
this approach, the system under the presumed failure
modes is represented by a set of models, and a bank
of Kalman filters is used to estimate the states of
the system based on the presumed failure modes.
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Innovation sequence of each Kalman filter is used to
calculate the probabilities of individual failures, and
the aggregated state estimate and the control input
are the probability-weighted average of the signals
from each model. However, in the above scheme,
there is no interaction among Kalman filters. Such an
approach is effective in dealing with problems with an
unknown structure or parameter but without structural
or parametric changes. Obviously, the problem of fault
diagnosis and reconfigurable control does not fit well
into such a framework because, in general, the system
structure or parameters do change as a component or
subsystem fails. To overcome this weakness and to
make MM algorithms more suitable for the current
problem, an interacting MM (IMM) FDD approach
has been proposed recently [36]. In this approach, the
occurrence or the recovery of a failure in a dynamic
system has been explicitly modeled as a finite-state
Markov chain with known transition probabilities.
Since changes of the system are explicitly considered
and effectively handled in the IMM algorithm, it has
been shown that the IMM algorithm is much superior
- in performing FDD than other existing methods [36].
Typically, faults can occur in system components,
actuators, and sensors. Due to the inherent difficulties
in considering all types of failures simultaneously,

existing single-model-based approaches consider these -

faults separately. Using the MM approach, however,
the system component, actuator, and sensor faults

can be dealt with simultaneously. In this paper, FDD
and reconfigurable control in the presence of all three
types of faults have been addressed.

The objective of this work is to extend the
proposed IMM-based FDD approach to the design
of an integrated FDD and reconfigurable control. In
the proposed scheme, the IMM estimator is utilized to
provide the information on FDD, as well as the state
estimation. The reconfiguration mechanism is based
on a suitable combination of the information from the
mode probability in the IMM algorithm and a system
performance index. Since the stability and dynamic

" behavior of the closed-loop system can be described
by its eigenvalues and corresponding eigenvectors, i.e.
eigenstructure, recovery of the dynamic performance
after the faults can be achieved via assigning the
eigenstructure of the reconfigured system as close to
that of the prefault system as possible if the redundant
control is available [15]. A set of reconfigurable
control laws is synthesized using an EA technique. -
In addition, to achieve zero steady-state tracking
even in the presence of faults, a set of feedforward
control laws is also designed using an input weighting
technique [13]. Fig. 1 depicts the structure of the
scheme.

The paper is organized as follows. In Section II,
modeling of system component, actuator, and sensor
faults is presented. Based on IMM estimator, FDD
mechanisms are outlined in Section III. Section IV
discusses the reconfigurable controller design and
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Fig. 1. General structure of proposed FDD and reconfigurable

control scheme.

implementation issues. In Section V, performance
evaluation of the proposed scheme for an aircraft is
presented. Conclusions are drawn in Section VI.

Il.  REPRESENTATION OF FAILURES IN SYSTEM
COMPONENTS, ACTUATORS AND SENSORS

A. Hidden Markov Chain Model for Systems with
Failures o

Suppose that a discrete-time process which
represents the possible system structural/parametric
changes due to failures is represented by a first-order
Markov chain with state m(k) taking values in a finite
set S =1,2,...,s. At each time step, the transition
probabilities of the chain can be defined by

7r,.j(k)=P{m(k)=j|m(k—1)=i} V i,jeS
eY)
with

> omk) =1,

JjES

i=1,..,s 2)

where P{-} denotes the probability; m(k) is the
discrete-valued modal state (i.e., the indicator of

the normal or the fault mode) at time k; m;; is the
transition probability from the mode i to the mode

J; the event that m J is in effect at time k is denoted as

A ,
m;(k) ={m(k) = j}.
The model of the system with potential failures
can be expressed as

x(k + 1) = F(k,m(k + 1)x(k) + G(k,m(k + 1))u(k)
+ T (k,m(k + 1)eGk,mk + 1)) 3)
z(k) = H(k,m(k))x(k) + n(k,m(k)) Q)

where x € R" is the state vector; z € R? is the
measurement vector; u € R/ is the control input
vector; £(k) € R" and n(k) € R? are independent
discrete-time random process with mean £(k) and 7j(k)
and covariances Q(k) and R(k), representing system
and measurement noises, respectively. It is assumed
that the initial state has a mean X; and a covariance
P,, and they are independent from £(k) and n(k).
The system (3)—(4) is known as a “jump linear
system” [16, 36]. It can be seen from (4) that the
state observations are noisy and mode dependent.
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Therefore, the mode information is imbedded in the
measurement sequence. In other words, the system
mode sequence is an indirectly observed (or hidden)
Markov chain.

B. Multiple-Model Representation of System Failures

Based on the system model (3)-(4), it is possible
to represent different failures in the system. Even
though the MM method is a suitable choice for FDD
.and reconfigurable control, the way to choose a good
model set to represent all possible fault situations
(including fault types, number of faults, and fault
magnitude) is crucial for the success in FDD and
reconfigurable control design. Generally speaking,
the performance of an MM algorithm depends on the
model set used.

Assume that a set of N models has been used
to represent the normal and N — 1 different failure
situations, then the system in (3)—(4) can further be
represented as

x(k + 1) = (F(k) + AF}(k))x(k)
+(Gk)+ AG j(k))u(k) +I j(k)§‘ j(k)
= F(0x(®) + G, (k)u(k) + T; ()€, k)
a(k) = (HK) + AH,(k)x(k) + 1,(k)
= H(ox(k) +m(k)  j=1,...,N

where AF}-(k),AGj(k) and AHj(k) (Gg=2,...,N)
represent the fault-induced changes in the system
components, actuators, and sensors, respectively. They
should be null matrices when j = 1. The subscript j
denote quantities pertaining to the model m; € M.
M = [my,m,,...,my] is a set of all system models
representing the normal system and the system with
all considered faults. Matrices F;(k), G;(k), and H;(k)
correspond to the jth postfault models of the system.
The objective of the integrated FDD and
reconfigurable controller is to estimate the state and
to identify the system mode in effect from a sequence
of noise-corrupted observations, and then to recover:
the performance of the prefault system by selecting
an appropriate controller among a set of precomputed
controllers,

k)

(6)

I.  FAULT DETECTION, DIAGNOSIS AND
CONTROLLER RECONFIGURATION
MECHANISMS

A. State Estimation and Fault Diagnosis Using IMM
Estimator

The IMM estimator [5] is generally considered to
be one of the most cost-effective schemes for state
estimation involving both continuous and discrete
states [16]. It has been successfully used in a number
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of applications, e.g. maneuvering target tracking
[16, 20], and FDD [36].

