
Predicting Bug Report Fields Using Stack Traces and Categorical 

Attributes  

 

Korosh K. Sabor  
Concordia University 

 Montréal, QC, Canada 
k_kooche@ece.concordia.ca 

Abdelwahab Hamou-Lhadj  
Concordia University 

 Montréal, QC, Canada 
abdelw@ece.concordia.ca 

 

Abdelaziz Trabelsi 
Concordia University 

 Montréal, QC, Canada 
trabelsi@ece.concordia.ca 

 

Jameleddine Hassine 
 King Fahd University of 

Petroleum and Minerals 

Dhahran, Saudi Arabia 
jhassine@kfupm.edu.sa 

 

ABSTRACT 

Studies have shown that the lack of information about a bug often 

delays the bug report (BR) resolution process. Existing approaches 

rely mainly on BR descriptions as the main features for predicting 

BR fields. BR descriptions, however, tend to be informal and not 

always reliable. In this study, we show that the use of stack traces, 

a more formal source, and categorical features of BRs provides 

better accuracy than BR descriptions. We focus on the prediction 

of faulty components and products, two important BR fields, often 

used by developers to investigate a bug. Our method relies on 

mining historical BRs in order to predict faulty components and 

products of new incoming bugs. We map stack traces of historical 

BRs to feature vectors, weighted using TF-IDF. The vectors, 

together with a selected set of BR categorical information, are then 

fed to a classification algorithm. The method also tackles the 

problem of unbalanced data. Our approach achieves an average 

accuracy of 58% (when predicting faulty components) and 60% 

(when predicting faulty products) on Eclipse dataset and 70% 

(when predicting faulty components) and 70% (when predicting 

faulty products) on Gnome dataset. For both datasets, our approach 

improves over the method that uses BR descriptions by a large 

margin, up to an average of 46%. 

KEYWORDS 
Software Bugs Reports, Mining Software Repositories, Software 

Maintenance and Evolution, Machine Learning 

1 Introduction 

Bug report tracking systems are designed to help users and 

developers report bugs. By using these systems, end users submit a 

bug reports (BRs) by entering a description, attaching a stack trace, 

and providing categorical attributes such as severity level, platform 

information, and the faulty products and components. When a BR 

is submitted, it is examined by a triaging team with the objective of 

redirecting it to the developers who are familiar with the affected 

software components in order to provide a fix. To this end, triagers 

rely heavily on the information provided in the BRs. The problem 

is that this information is not always reliable. It has been shown that 

it is common for users to enter incorrect BR fields [2, 7]. 

Bettenburg et al. [2] showed that there is an important gap between 

what users provide as input and what developers need to fix a bug. 

They added that since end users do not usually have technical 

knowledge about the system, it is very difficult for them to report 

BR fields accurately. In addition, Xia et al. [20] showed that 80% 

of BRs have their fields reassigned several times after they have 

already been submitted to developers. 

Among the reassigned BR fields, the component and product fields 

are the ones that tend to be reassigned the most [6, 7, 12 21]. These 

fields also happen to be very important since they are used by 

triaging teams to route BRs to the right development team as shown 

by Somasundaram et al. [17]. The same authors empirically showed 

that incorrect components often delay the resolution of BRs.  

 

Figure 1: Eclipse BR #215679 history information (from 

https://bugs.eclipse.org/bugs/show_activity.cgi?id=215679) 

As a motivating example, consider the history of Eclipse BR 

#215679, shown in Figure 1. The report was first assigned to a 

developer to be fixed on January 17th, 2008. The component and 

product fields were first changed from UI and Platform to PHP  

Explorer View and PDT, respectively. After 16 months, these fields 

were changed again to Common and DLTK, which were the correct 

fields. Clearly there is a need to develop techniques and tools that
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Figure 2: Overall approach 

can predict the correct product and component fields at the time of 

submission of a BR. Such techniques can provide tremendous help 

to triagers in processing the BRs. 

There exist studies that aim at predicting these fields. Sureka et al. 

