Assembly Language Macros

Most assemblers include support for macros. The term macro refers to
a word that stands for an entire group of instructions.

Macro is a text substitution facility
It allows programmer to define their own opcodes and also operands

move.w X,dO h
muls d0,dO

move.w d0,X 3

Inline subroutines

sgr

— Avoids overhead of subroutine calls (jsr, rts)

— Faster than subroutine

Code is generated when macro is actually used
Additional code is generated during each macro call

Differences Between Macros and Subroutines

« Both permit a group of instructions to be defined as a single entity
with a unique given label or name called up when needed.

« Asubroutine is called by the BSR or JSR instructions, while a
macro is called by simply using its name.

« Simpler to write and use (subroutines are more complex, stacks are
used)

« Macros are faster than subroutines (no overheads, no saving of
return addresses)

Differences Between Macros and Subroutines

Macros are not a substitute for subroutines:

— Since the macro is substituted with the code and
additional code is generated every time a macro is
called, very long macros that are used many times
In a program will result In an enormous expansion
of the code size

» \Wastage of storage due to multiple copies

— In this case, a subroutine would be a better choice,
since the code in the body of the subroutine is not
Inserted into source code many when called.

Support for subroutines is provided by the CPU --here, the 68000--
as part of the instruction set, while support for macros is part of the
assembler (similar to assembler directives).

Assembly Language Macros

« Using macros in an assembly program involves two steps:

1 Defining a macro:

The definition of a macro consists of three parts: the
header, body, and terminator:

<label> MACRO The header

The body: instructions to be executed

ENDM The terminator
Example: sqr macro
move X,dO0
muls d0,d0
move d0,X

endm

Assembly Language Macros

Using macros in an assembly program involves two steps:

2 Invoking a macro by using its given <label> ona
separate line followed by the list of parameters used if
any:

<label> [parameter list]

When macro is called it is replaced by the body of the
macro

Parameters — order of parameters is important

Defining the macro:

AddMul MACRO
ADD.B
AND.W
MULU

ENDM

Invoking the macro:

MOVE.B
AddMul
MOVE.B
AddMul

A Macro Example

#7,D0
#00FF,DO
#12,D0

X,D0

Y,DO

Macro definition
DO=DO0+7

Mask DO to a byte
DO=D0x 12

End of macro def.

Get X
Call the macro

Get Y
Call the macro

Macros and Parameters

A macro parameter is designated within the body of the macro by
a backslash ""\"* followed by a single digit or capital letter:

\1,\2,\3 . . . \A,\B,\C ... \Z

Thus, up to 35 different, substitutable arguments may used in the
body of a macro definition.

The enumerated sequence corresponds to the sequence of
parameters passed on invocation.

— The first parameter corresponds to \1 and the 10" parameter
corresponds to \A.

— At the time of invocation, these arguments are replaced by the
parameters given in the parameter list.

— If less number of operands than in the body of macro, null string is
assigned to the excess operands in body

Defining the macro:

AddMul MACRO
ADD.B
AND.W
MULU

ENDM

Invoking the macro:

MOVE.B
AddMul
MOVE.B
AddMul

Macro Example with
Parameter Substitution

#7\1
#00FF\1
#12,\1

X,D0
DO

Y,D1
D1

Macro definition
Reg = Reg + 7
Mask Reg to a byte
Reg = Reg x 12
End of macro def.

Get X
Call the macro

Get Y
Call the macro

Another Macro Example with

Defining the macro:

Add3 MACRO

Parameter Substitution

Macro definition

move.l \1, \4
add.l\2, \4
add.|\3, \4
ENDM End of macro def.
Invoking the macro:
Add3 D2,D5,D6,D0 Call the macro
move.l D2,DO§
add.l D5,D0 macro expansion
add.| D6,D0 |
Add3 #2,02,D3,D7 Call the macro
move.l #2D7 |
add.l D2,D7 macro expansion

ace D3.D/

—_—

_abels Within Macros

« Since a macro may be invoked multiple times within the
same program, it is essential that there are no conflicting
labels result from the multiple invocation.

BusyWait macro
movem.l d0-d1, -(a7)
outer move.w \1,dl
move.w #$FFFF, dO
Inner dbra do, inner

dbra dl1, outer
movem.l (a7)+, d0-d1
endm

If macro in invoked more than once, it will lead to multiple declaration
of symbols outer and inner

_abels Within Macros

« Multiple invocation problem can be corrected by using two
local symbols and two extra parameters
BusyWait macro
movem.l d0-d1, -(a7)
\3 move.w \1,dl
move.w #$FFFF, dO
\2 dbra do, \2
dbra di, \3
movem.l (a7)+, d0-d1
endm

To invoke the macro, a new set of parameters should be provided.
BusyWait x, outerl, innerl
BusyWait x, outer2, inner2

BusyWait x, outer3, inner3

_abels Within Macros

Instead of keeping track of the labels generated, the special
designator "\@"" is used to request unique labels from the
assembler macro preprocessor.

For each macro invocation, the "\@"" designator is replaced
by a number unique to that particular invocation. It is
replaced by .nnn (number of macro expansions that have

already occurred)

The "\@"" is appended to the end of a label.

_abels Within Macros

BusyWait macro
movem.l d0-d1, -(a7)
outer\@ move.w \1, dl1
move.w #$FFFF, dO
iInner\@ dbra do, inner\@

dbra dl, outer\@
movem.l (a7)+, d0-d1
endm

If macro in invoked more than once:
— first invocation will replace it with outer.001 and inner.001
— second invocation will replace it with outer.002 and inner.002

Internal Macro Label Example

Macro SUM adds the sequence of integers in the range: 1, i+1,....,n

Macro Definition:

SUM MACRO \1=start \2=stop \3 =sum
CLR.W \3 sum =0
ADDQ.W #1,\2 stop = stop +1
SUM1\@ ADD.W \1,\3 For 1 =start to stop
ADD.W #1.\1 sum =sum + i
CMP.W \1,\2
BNE SUM1\@
ENDM

Sample macro SUM invocation:

SUM D1,D2,D3 D1 =start D2 =stop D3 =sum

Macro Example:
ToUpper, A String Conversion Macro

* ToUpper Address-Register
* This macro converts a string from lower case to upper case.
* The argument is an address register. The string MUST be
* terminated with $0
ToUpper macro
convert\@ cmpi.b #0, (\1) test for end of string
beq done\@
cmpi.b #'a', (\1) if < 'a' not lower case
blt increment\@
cmpi.b #'z', (\1) if <= 'z' is a lower case
ble process\@
increment\@ adda.w #1,\1
bra convert\@
process\@ subi.b #32, (\1)+ convert to upper case
bra convert\@
done\@ NOP

endm End of macro