The IMM algorithm is a recursive estimator with
the following steps in each iteration:

1) interaction of the model-conditional estimates,
2) model-conditional filtering,

3) mode probability update,

4) estimates combination.

In the first step, the input to the filter matched to
a certain mode is obtained by mixing the estimates
of all filters from the previous iteration under the
assumption that this particular mode is in effect at
the present time; a bank of filters corresponding to
different models is calculated in parallel in the second
step; mode probability is then updated based on the
model-conditional innovations and the likelihood
functions; finally, the aggregated state estimate is
obtained as a probability-weighted sum of the updated
state estimates from all the filters.

The probability of the mode in effect plays a key
role in determining the weights in the combination of
state estimates and covariances for aggregated state
estimate. It should be pointed out that in comparison
with the existing noninteracting MM algorithms,
the step 1 is unique for the IMM estimator. It is
because of this mixture of the estimates that makes
the estimation for the state and identification for the
system mode more responsive to the system changes,
thus leads to significantly better FDD performance
[36].

Fig. 2 shows a block diagram of the IMM
estimator for FDD. From this diagram, inherent
relations of the above four steps can be observed
clearly.

B. Fault Detection and Diagnosis Scheme

In active FTCS, timely and correct detection and
diagnosis of a fault is crucial for good performance.
Using the IMM estimator, it is effective to use the
mode probabilities to provide an indication of the
mode in effect at a given time. Hence, it can be used
as an index for FDD. The fault detection decision can
be made by the following rule:
>pp=H; : fault j occurred

(k+ 1) =maxp,(k+ 1
pilk+ D = maxpd ){$MT=>H1:nofault

)
where p7, 0 < pr < 1, is the detection threshold.
A complete cycle of the IMM-based FDD scheme
with Kalman filters as its mode-matching filters is
summarized in Table 1.

C. Integrated Fault Detection, Diagnosis, and
Controller Reconfiguration Mechanisms
It has been shown in [36] that, in comparison with
noninteracting MM approaches, the IMM-based FDD
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Fig. 2. Block diagram of IMM-based FDD approach.

approach provides a faster and more reliable detection
and diagnosis for system failures. However, these
conclusions were drawn only for open-loop systems.
When a control action is introduced and combined
with an MM estimator to form a closed-loop system,
the effect of the feedback will force the residuals from
different models to be similar and this affects the
discrimination property of the filter. Such a situation
is even more serious in reconfigurable control design
because the objective of a reconfigurable control is to
make the performance of the reconfigured system as
close to that of the prefault system as possible. Such a
design principle inherently leads to similar residuals in
each filter and may make the FDD provided only by
the mode probability less reliable.

To overcome such a drawback, various heuristic
techniques have been investigated, e.g. the addition
of probing signals, alternative computation of
probabilities, bounded conditional probabilities,
Kalman filter retuning, scalar penalty increase,
probability smoothing, and increased residual
propagation [2, 18, 19, 32]. These techniques
may enhance the performance of FDD and lead to
subsequent improvement in control to some extent.
However, preliminary investigation has shown that
these techniques are not effective in the current
situation. This motivates us to develop a new
method for more reliable FDD and reconfigurable
control.

Inspired by the MMs’ switching and tuning
approach proposed in [25], a performance index is
used to provide additional information for reliable
fault diagnosis and controller reconfiguration. This
index is calculated as

k+1
Tik+ ) =cedk+D+c, Y. €0
i=k—M+2

®
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where ¢; is the 2-norm of the filter residual vector
corresponding to the jth model, defined by

gk +1) = [l2k + 1) — Hy(k + DR;(k + 1| k+ 1]l
®

where z(k + 1) is the measurement at time (k + 1),
ij(k + 1|k + 1) denotes the estimation of the state of
the closed-loop system at time (k + 1) for the model
J. ¢ 20 and c, > 0 are constants. They determine
the relative weights given to the instantaneous and
accumulative measures. To consider the time-varying
nature of the problem and to make the performance
measure more responsive to fault-induced changes,

a moving window of length M has been used in the
second term in (8).

Based on the above analysis, for reliable fault
diagnosis and control system reconfiguration, the
following condition can be used to activate the
reconfiguration process:

pik + 1) = maxp(k + 1) > pp and

Jj = argmin, Ji(k + 1) = H; : reconfiguration for fault j
p;k + 1) = max p(k + 1) < oy - '

= H, : no reconfiguration

10)

D. Structure of Integrated FDD and Reconfigurable
Control

A block diagram of the combined IMM-based
FDD and the reconfigurable control scheme is shown
in Fig. 3. Based on the on-line FDD information, the
real-time reconfiguration can be carried out.

Similar to the aggregated state estimation in the
IMM estimator, the aggregated control signal, u(k),
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TABLE 1
One Cycle of IMM-Based FDD Scheme

Consider the following system (for j = 1,2,...,N):
‘ z(k+1) = F;(k):v(k) + Gj(k)u(k) + T;(k)¢; (k)
2(k+1) = Hi(k+ 1)z(k + 1) + n;(k + 1)
with & (k)=NE; (k). Q;(K)]; nj(k + 1)=N7;(k + 1), Rj(k + 1)]; z;(0)=N(Zo, Po].
1. Interaction/Mixing of the estimates (for ] =12,..,N):
predicted mode probability: p;(k + 11k) = P{m_7 (k +1)jz*} = Z i (k)

mixing probability: ;A,L.,(Ic) P{m,(k)lm,(k +1), 2%} = mijp; (k)//;J (k+ 1]k)
mixing estimate: E)(k|k) = E[:c(k)lm, (k+1),2 = 2 Ti(klk) (k)
H
mixing covariance: PP(klk) & cov[ED(k|k)ims(k +1), 2¥]
= Z [PiCkik) + [25(kIK) — 2:(kIR) (2 (RIK) — £:Cklk)T juas (R)
2. Model-conditional filtering (fm J=12,.,N):

predicte d state (from ktok+1):

£,(k + 1K) 2 Efa(k + 1)|m;(k+1), 2 ] = Fy(R)a(klE)+ G k)utk) + T3 (k)5 (k) 4
predicted Lovanaucu )

Pi(k + 1[k) £ covlz; (k + 1|1c)|m,(k +1),25] = F;(k) PA(Klk)F3 ()T + T (k)Q; ()T (k)"
measurement residual: . v; = £ 2(k+1) — Efz(k + 1)|m;(k + 1), 2]