[12] proposed an approach based on BR descriptions to predict 

faulty components. Wang et al. [19] compared the effectiveness of 

different machine learning techniques to predict faulty components. 

These techniques treat the problem as a classification problem by 

building a model from historical BRs that can later be used to 

predict whether or not the field of an incoming BR will be 

reassigned (and ideally predict the correct field), relying on BR 

descriptions as the main features. BR descriptions, however, vary 

in the quality of their content as shown by Bettenburg et al. [2].  In 

this paper, we propose an alternative approach to automatically 

predict the component and product fields of BRs using a 

combination of stack traces and categorical attributes (more 

precisely, the system version, severity, and platform). A stack trace 

contains a sequence of running functions and threads in the system 

at the time of the crash. They have been used to diagnose the causes 

of failures [28], bug reproduction [29, 30], and prediction of BR 

severity [13]. This is because they tend to be a more formal source 

of information than BR descriptions and comments that are entered 

by end users (including developers) using natural language. Stack 

traces are therefore a useful alternative, especially when BR 

descriptions and comments suffer from quality problems due to 

noise in the data and the ambiguity and imprecision associated with 

the use of natural language.  

The motivation behind using categorical features comes from the 

work of Xia et al. [20] who showed that these features (called meta 

features in their paper) enhance the prediction of BR fields that will 

most likely be reassigned. Categorical features are also used by Sun 

et al. in [16] as additional features to detect duplicate BRs.  

We show the effectiveness of our approach by applying it to Eclipse 

and Gnome BRs. Moreover, we show that our approach 

outperforms techniques that rely solely on BR descriptions (e.g., 

[12, 19]). To the best of our knowledge, this is the first time that 

stack traces are used with or without other features to predict faulty 

product and component fields of BRs.  

The remainder of this paper is organized as follows. Our approach 

is described in Section 2. The experimental protocol is provided in 

Section 3. We present and discuss the results in Section 4. In 

Section 5, we discuss the threats to validity of our approach. We 

present related work in Section 6, followed by a conclusion and 

future work. 

2 Approach 

Figure 2 shows our approach for predicting the correct products and 

components of BRs, which is composed of two main phases: 

training and testing.  

For this study, we train our classification algorithm using a linear 

combination of stack trace similarity and BR categorical attributes, 

namely the system version, severity, and platform. We chose these 

categorical attributes because they are the main BR fields that 

describe the properties of the faulty system. We present the steps of 

the training and testing phases of our approach in the following 

subsections. 

2.1 Training Phase 

We build a training model using the distinct functions extracted 

from all stack traces of the BR training dataset. Then, for each stack 

trace 𝑇𝑖  , a feature vector is constructed and weighted using TF-IDF 

(term frequency/inverse document frequency).  More formally, 

each stack trace 𝑇 is mapped to a vector of size 𝑚 functions, where 

each function name 𝑓𝑖  in the vector is either one (appeared in 

the stack trace) or zero (did not appear in the stack trace). The 

feature vector is weighted by the term frequency (𝑡𝑓): 

𝜙𝑡𝑓(𝑓, 𝑇) = 𝑓𝑟𝑒𝑞(𝑓𝑖);     𝑖 = 1, … , 𝑚    (1) 



  

 

 

In Equation (1), 𝑓𝑟𝑒𝑞(𝑓𝑖)  is the number of times the function 

𝑓𝑖  appears in 𝑇divided by the total number of functions in the stack 

trace, 𝐿 .  We use IDF to give weight to rare functions while 

decreasing the weight of frequent functions. The feature vector 

weighed by the TF-IDF is therefore given by: 

𝜙𝑡𝑓.𝑖𝑑𝑓(𝑓, 𝑇, 𝛤) =
Κ

𝑑𝑓(𝑓𝑖)
𝑓𝑟𝑒𝑞(𝑓𝑖);    𝑖 = 1, … , 𝑚       (2) 

where the document frequency 𝑑𝑓(𝑓𝑖) is the number of stack traces 

𝑇𝑘 in the collection of 𝛤 of size 𝐾 which contains function name 𝑓𝑖. 

