
Central Processing Unit (CPU)
• CPU is the heart and brain

• It interprets and executes machine level instructions

• Controls data transfer from/to Main Memory (MM) and CPU

• Detects any errors

• In the following lectures, we will learn:
• Instruction representation

• Data transfer mechanism between MM and CPU

• The internal functional units of two different CPU architectures

• How these units are interconnected

• How a processor executes instructions

Instruction Representation
• CPU operation is determined by the instruction it executes

• Collection of these instructions that a CPU can execute forms its Instruction
Set

• An instruction is represented as sequence of bits, for example:

• Instruction is divided into fields

• Opcode indicates the operation to be performed, eg., 92 above indicates a
copy operation – we need two operands – one source and other destination

• Opcode represents
• nature of operands (data or address), operand 1 is address and operand 2 is data

• mode (register or memory), operand 1 is memory, and operand 2 is immediate data

1001 0010 0000 0011 1011 1011 1000 0001

9 2 0 3 B B 8 1

Opcode Operand1 Operand2

Basic Instruction Types
Not all instructions require two operands

• 3-address instructions

Operation Source1, Source2, Destination
e.g. Add A, B, C ; C = A + B

• 2-address instructions

Operation Source, Destination
e.g. Move B, C ; C = B

Add A, C ; C = C + A
Here Source2 is implicitly the destination

• 1-address instructions

e.g. Load A

Store C

• 0-address instructions

e.g. Stop

Simple Instruction Set
Assume we have a processor whose Instruction Set consists of four machine
language instructions

• Move from a memory location to a data register in CPU

• Move from a data register in CPU to a memory location

• Add the contents of a memory location to a data register

• Stop

Suppose our program for Z = X + Y looks like:

Move X, D0

Add Y, D0

Move D0, Z

Stop

This program is coded into machine instruction and suppose is loaded into memory
starting at location $0000 0000

$0000 0000move

add

move

stop

• How does the CPU know which instruction to execute?
• There is a dedicated register in CPU called Program Counter (PC)

that points to the memory location where next instruction is stored
Therefore, at start PC = $0000 0000

• Instruction is in Main Memory – it is to be transferred
(fetched) to CPU to be executed
• CPU has an Instruction Register (IR) that holds the instruction

• What kind of instruction is to be executed?
• CPU has its own Instruction Interpreter (Decoder)

• Followed by Instruction execution
• Next instruction follows. PC is incremented by length of

instruction just completed

Mechanism of Transferring Data from MM to CPU

CPU has an external bus that connects it to the Memory and I/O devices.

The data lines are connected to the processor via the Memory Data Register
(MDR)

The address lines are connected to the processor via the Memory Address
Register (MAR)

• Memory address from where the instruction/data is to be accessed is copied into
MAR

• Contents of MAR are loaded onto address bus

• Corresponding memory location accessed

• Contents of this location put onto data bus

• Data on data bus loaded into MDR

MAR

MDR

CPU MM

Address bus

Data bus

Control bus

R/W

CISC and RISC
Reduced Instruction Set Computers (RISC)

• Performs simple instructions that require small number of basic steps to execute
(smaller S)

• Requires large number of instructions to perform a given task – large code size
(larger N)

• more RAM is needed to store the assembly level instructions
• Advantage: Low cycles per second – each instruction is executed faster in one clock

cycle (smaller R)
• Example: Advanced RISC Machines (ARM) processor

Complex Instruction Set Computers (CISC)
• Complex instructions that involve large number of steps (larger S)
• Fewer instructions needed (smaller N) – small code size
• Commands represent more closely to high-level languages
• Less RAM required to store the program
• Disadvantage: High cycles per second
• Example: Motorola 68000 processor, Intel x86

General Purpose Register (GPR)Architecture
Its functional units are:
Data Registers: D0, D1, D2,..., D7 for arithmetic operations – holds any kind of data

Address Registers: A0, A1, A2,..., A7 serve as pointers to memory addresses

Working Registers: several such registers – serve as scratch pads for CPU

Program Counter (PC) holding the address in memory of the next instruction to be
executed. After an instruction is fetched from memory, the PC is automatically
incremented to hold the address of, or point to, the next instruction to be executed.

Instruction Register (IR) holds the most recently read instruction from memory while it is
being decoded by the Instruction Interpreter.

Memory Address Register (MAR) holds the address of the next location to be accessed in
memory.

Memory Buffer Register (MBR or MDR) holds the data just read from memory, or the
data which is about to be written to memory. Buffer is referring to temporarily holding
data.

Status Register (SR) to record status information

GPR CPU

MBR

MAR

PC

Increment

Interpreter

IR

Register
File

0
1
2
3

ALU

CPU Memory

Data bus

Address bus

Memory
Control

16 bit
8 bit

Program Execution
Fetch Cycle:

• Processor fetches one instruction at a time from successive memory locations until
a branch/jump occurs.