= z(k + 1) — Hj(k + 1)&;(k + 1|k) - 7;(k + 1)

residual covariance: L'[u,]m, (k+1),2% = Hj(k + 1)Pj(k + Lk)H;(k + N+ Ritk+1)
filter gain: l i = Pi(k+ 1)k)H;(k+ 1)TSj(k + 1)}
updated state: &i(k+ 1k +1) £ Elz(k + 1)lm(k + 1), 254] = &(k + 1|k) + K,

updated covar hmu,
Pik+1lk+1) = cov[m,(k + 1k + 1)|m,(k +1), 2841 = Pj(k + 1]k) — I (k + 1)S;(k + DE;(k + 1)T
3. Mode probability update and FDD logic (for j = 1,2,..., N):
likelihood function: Li(k + 1)=Ny;(k +1);0, Sj(k +1))

1 1, T g—1 ‘
TS [~3vilk+ 1) STk + Ly;(k + 1))

mode probability: 15(k + 1) = P{m;(k +1)|zF] = ™ (L+IIML ey
. v > pp = Hj : fault j occurred
FDD decision: i(k+ 1) = max i (k + 1
decision #( ) mflxlt‘( +1) { < pp = Ay @ no fanlt

4. Cowbination of estimates:
aggregated estimate: (k+1k+1) 2 Blz(k + )|z = T &k + 1k + 1)pi(k+ 1)
> i

aggregated (ovanar'xu,
Pk + 1k +1) £ E [[z(k + 1) ~ &(k + Lk + D){z(k + 1) = 2(k + 1}k + 1)]T|z*+1]
=3 [Pilk+ 1|k+ 1)+ [E(k + Lk + 1) = 25(k + Uk + D)[&(k + 1k + 1) = &;(k + 1k + D]7] y15(k +1)

RL H where w,(k) = K;x,(k | k) is the feedback control law
Plant D1 des1gned for the ith model in the model set, X; (k| k)
is the corresponding state estimate obtained by the
— ith Kalman filter. K; and L, are the feedback and
o] MM the feedforward control gains corresponding to the
oy—— 2| FDD ith model. y,;(k) denotes the corresponding mode

Pz gl probability for the ith model.

Fig. 3. Block diagram of IMM-based FDD and reconfigurable
control. IV. RECONFIGURABLE CONTROLLER DESIGN AND

ON-LINE CONTROLLER RECONFIGURATION
can also be calculated as the probability-weighted

average of each controller output, which is given by A. Dynamic Performance Recovery-Feedback
u(k) = ¢(k) — (k) : Controller Design
N : LQR and EA are among the most popular
= Z{Lir(k) —u,(k)} - (k) (11) controller design techniques for multiinput and

i=1 multioutput systems. The advantage of EA is that
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when the performance specifications are given in
terms of system eigenstructure, the eigenstructure
can be achieved exactly for the stability and desired
dynamic performance. The condition for the exact
assignment is that there is a sufficient number of
actuators and measurements available and that

the desired eigenvectors reside in the achievable
subspace [1]. The limitation of EA is that the
system performance is not optimal in any measure.
The LQR could be used to optimize the controller
design by minimizing a quadratic function of the
system response and the control energy. In general,
the LQR-based control design will guarantee the
closed-loop system stability and certain degree

of robustness, but may not easily achieve the
specific system performance due to ambiguities

in the selection of the weighting matrices. For the
above reasons, the EA is used for the design of the
reconfigurable controller while LQR is used for the
design of the nominal controller.

1) Assignment for the Best Eigenvalues and
Eigenvectors: Suppose that the dynamics of the
system have undergone some changes due to faults
in system components, actuators, and sensors, and
the system models with normal and different faulty
conditions have become

x(k + 1) = Fyx(k) + G u(k), j=1...,N. (12)

The aim of reconfigurable control system design is
to synthesize a set of new feedback gain matrices so
that the closed-loop eigenvalues of the reconfigured
system are the same as those of the prefault system,
ie,

A; = /\(F:, + GjKj) =X= )‘(Fl + G1K1)’

i=1,...,n, j=2,...,N.

(13)

where K, denotes a control gain matrix designed for
the nominal (fault-free) system, and K G J = 2,...,N,
represents the new feedback control gain matrices
under different fault conditions. A(-) denotes the
eigenvalues of the system.

The closed-loop system elgenvectors of the
reconfigured system, {v‘, i=1,...,n, j=2,..,N},
with the feedback gain matnx K w111 satlsfy

5+ GyK v, = Xy, (14
or
vi = (Xl - F)"'G kv (15)

Then, the objective of the reconfigurable control
system is to synthesize a feedback gain matrix K;
such that the eigenvectors of reconfigured closed-loop
system v‘J is as close to the corresponding eigenvectors
of the prefault system v‘1 as possible. Because of the
variations in system dynamics, in general, v; does not
lie in the same subspace as v|, which may be viewed

1226

as the desired eigenvector for v'J The best possible
closed-loop system eigenvector can be obtained by
the projection of the desired eigenvector onto the
subspace spanned by the columns of (XI F)~ 1G

In the context of reconfigurable control system des1gn
the best choice of v‘ can be obtained by projecting the
corresponding V4 onto E! orthogonally, where E' and
anew vector W, can be defined as

E; = (NI - F)™'G; (16)
wh =KV, (17

Consequently, (15) can be rewritten as
vi = Eiw,. (18)

The desired eigenvector v‘] in the achievable
subspace can be found by the following least-squares
minimization

minJy(v;) = min{(v; — v{)" W/(¥} — vi)}

= min{(E;w; — V)T W} (E;w} — v},
i=1,...,n, j=2,...N (19
and
v, = EETWIWEETWTY,  0)

where W/ € R"™" is a positive definite weighting
matrix. Suggestions about how to choose weighting
matrix W/ are given in [13].

2) Computation of the Reconfigurable Control
Gain Matrix: Consider the following closed-loop
reconfigured system equation

Xeu1 = (F + GK)%,. 21)

To simplify the procedure in calculatmg the matrix
K}, a linear transformation matrix
2;=[G; : ©;]eR™" (22)
is chosen, where ©; € R™®) is an arbitrary matrix
such that rank(Q;) = n.
Applying the linear transformation €; to (21), a
new set of state variables X; € R" can be obtained

X, = Qj”lxk. (23)
Thus (21) is transformed to
%, = (F; + GKQ)%, (24)

where

F.=Q7'FQ G.=0Q71G, = L
PTG TR jE Y E :

0

The corresponding eigenvectors under this
transformation are related by

v =0V = [s'].
g
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Clearly, the eigenvalues, eigenvectors and system

matrices satisfy
(F; + GK )V, = A%, j=2.....N.