To compare two stack traces, we measure the distance between 

their corresponding feature vectors using the cosine similarity 

measure. (Other distance metrics can also be used). Given V1 and 

V2, two features vectors representing stack traces from two BRs, 

the cosine similarity is as follows [20]:  

𝐶𝑜𝑠(𝜃)  =  
𝑉1.𝑉2

|𝑉1|.|𝑉2|
                                 (3) 

To add categorical attributes, we measure the similarity of two BRs 

𝐵1 and 𝐵2 as follows: 

𝑆𝐼𝑀 (𝐵1, 𝐵2)  = ∑ 𝑤𝑖 ∗  𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑖
4
𝑖=1             (4) 

In Equation (4), the parameters 𝑓𝑒𝑎𝑡𝑢𝑟𝑒1, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒2 , 𝑓𝑒𝑎𝑡𝑢𝑟𝑒3 , 

and 𝑓𝑒𝑎𝑡𝑢𝑟𝑒4 are defined in the Table 1.  

The SIM function in Equation (4) contains four parameters 

(𝑤1, 𝑤2, 𝑤3, 𝑤4) that we used to weigh each feature. These weights 

are adjusted in a separate training phase. We use 10% of our dataset 

to train these parameters. To optimize parameters, we use the Rank 

Net Cost function (RNC) provided by Sun et al. [16], which is 

defined in Equation (5). Note that other optimization functions can 

be used. The comparison of various optimization functions is out 

of the scope of this paper.  

𝑌 =  𝑆𝐼𝑀(𝑖𝑟𝑟, 𝑞) –  𝑆𝐼𝑀 (𝑟𝑒𝑙, 𝑞) 

𝑅𝑁𝐶(𝑌) = 𝐿𝑜𝑔(1 + 𝑒𝑌)                          (5) 

Table 1. Features used to measure BR similarities 

Feature Value 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒1 
Cosine similarity of stack traces based on the 

constructed term vectors. 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒2  =  {
1               𝑖𝑓 𝐵1. 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = 𝐵2. 𝑣𝑒𝑟𝑠𝑖𝑜𝑛
0                                                  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒3  =  {
1           𝑖𝑓 𝐵1. 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 = 𝐵2. 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦
0                                                  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒4  =  {
1         𝑖𝑓 𝐵1. 𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚 = 𝐵2. 𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚
0                                                     𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
The values of 𝑤1, 𝑤2, 𝑤3, 𝑤4 are obtained by minimizing the cost 

function of Equation (5), which is achieved by maximizing the 

similarity of BRs with the same product or component fields and 

minimizing the similarity of BR with different products or 

components. To achieve this, we use the gradient descent 

algorithm, provided by Sun et al. [16]. 

The algorithm adjusts each free parameter x  in each iteration 

according to the value of the coefficient Ƞ and the partial derivative 

of RNC with respect to each free parameter x. Then the four free 

parameters (𝑤1, 𝑤2, 𝑤3, 𝑤4) are used to calculate the similarity of 

each incoming BR to all previous BRs in the dataset to predict the 

faulty product and component fields using the cost sensitive K-

Nearest Neighbor (KNN). 

2.2 Testing Phase 

We simulate the submission of BRs to a bug tracker based on real 

data. Each time a new BR is submitted we will compare it to 

previous BRs by measuring the similarity between its stack trace 

(more precisely the corresponding feature vector) and categorial 

attributes to all the previous BRs that were submitted. In other 

words, only stack traces and categorical features of BRs submitted 

before the current simulated time can be used. Note that this 

requires updating the existing feature vectors by adding the 

functions that were not seen before as well as updating the TF-IDF 

weights. This technique was also used by Lerch et al. when 

detecting duplicate bug reports [26]. 