• Instructions are located in the memory location pointed to by the PC

• Instruction is loaded into the IR

• Increment the contents of the PC by the size of an instruction

Decode Cycle:
• Instruction is decoded/interpreted, opcode will provide the type of operation to be

performed, the nature and mode of the operands

• Decoder and control logic unit is responsible to select the registers involved and
direct the data transfer.

Execute Cycle:
• Carry out the actions specified by the instruction in the IR

Execution for add D1,D2 in a GPR processor

MAR  PC

MDR M[MAR]

IR MDR

D2  D1 + D2

PC  PC + 2

Fetch

Decode

Execute

GPR CPU

Type equation here.

MBR

MAR

PC

Increment

Interpreter

IR

Register
File

0
1
2
3

ALU

CPU Memory

Data bus

Address bus

Memory
Control

16 bit
8 bit

Execution for add X,D0 in a GPR processor

MAR  PC

MDR M[MAR]

IR MDR

MAR  IR (X)

PC  PC + 2
Fetch

Decode

ExecuteMDR M[MAR]

D0 MDR + D0

Address X extracted from IR

Contents of Address X
transferred to MDR

Contents of Address X
added to D0

GPR CPU

Type equation here.

MBR

MAR

PC

Increment

Interpreter

IR

Register
File

0
1
2
3

ALU

CPU Memory

Data bus

Address bus

Memory
Control

16 bit
8 bit

Instruction Execution Time
Clock Cycles (P) – regular time intervals
defined by the CPU clock

Clock Rate, R = 1/P cycles per second (Hz)

500 MHz => P = 2ns

1.25 GHz => P = 0.8ns

For each instruction:

Fetch: Total 12 clock cycles

MAR  PC 1

MDR M[MAR] 10

IR MBR 1

Decode: 2 clock cycles

Execute: depends on instruction

Micro Step Number of Clock Cycles

Register Transfer 1

Decoding 2

Add 2

Multiply 5

Memory Access 10

Accumulator (Acc)Architecture
• Its functional units are same as GPR architecture, except there is only ONE

register – accumulator (Acc) – instead of the Register File
Ex: Z = X + Y

Move contents of location X to Acc

Add contents of location Y to Acc

Move from Acc to location Z

Stop

• All operations and data movements are on this single register

• Most of the instructions in the instruction set require only one Operand

• Destination and Source are implicitly Acc

• Leads to shorter instructions but program may be slower to execute since
there are more moves to memory for intermediate results (to free Acc)

• May lead to inefficiency

Accumulator Architecture CPU

MBR

MAR

PC

Increment

Interpreter

IR

Acc

ALU

CPU Memory

Data bus

Address bus

Memory
Control

16 bit
10 bit

Execution for Add Y in an Acc Architecture

MAR  PC

MDR M[MAR]

IR MDR

MAR  IR (X)

PC  PC + 2
Fetch

Decode

ExecuteMDR M[MAR]

Acc MDR + Acc

Address X extracted from IR

Contents of Address X
transferred to MDR

Contents of Address X
added to Accumulator

GPR vs Acc
Let the following instructions be allowed:

For GPR machine (with 4 data reg)

• Move 𝑅𝑖, 𝑅𝑗 ; 𝑅𝑖 ← 𝑅𝑗

Move 𝑅𝑖, M[X] ; 𝑅𝑖 ← M[X]

Move M[X], 𝑅𝑖 ; M[X] ← 𝑅𝑖

• Add 𝑅𝑖, M[X] ; 𝑅𝑖 ← 𝑅𝑖 +M[X]

Add 𝑅𝑖, 𝑅𝑗 ; 𝑅𝑖 ← 𝑅𝑖 + 𝑅𝑗

• Sub 𝑅𝑖, M[X] ; 𝑅𝑖 ← 𝑅𝑖 − M[X]

Sub 𝑅𝑖, 𝑅𝑗 ; 𝑅𝑖 ← 𝑅𝑖 − 𝑅𝑗

• Mult 𝑅𝑖, 𝑅𝑗 ; 𝑅𝑖 ← 𝑅𝑖 ∗ 𝑅𝑗

• Stop

For Accumulator machine

• Add x ; 𝐴𝑐𝑐 ← 𝐴𝑐𝑐 +M[X]

• Sub x ; 𝐴𝑐𝑐 ← 𝐴𝑐𝑐 −M[X]

• Mult x ; 𝐴𝑐𝑐 ← 𝐴𝑐𝑐 ∗ M[X]

• LD x ; 𝐴𝑐𝑐 ← M[X]

• ST x ; M[X] ← 𝐴𝑐𝑐

• Stop

Note that M[X] = x

GPR vs Acc
Assembly Program for a <- (x + y) * (x – y)

For GPR machine (with 4 data reg)

Move 𝐷0, 𝑋

Add 𝐷0, 𝑌

Move 𝐷1, 𝑋

Sub 𝐷1, 𝑌

Mult 𝐷0, 𝐷1

Move 𝐴, 𝐷0

Stop

For Accumulator machine

LD X

ADD Y

ST C

LD X

SUB Y

MULT C

ST A

STOP