(25)

i=1,...,n,

Equation (25) can be rearranged as follows

NI -F )V, = G,K;Q;¥,

e b B

j=2,...,N.
(26)

By exploiting the special structure of G, we can
rewrite (26) as

X, - F -F i i
ot e 18- Ben
—F,, |,\;1 o —F,,| gl |0 g

27)

i=1,...,n,

where o
— F,, | F
F,= [_“ _‘2] = O;'FQ,.
Fu|Fyp

The first matrix equation in the partitioned form in
(27) can be written as

i Fovd T of s’
()\JII —F”)s —F22gl = K]Q} [“g—l]
(28)
Further, by letting F, = [F,, F,), (28) becomes

i=1,..,n, j=2,...,N.

IF, + K;Q,1¥, = Ns', ji=2....N

(29

i=1,...,n,

or, in a compact form

[F, + Kij]Vj =S 30)
where V; = [¥] Vo V1€ R™", and §; =
st A3s? ... A" e RP,

It should be noted that V; and §; are often
complex. To alleviate the need for complex arithmetic,
a transformation is needed to transform V and S;
to real matrices. Assume that X} = (X*1)* and ¥; =
(V‘j“‘)*, and assuming all remaining eigenvalues are
real, we can define a transformation matrix

I0 0 0
01]1/2 -—j1/2 |0} "

a= |0 |2 TP eren G
0 {1/2 j1/210
0]0 0 I

Multiplying both sides of (30) by the
transformation matrix @, i.e.,

Fy +KQ1V,; = 5;9; (32)

will transform Vj and § ; to real matrices and at the
same time not alter the calculation of the feedback
gain matrix. Note that for the case of more than one
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pair of self-conjugate eigenvalues, the corresponding
rows and columns in the ®; matrix need to be
assigned by the transformation matrix

_ [1/2 —j1/2]
12 j12
in place of unity matrix /.

From (30) the desired feedback gain matrix can be

calculated as
K;=@G;-F,VyQ,vy?, j=2,...,N

or from (32), the desired feedback gain matrix for
the case of complex eigenvalues can be obtained
as

K, =(S;®,-F,V;®)Q;V;)",

(33)

j=2,...,N.

(34)

B. Steady-State Performance Recovery-Feedforward
Controller Design

Even though the dynamic performance of the
prefault system can be recovered to the maximum
extent with EA, it is also important to consider the
steady-state performance. This can be accomplished
by a set of properly designed feedforward control
gains L;, j = 1,...,N [13]. These gains can be
calculated as follows using a property of z-transform.

Suppose that the original reference input r(k) has
been scaled by a set of input weighting matrices L,
as r/(k) for the jth model in the model set, then
we have

j=1,...,N. 35)

The steady-state output of the stable closed-loop
system subject to a unit step input can be calculated
using the final value theorem in z-transform:

rjk) = L;-x(®),

¥(00) = lim y(k) = lim H.x(k)
=1lim(z - 1)®;(z)L;R ()
z—1
= {iiirlch(zl -F+GK)'G j} L

=¥L, j=1,...,N (36)

where K 5 J = 1,...,N, represent the jth feedback
control gains. H, is a matrix such that the system
output y(k) = H_x(k) tracks the reference input
rk). ¥; = {lim,_, H.(z] - F; + GjKj)"‘Gj} is the
steady-state gain of the system before scaling.

The steady-state performance recovery problem
can then be stated as choosing appropriate matrices
L; € R™! to minimize J (L))

minJ (L) =min|[[ =Ll j=1...N. 37)
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Ifv j is invertible, then

-1
L= {Eiirlec(zI —Fj+ G]-Kj)‘lGj} » =LA
(3%)

It is important to point out that the feedforward

control gains L, are dependent upon the feedback

control gain matrices K;. It should be noted that if the

number of system output is less than or equal to the

number of system input, i.e., m <[, the steady-state

. performance of the original system can be recovered

completely. If m > I, the chosen L; is to minimize

J(L j) in a Frobenius-norm sense [13].

C. Reconfigurable Control Signal Generation Strategies

Even though in the above IMM scheme, there are
a set of models and the corresponding feedback and
feedforward gains for each failure mode, there is still
a single control signal at any given time. In general,
there are two ways to generate this signal: one is
based on a Bayesian scheme and the other is by the
maximum a posteriori (MAP) approach [19, 32].

In the former, the control signal is obtained as a
probability-weighted average of the signals generated
from all the models. The advantage of this approach
is that it is able to reduce the effect of incorrect model
selection during the early stage of reconfiguration.
However, once the failure mode has been identified
correctly, there is no need to continuously use the
probability-weighted approach, as the non-zero
probabilities (due to noise) can have adverse effects
on the control signal generation.

In the MAP approach, the control signal is selected
from the model which has the highest probability. The
risk of this approach is that during the transient of
reconfiguration process, the model with the highest
probability may not necessarily correspond to the
correct failure mode. Incorrectly selected control
signals can introduce further transients into the
system.

Clearly, a combination of these two approaches
would be advantageous. To be more specific, during
the transient period, the Bayesian approach is used.
Once the failure has been detected and diagnosed
with some degree of certainty, the control signal
from the model with the highest probability will be
used. In summary, this combined decision rule can be
described as follows:

if ”'j(k) <pr
N

u(k) = Y {L;r(k) — ()} - py(k)

i=1

(39
otherwise

u(k) = L;r(k) —u;(k),  j = arg max (k)
where p denotes the threshold which takes the same
value as in (10).
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V. PERFORMANCE EVALUATION OF THE
PROPOSED SCHEME FOR AN AIRCRAFT

The effectiveness of the proposed scheme is
demonstrated in this section through a longitudinal
vertical takeoff and landing (VTOL) aircraft model
[26].

A. Aircraft Model

The linearized model of the aircraft can be
described by

x(@) = Ax(t) + Bu() + £()
z(f) = Cx(t) + n()

where x = [V, V, ¢ 61T, u = [6, §,)7. The states and the
inputs are: horizontal velocity V,, vertical velocity V,,
pitch rate g, and pitch angle 8; collective pitch control
6., and longitudinal cyclic pitch control §,. The model
parameters are given as follows

(40)

—0.0366  0.0271  0.0188 —0.4555
A 0.0482 -1.01 0.0024 —4.0208
0.1002 03681 -0.707 1420 |’
| 0.0 0.0 1.0 0.0
- 0.4422  0.1761 1000
B 3.5446 —7.5922 - 0100
-5.52 449 |’ 0010
[ 0.0 0.0 0111
The zero hold equivalent system can be

represented by
x(k + 1) = Fx(k) + Gu(k) + £(k)

(41
z(k) = Hx(k) + n(k)

where F = e/T, G = (J; ¢*"dr)B, H = C, and the
sampling period T = 0.1 s.