The calculated similarities are then used to build a list of similarity 

values that shows how similar the current stack trace of the 

incoming BR is to all previous stack traces of all BRs in the training 

dataset. We use the cost sensitive KNN algorithm to retrieve the 

most similar BRs to the incoming BR.  

The KNN classification process is performed into two phases. In 

the first phase, the similarity of the incoming BR (Bi), in the testing 

dataset to all the BRs in the training dataset is calculated. In the 

second phase, the K-nearest BRs in the training dataset are then 

selected and the label of the incoming Bi is selected by a majority 

vote. That is, the label of the instance 𝑋  associated to Bi  is 

determined using a labelled dataset 𝐶 and a majority voting scheme 

according to the following equation [11]: 

𝐶(𝑋) =
𝑎𝑟𝑔𝑚𝑎𝑥
𝑐𝑗  ∈ 𝐶 𝑠𝑐𝑜𝑟𝑒 (𝑐𝑗 , 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝑘(𝑋))       (6) 

In the above equation, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝑘(𝑋) is the K-nearest neighbors 

of instance 𝑋, argmax returns the label which maximizes the score 

function; it is defined as follows [11]: 

𝑆𝑐𝑜𝑟𝑒(𝑐𝑗 , 𝑁) =  ∑  [𝑐𝑙𝑎𝑠𝑠(𝑦) = 𝑐𝑗]𝑌∈𝑁    (7) 

In the above equation, 𝑐𝑙𝑎𝑠𝑠(𝑦) = 𝑐𝑗  is evaluated to one if 

𝑐𝑙𝑎𝑠𝑠(𝑦) = 𝑐𝑗 and to zero if 𝑐𝑙𝑎𝑠𝑠(𝑦) ≠ 𝑐𝑗. That is, the label with 

the highest frequency of occurrences among the K-returned labels 

is considered as the output label.  

To further improve the prediction capability of our approach, more 

weights have been given to BRs of the training dataset closer to the 

incoming BR, Bi . We achieve this using the reciprocal of the 

similarity of bugs which is the outcome of each of the four free 

parameters involved in Equation (4). More formally, let the 

distance of the closest BR in the sorted list of the K-nearest 

instances be 𝑑𝑖𝑠𝑡1, and the distance of the farthest bug be 𝑑𝑖𝑠𝑡𝑘. 

The weight of each label can be computed by the following 

equation introduced by Gou et al. [24]. In this equation, 𝑑𝑖𝑠𝑡𝑖 is the 

distance of BR 𝑖. 

𝑤𝑖 = {

𝑑𝑖𝑠𝑡𝑘 −  𝑑𝑖𝑠𝑡𝑖

d𝑖𝑠𝑡𝑘− 𝑑𝑖𝑠𝑡1
𝑖𝑓𝑑𝑖𝑠𝑡𝑘  ≠  𝑑𝑖𝑠𝑡1

1  𝑖𝑓𝑑𝑖𝑠𝑡𝑘  =  𝑑𝑖𝑠𝑡1

                  (8) 



 

 

It follows that the score function defined by Equation (7) must be 

updated to incorporate the calculated weights in Equation (8) [11]. 

The following equation encompasses the desired changes. 

Score (𝑐𝑗 , 𝑁) =  ∑ 𝑤(𝑥, 𝑦)  ×  [𝑐𝑙𝑎𝑠𝑠(𝑦) = 𝑐𝑗]𝑌∈𝑁       (9) 

In the above equation, 𝑤(𝑥, 𝑦) is the weight of each instance in the 

top K-similar returned instances, which is obtained from its 

distance to the incoming Bi and the associated instance x. Then, the 

label with the resulting high score is selected to be the output label. 

In large software repositories such as Eclipse, Gnome, and Mozilla, 

some products or components have fewer BRs in the bug tracking 

system, which results in an unbalanced distribution of labels, 

causing a bias towards the majority class labels. We used cost 

sensitive learning to overcome the unbalanced dataset distribution 

problem with Eclipse and Gnome datasets. To apply cost sensitive 

learning, we first convert the output of the KNN classifier into the 

probability of the test instance belonging to each class label. Then, 

we construct a cost matrix in which the probability of belonging to 

each class label is exchanged with an average cost of belonging to 

each class label. If we consider number of different class labels as 

C, the number of instances of class j in the training set as 𝑠𝑗 , and 

the number of instances of the majority class in the training set as s 

then the misclassification cost of each class label 𝐶𝑗  could be 

calculated by Equation (10) [13].  