Parameters are given as follows. Q =
diag{0.012, 0.012, 0.012, 0.012}, R =
diag{0.22, 0.2?}, x, = [250 50 10 8]”. The external
control input is selected as u = [100 100} . Initial
parameters for the Kalman filters in the filter bank are
X)=xy, PP =991,0;=Q, and R; = 2R,Vj = 1,...,N.
The nominal controller is designed using LQR, the
state and control weighting matrices are chosen as
Oy qr = diag{1,1,1,1} and Ry o = diag{1,1}.

Since the controlled variables are horizontal
velocity and vertical velocity, the command tracking
matrix H, in (36) is chosen as

1
Hc‘_'[ 00 0].
0100

B. Fault Modeling and Model Set Design

In the following, we consider a simple situation
where there is only a single failure among system
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TABLE II
System Matrices for Normal and Fault Modes

Modes F; G; H;

[’ 0.9964 00026 ~0.0004 -—0.0460 0.0445 0.0167 T [10 0 0 0 ]
Fault-free 0.0045 0.9037 -0.0188 ~0.3834 0.3407 -0.7249 0 10 0 0
G=1) 0.0098 0.0339 0.9383 0.1302 -0.5278 0.4214 0 0 10 o0
| 0.0005 0.0017  0.0968  1.0067 | —0.0268  0.0215 | [ 0 10 10 10

[ 0.9964 0.0026 —0.0004 —0.0460 0.0045 0.0167 10 0 0 0 7
Actuator fault 0.0045 0.9037 -0.0188 —0.3834 0.0 —0.3624 0 10 O 0
(G=2) ) 0.0098 0.0339 0.9383 0.1302 —=0.1319 0.1053 0 0 10 O

[ 0.0005 0.0017.  0.0968  1.0067 -0.0268 00215 | | L. 0. 1.0 1.0 -1.0

. [ 0.9964 0.0026 —0.0004. —0.0460 - [ .0.0445  0.0167 T f1.0 0 0 .0 7
System fault 0.0045 0.0 -0.0188 ~0.3834 0.3407 —0.7249 0 1.0 0 O
(=3) 0.0098 0.033 0.9383 0.1302 -0.5278 0.4214 0 0 10 O

| 0.0005 00017 0.0968  1.0067 | -0.0268  0.0215 | [ 0 10 10 1.0

[ 0.9964 0.0026 -0.0004 —0.0460 [ 0.0445 0.0167 00 0 0 0 7
. Sensor fault - 0.0045 0.9037 -0.0188 —0.3834 0.3407 ~0.7249 0 10 © 0
G=4) 0.0098 0.0339  0.9383  0.1302 —0.5278  0.4214 0 0 10 0

| 0.0005 00017 0.0968 1.0067 | | —0.0268  0.0215 L 0 1.0 1.0 1.0 ]

component, actuator, or sensor in any given test run.
Faults are simulated at ¢ = 5 s in each scenario. There
are 4 possible modes in total. Table II represents the
system, control, and measurement matrices for each
mode, with the parameter changes highlighted.

The following model transition probability matrix
is used

-87/90 1/90 1/90 1/90

- 01 09 O 0
1 01 0 09 0
0.1 0 0 09

C. Indices for Performance Evaluation

In order to evaluate the performance, the following
measure is used :

e(k) = | H, (™ (k) — x*"08 @y, (42)

where x"°™2l(k) denotes the nominal closed-loop
system state when there were no failures, while
xreonfigured (1 denotes the reconfigured closed-loop
system state at time k. .

In addition, the mean and the maximum value
of e(k), Vk € {1,k } are also used as overall
performance indicators, i.e.,

1 Kmax

e= P e(k) 43)
‘max r=1

€max = max{e(k)}. 44)

In addition to the conventional performance
indices, such as false alarm (FA) and missed detection
(MD), the following performance measures have also
been used in this work: average percentages of correct
detection and identification (CDI), incorrect fault
identification (IFI), no mode detection (NMD), and
detection and correct identification delay (DCID).
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1) One CDI is counted if the model that is closest
to the system mode (normal or fault mode) in effect
at a given time has a probability higher than the
threshold p = 0.9. .

2) One IFI is counted if the model with a
probability over i is not the one closest to the fault
mode in effect at the given time.

3) One FA is counted if the model with a
probability over ug is not the normal mode while the
normal mode is in effect at the given time.

4) One MD is counted if the normal model has the
highest probability which exceeds ;. while the system
has a fault. .

5) One NMD is counted if no model has a
probability above .

6) DCID is the time delay that FDD takes to
correctly detected and diagnosed fault.

Obviously, it is desirable to have higher CDI and
lower FA, IFI, MD, and NMD. The more detailed
discussions on the performance evaluation and indices
for FDD can be found in [36].

Similarly, to evaluate the reconfiguration
mechanism, percentages of correct reconfiguration
(CR), incorrect reconfiguration (IR), and the
reconfiguration delay (RD) are also used in this work.

D. Results

1) Eigenstructures and Controller Gains: The
eigenvalues and eigenvectors of the closed-loop
system in fault-free mode and different fault modes
are presented in Tables III and IV, respectively. The
designed controller gains are shown in Table V. It is
clear that the eigenvalues under different faults are
assigned exactly to those of the fault-free system,
and the corresponding eigenvectors are assigned as
close to those of the fault-free system as possible.
To evaluate quantitatively how close the assigned
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TABLE III

Eigenvalues of Designed Reconfigurable Control System

Fault-free System fault Actuator fault Sensor fault
0.3486 0.3486 0.3486 0.3486
Eigenvalues 0.8617 + j0.0296 0.8617 + 50.0296 0.8617 + j0.0296 0.8617 + j0.0296 -
8 0.8617 — j0.0296 0.8617 — 50.0296 0.8617 —~ j0.0296 0.8617 — ;0.0296
0.9308 0.9308 0.9308 0.9308
TABLE IV
Eigenvectors of Designed Reconfigurable Control System
Modes Eigenvectors Misalignment in distanceZangle(rad)
[ ~-0.0117 -—0.0902 — j0.3021 -0.0902 + j0.3021 -0.6365 040 T
Fault-free -0.7662 0.2193 + j0.1863 0.2193 — 50.1863 0.0597 040
0.6392 0.3966 + j0.6433 0.3966 — 70.6433 0.4486 040
| —0.0655 —0.1587 — j0.4706 —0.1587 4 j0.4706 —0.6245 ] 0£0
[ —0.1325 —0.0918 —j0.1710 -0.0918 +30.1710 —0.6132 7 " 0.1215£0.1216 1 T
System fault ~0.7659 —0.0644 4- j0.1887 —0.0644 - ;j0.1887 0.0245 0.5670£0.5749
4 0.6259 ~0.0415 + j0.8018 —0.0415 — 50.8018 0.4606 0.567020.5749
L —0.0644 —0.0922 - j0.5191 ~—0.0922 4 j0.5191 —0.6412 | | 0.0470£0.0470 |
[ 0.0246 —0.2281 + j0.0870 —0.2281 — ;j0.0870 —0.6430 ] [ 0.0904£0.0905 T T
Actuator fault —0.7680 0.1327 — j0.2595 0.1327 + j0.2595 0.0657 0.4774£0.4821
0.6397 0.5169 — j0.5752 0.5169 + j0.5752 0.3460 0.4774£0.4821
| 0.0173 —0.4430 + j0.2473 —0.4430 — j0.2473 —0.6801 J [ 0.1170£0.1171 |
[ —0.0117 -0.1004 — j0.2989 —0.1004 4 j0.2989 —0.6365 I 040 17
Sensor fault —0.7662 0.2255 + j0.1787  0.2255 — j0.1787 0.0597 0.034120.0341
0.6392 0.4183 + j0.6294 0.4183 — j0.6294 0.4486 0.0341£0.0341
. —0.0655 —0.1746 — j0.4649 —0.1746 + j0.4649 —0.6245 | | 040 i
TABLE V
Controller Gains for Fault-Free and Reconfigurable Control
Cases Feedback controller gains Feedforward gains
Fault-free 0.7074 -0.1382 -0.7454 ~1.0289 0.7746 -0.1460
0.1149 -0.5734 0.0224 0.4577 0.1434 -0.7285
System fault 0.5558 1.3050 ~0.7765 -0.8605 [ 0.6192  1.4052
e 0.1863 1.2946 -—0.0854  0.3494 0.2173 —-0.3845
2.0084 04717 -2.0855 -3.1088 2.2253  0.4918
t
Actuator faul [ -0.3869 —1.0500 0.6298 15973 ] [ -0.3981 —1.3067 }
Sensor fault 0.7074 -0.1382 -~0.7454 -1.0289 " 0.7746 —0.1460
0.1149 -0.5734 0.0224  0.4577 0.1434 -0.7285

eigenvectors are to those of the prefault system,
misalignment of the eigenvectors are calculated in
terms of distances and angles between them which

are shown in Table IV.

As can be seen from the Table IV, the new
eigenvectors are very close to those of the prefault

system.

2) Responses of the System Under Component

The plant and reconfigured output responses
in the presence of the system component faults

are illustrated in Fig. 4. For comparison purpose,

the plant output responses without the controller
reconfiguration are also shown. It can be seen that
the output responses of the fault-free closed-loop

Failure:
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system is recovered by using the proposed approach
after a short transient. However, without the controller
reconfiguration, the system becomes unstable. The
mode probability and the control switching sequence
for FDD and the controller reconfiguration are shown
in Fig. 5. It can be observed that even though there
are a few mis-switchings at the beginning stage of
the reconfiguration (around ¢ = 5 s), satisfactory
performance has eventually been achieved. Fig. 6
demonstrates the closed-loop control signals in the
two control channels, from which one can easily
examine how the closed-loop control signals have
been adjusted accordingly to compensate for the
fault,
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Fig. 4. Output responses under system component fault.
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Fig. 5. Mode probability and control switching sequence under system component fault.
TABLE VI
Performance of Proposed Scheme
Faults Performance of FDD " Performance of reconfiguration
CDI FA IF1 MD NMD DCID CR IR RD é Emax
system 98.88% 0% 1.12% 0% 0% 0.2s | 98.88% 1.12% 0.2s 6.969 9240
actuator | 99.64% 0.01% 0% 0.13% 0.22% 0.06s | 99.69% 0.31% 0.06s 1.068 6.450
sensor | 100.0% 0% 0% 0% 0% 0s | 100.0% 0% 0s 0.313 0.603
0 1 FDD and reconfiguration, satisfactory performance
. I has been obtained via the proposed integrated active
g ° [ R B R fault-tolerant control scheme.
'g “ e ’l] 3) Responses of the System Under Actuator Failure:
g i The plant and reconfigured output responses in the
§ 100 | 17\ presence of the actuator fault are illustrated in Fig. 7.
3 I\(‘_,_: T It can be seen that the output responses of the original
B.150 i l — — Control signal 1: Normal closed-loop system are completely recovered. The
’l.- e o et ot corresponding mode probability and the control
200 il " Controlsignal 2: With system fault switching sequence are given in Fig. 8. However,

[ 2 4 .8 8 10
Time (s)

12 14 18 18
Fig. 6. Closed-loop controller output under system component

fault.

In addition, the quantitative performance indices
described previously are given in Table VI. Table VII
presents the results for the case with perfect FDD for
reconfiguration. All results in the Tables VI and VII
are the average of 100 Monte Carlo simulation runs.
Compared with the performance with correct (perfect)
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without the controller reconfiguration, the closed-loop
system becomes unstable. Fig. 9 demonstrates the
corresponding control signals. Similar to the case of
the system component fault, performance indices are
also given in Tables VI and VIL

4) Responses of the System Under Sensor Failure:
Figs. 10-12 show the behavior of the system in
the presence of the sensor fault. Satisfactory FDD
and reconfiguration results have been obtained. It
should be noted that even though the design of the
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Fig. 7. Output responses under actuator fault.
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Fig. 8. Mode probability and control switching sequence under actuator fault.

TABLE VI
Performance of FDD and FTCS with Correct FDD and Reconfiguration
Faults Performance of FDD Performance of reconfiguration
CDI FA IFI MD NMD DCID| CR IR é €max
system | 100% 0% 0% 0% 0% 0s | 100% 0% 8.633 92.40
actuator | 100% 0% 0% 0% 0% 0s | 100% 0% 1.091  5.354
sensor | 100% 0% 0% 0% 0% 0s | 100% 0% 0.313 0.603

== Control signal 1: Normal

Control gignal 2: Normal
===~ Control signal 1: With actuator fault
==+ Control signal 2: With actuator fault

2 4 ] 8 10

Time (8)

12 14 16 18

Fig. 9. Closed-loop control input under actuator fault.

reconfigurable feedback controller is not influenced
directly by sensor faults due to the feedback of

the estimated states, sensor faults do affect the
implementation of the closed-loop control. This can
be observed from Fig. 11, Fig. 12 demonstrates the
control signals in the presence of the sensor fault. Due
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to the fact that the same control law has been used
as the normal controller, and that the satisfactory
state estimation for both fault-free and fault cases
have been obtained. There are no obvious
changes in the corresponding closed-loop control
signals. This fact can also be seen from Tables VI
and VIL

The results from the simulation have indicated
that the proposed integrated FDD and reconfigurable
control scheme can deal with system component,
actuator and sensor faults effectively.

VI. CONCLUSIONS

An integrated MM fault detection, diagnosis, and
reconfigurable control scheme has been proposed.
FDD has been carried out using the IMM approach.
Steady-state tracking of a constant reference command
has been achieved using a feedforward control
technique, and the reconfigurable controller is
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presence of system component, actuator and sensor
faults have shown the effectiveness of the proposed
approach.
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Fig. 11. Mode probability and control switching sequence under sensor fault.
20
REFERENCES
1 1 M —e— 1 . v
-3 Pt ] {11  Andry, A. N, Jr., Sharipo, E. Y., and Chung, J. C. (1983)
l-g‘"‘"" /’ Eigenstructure assignment for linear systems.
g g IEEE Transactions on Aerospace and Electronic Systems,
51 r 19 (Sept. 1983), 711-729.
§ 40 | } [2] Athans, M., Castanon, D., Dunn, K., Greene, C. S., Lee,
k] W. H,, Sandell, N. R, Jr., and Willsky, A. S. (1977)
© 50 IO St B Nomal The stochastic control of the F-8C aircraft using a
— - Control signal 1: Wilh sensor t'aun multiple model adaptive control (MMAC) method—Part
100 Control signal 2: With sensor fault 1: Equilibrium flight.
0 2 4 ] 8 10 12 14 16 18 IEEE Transactions on Automatic Control, 22 (May 1977),
Time (," 768-780.
Fig. 12. Closed-loop control input under sensor fault. [3] Balle, P, Fischera, M., Fussel, D., Nells, O., and
Isermann, R. (1998)
Integrated control, diagnosis and reconfiguration of a heat
designed via eigenstructure assignment. To achieve exchanger.
. . . . E ! 52-63.
fast and reliable fault detection, diagnosis, and a4 B IEE mcoh";m 1‘;’; ':m (June 1998), 52
controller reconfiguration, an index related to the 41 etact (1988)
. . . tecting changes in signals and systems-—A survey.
f:loscd-lqop performance has bec.ar.x‘combmed with the Automatica, 24 (1988), 309-326.
mformz«%tlon of the mode probability. New strategy for (5] Blom, H. A. P, and Bar-Shalom, Y. (1988)
generation of the aggregated reconfigurable control The interacting multiple model algorithm for systems
- signal has also been proposed. Several performance with Markovian switching coefficients.
* indices have been introduced for the evaluation of the 1EEE Transactions on Automatic Control, 33 (Aug. 1988),
integrated FDD and reconfigurable control scheme. 780-783.
Simulation results for an aircraft example in the [6] Bodson, M., and Groszkiewicz, J. (1997)

Multivariable adaptive algorithms for reconfigurable flight
control.

IEEE Transactions on Control System Technology, 5 (Mar.
1997), 217-229.

1233



mn

(31

{91

(10]

[11]

(12]

[13]

(14

[15]

{16]

171

(18]

{19]

{20]

1234

Boskovic, J., and Mehra, R. K. (1998)
A multiple model-based reconfigurable flight control
system design.
In Proceedings of the 37th IEEE Conference on Decision
and Control, Tampa, FL, Dec. 1998, 4503-4508.
Chandler, P. R. (1984)
Self-repairing flight control system reliability and
maintainability program executive overview.
In Proceedings of the IEEE National Aerospace and
Electronics Conference, Dayton, OH, 1984, 586-590.

Chen, J., and Patton, R. J. (1999)
Robust Model-based Fault Diagnosis for Dynamic Systems.
Norwell, MS: Kluwer Academic Publishers, 1999,

Frank, P. M. (1990)
Fault diagnosis in dynamic systems using analytical and
knowledge-based redundancy—A survey and some new
results.
Automatica, 26 (1990), 459—474.

Gao, Z., and Antsaklis, P. J. (1991)
Stability of the pseudo-inverse method for reconfigurable
control systems.
International Journal of Control, 53 (1991), 717-729.

Huang, C. Y., and Stengel, R. F. (1990)
Restructurable control using proportional-integral implicit
model following.
Journal of Guidance, Control, and Dynamics, 13
(Mar.~Apr. 1990), 303-309.

Jiang, J. (1994)
Design of reconfigurable control systems using
eigenstructure assignment.
International Journal of Control, 59 (1994), 395-410.

Jiang, J., and Zhao, Q. (1998)
Fault tolerant contol system synthesis using imprecise
fault identification and reconfiguration control.
In Proceedings of the IEEE International Symposium
on Intelligent Control, Gaithersburg, MD, Sept. 1998,
169-174.

Jiang, J., and Zhao, Q. (2000)
Design of reliable control systems possessing actuator
redundancies.
Journal of Guidance, Control, and Dynamics, 23
(July-Aug. 2000), 709-718.

Li, X. R. (1996)
Hybrid estimation techniques.
In C. T. Leondes (Ed.), Control and Dynamic Systems, 76.
New York: Academic Press, 1996, 213-287.

Looze, D. P, Weiss, J. L., Eterno, J. S., and Barrett, N. M.

(1985)

An automatic redesign approach for restructurable control
systems.
IEEE Control System Magazine (May 1985), 16~22.

Maybeck, P. S., and Hanlon, P. D. (1995)

Performance enhancement of a multiple model adaptive
estimator.

. IEEE Transactions on Aerospace and Electronic Systems,
31 (Oct. 1995), 1240-1254.

Maybeck, P. S., and Stevens, R. D. (1991)

Reconfigurable flight control via multiple model adaptive
control methods.

IEEE Transactions on Aerospace and Electronic Systems,
27 (May 1991), 470-479.

Mazor, E., Averbuch, A., and Bar-Shalom, Y. (1998)
Interacting multiple model methods in target tracking: A
survey.

IEEE Transactions on Aerospace and Electronic Systems,
34 (Jan. 1998), 103-123.

(211

[22]

{23]

{24]

[25]

{26]

(27}

[28]

[29]

[30]

(311

{32]

(331

[34)

[35]

Moerder, D. D., Halyo, N., Broussard, J. R, and

Caglayan, A. K. (1989)

Application of precomputed control laws in a
reconfigurable aircraft flight control system.
Journal of Guidance, Control, and Dynamics, 12
(May-June 1989), 325-333.

Morse, W. D., and Ossman, K. A. (1990)

Mode] following reconfigurable flight control systems for
the AFTI/F-16.

Journal of Guidance, Control, and Dynamics, 13
(Nov.—Dec. 1990), 969-976.

Napolitano, M. R., Naylor, S., Neppach, C., and

Casdorph, V. (1995)

On-line learning nonlinear direct neurocontrollers for
restructurable control systems.

Journal of Guidance, Control, and Dynamics, 18 (Jan.—~Feb.
1995), 170-176.

Napolitano, M. R., and Swaim, R. L. (1991)

New technique for aircraft flight control reconfiguration.
Journal of Guidance, Control, and Dynamics, 14 (Jan—Feb.
1991), 184-190.

Narendra, K. S. Balakrishnan, J., and Coliz, M. K. (1995)
Adaptation and Jearning using multiple models,
switching, and tuning.

IEEE Control System Magazine (June 1995), 37-51.

Narendra, K. S., and Tripathi, S. S. (1973)

Identification and optimization of aircraft dynamics.
Journal of Aircraft, 10 (Jan. 1973), 193-199.

Noura, H., Sauter, D., Hamelin, F., and Theilliol, D. (2000)
Fault-tolerant control in dynamic systems: Application to
a winding machine.

IEEE Control System Magazine (Feb. 2000), 33-49.

Patton, R. J. (1997)

Fault-tolerant control: The 1997 situation.
In Proceedings of IFAC Symposium SAFEPROCESS'97,
Hull, UK, Aug. 1997, 1033~1055.

Patton, R. J., Frank, P. M., and Clark, R. N. (1989)

Fault Diagnosis in Dynamic Systems, Theory and
Applications.
Englewood Cliffs, NJ: Prentice-Hall, 1989.

Rago, C., Prasanth, R., Mehra, R. K., and Fortenbaugh, R.

(1998)

Failure detection and identification and fault tolerant

control using the IMM-KF with applications to the

eagle-eye UAV.

In Proceedings of the 37th IEEE Conference on Decision

and Control, Tampa, FA, Dec. 1998, 4208-4213.
Rauch, H. E. (1995)

Autonomous control reconfiguration.

IEEE Control System Magazine (Dec. 1995), 37-48.

Schott, K. D., and Bequette, B. W. (1997)

Multiple model adaptive control.

In R. Murray-Smith and T. A. Joh (Eds.), Multiple
Model Approaches to Modeling and Control.

London, UK: Taylor and Francis, 1997, 269-291.

Veillette, R. J., Medanic, J. V., and Perkins, W. R. (1992)
Design of reliable control systems.

IEEE Transactions on Automatic Control, 37 (Mar. 1992),
- 290-300.

Willsky, A. S. (1976)

A survey of design methods for failure detection in
dynamic systems.
Automatica, 12 (1976), 601-611.

Zhang, Y. M., and Jiang, J. (2001)

Integrated design of reconfigurable fault-tolerant control
systems. '

Journal of Guidance, Control, and Dynamics, 24 (Jan.—Feb.
2001), 133-136.

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 37, NO.4 OCTOBER 2001



[36] Zhang, Y. M., and Li, X. R. (1998) [37]  Zhou, D. H,, and Frank, P. M. (1998)

Detection and diagnosis of sensor and actuator failures Fault diagnosis and fault tolerant control.
using IMM estimator. . IEEE Transactions on Aerospace and Electronic Systems,
IEEE Transactions on Aerospace and Electronic Systems, 34 (Apr. 1998), 420—_427.

34 (Oct. 1998), 1293-1313.

Youmin Zhang (M’99) received the B.S., M.S. and Ph.D. degrees in electrical
engineering from Northwestern Polytechnical University, Xian, P. R. China, in
1983, 1986, and 1995, respectively.

Since 1986, he has worked in the Department of Automatic Control,
Northwestern Polytechnical University, Xian, P. R. China, where he was promoted
as an Associate Professor in 1992 and was appointed as an Associate Chair of
the Department in 1994. During Sept. 1995 and Aug. 2000, he held several
research positions in the University of New Orleans, Louisiana State University,
State University of New York at Binghamton, and The University of Western
Ontario, respectively. He is currently an Assistant Professor in the Department
of Electrical and Computer Engineering at The University of Western Ontario, .
London, Ontario, Canada. His main research interests include fault detection,
diagnosis and fault-tolerant (control) systems; machinery condition monitoring;
signal and data processing; estimation, identification theory and algorithms for
signal processing, communications, and control; neural networks and applications
to modeling, identification, diagnosis and control.

Dr. Zhang has published 34 refereed journal papers and more than 50
international conference papers, edited one monograph and coauthored a graduate
textbook. He received an award from Natural Sciences and Engineering Research
Council (NSERC) of Canada for a Visiting Fellowship in Canadian Government
Laboratories. He was the recipient of several research achievement awards from
National Education Commission of China, Aeronautics and Astronauts Industry
Ministry of China, and Shaanxi Province Education Commission; an outstanding
teaching achievement award from Shaanxi Province; several outstanding teaching
and research awards from Northwestern Polytechnical University. He served
as the General Chair of the 10th Youth Conference on Automatic Control and -
Automation in China in 1994 and an international program committee member of
several international conferences. He served as an Associate Editor of the 2001
IEEE Conference on Control Applications. He serves also as a reviewer of several
refereed international journals and conferences.

Jin Jiang (M’85—SM’94) obtained his Ph.D. in electrical engineering from the
University of New Brunswick, Fredericton, New Brunswick, Canada, in 1989.
Currently, he is a Professor in the Department of Electrical and Computer
Engineering at The University of Western Ontario, London, Ontario, Canada.
His research interests are in the areas of fault-tolerant control of safety-critical
systems, power system dynamics and controls, and advanced signal processing.

ZHANG & JIANG: INTEGRATED ACTIVE FAULT-TOLERANT CONTROL USING IMM APPROACH 1235