𝑀𝐶𝑗 =  
𝑆

𝑆𝑗
                                              (10) 

Assume we have M classes and the incoming bug belongs to each 

of these classes with probabilities of 𝑃1 … … 𝑃𝑚,  and assume that 

each class has a misclassification cost of 𝐶𝑂1 … … 𝐶𝑂𝑚, then the 

cost of assigning the bug report to each of those classes is calculated 

by Equation (11) [23]. 

𝐶𝐶𝑂𝑖 =  ∑ 𝐶𝑂𝑗  ×  𝑃𝑗𝑗 ∈𝑚 𝑎𝑛𝑑 𝑗≠𝑖                    (11) 

Based on the output probabilities and using a cost matrix, the 

classifier makes an optimal cost-sensitive prediction, by choosing 

the class label with the least classification cost. 

3 Experimental Protocol 

We conducted experiments to address the following research 

questions: 

RQ1.  Can stack traces and categorical features (system version, 

severity, and platform) be used to predict the product field 

of a BR? If so, what would be the prediction accuracy and 

how does it compare with the use of BR descriptions? 

RQ2.  Can stack traces and categorical features (system version, 

severity, and platform) be used to predict the component 

field of a BR? If so, what would be the prediction accuracy 

and how does it compare with the use of BR descriptions? 

RQ3.   How does our approach compare to a random classifier? 

3.1 Datasets 

In this work, we used BRs extracted from two large open-source 

software projects: Eclipse and Gnome. These systems have their 

BRs open and accessible to researchers and have been widely used 

in the literature [1, 8, 9, 18, 22, 25]. We included Eclipse BRs 

submitted between October 2001 to February 2015 and all Gnome 

BRs for the period of February 1999 to August 2015. 

In this work, we focused only on Eclipse products and components 

that pertain to Eclipse core and did not include the plugins. Eclipse 

has five products: Platform, JDT, PDE, Equinox and E4, each of 

which contains a set of components.  

Gnome is a collection of Unix-based projects. Although it uses the 

same bug tracking system as Eclipse, Gnome’s BRs are structured 

slightly differently. The concept of product in Gnome refers to a 

BR class; each class contains a set of components (called products 

in Gnome). 

In Eclipse and Gnome bug repositories, stack traces are embedded 

in BR descriptions. We used regular expressions to extract stack 

traces from bug report descriptions. For Eclipse we used the same 

regular expression provided by Lerch et al. [26]. For Gnome, after 

examining carefully the way stack traces are organized, we 

designed the following regular expression. In Gnome, a stack trace 

starts with a frame number following by a hex number. Function 

name and the parameters are presented next. Based on the 

debugging configuration, function parameters are followed by 

keywords ‘from’ or ‘at’, and library or filename. 

([#NUMBER] [HEX ADDRESS] [IN] [FUNCTION NAME] [(] 

[PARAMETERS] [)] ([FROM] | [AT]) ([LIBRARYNAME] | 

[FILENAME]))* 

Figure 3: Regular expression for extracting stack traces from 

Gnome BR descriptions 

The total number of Eclipse BRs is 193,177, but only 19,458 (10%) 

have stack traces. This low percentage results from the fact that up 

to 2015, stack traces had to be appended manually by users. 

Automatic submission of stack traces to the Eclipse BR repository 

has been made possible by Eclipse at the end of 2015. So far, these 

stack traces have not been made publicly available.  In the case of 

Gnome, the total number of BRs is 629,549, among which 201,580 

(32%) have stack traces. The sparsity of stack traces is the main 

limitation of our approach. Nevertheless, we believe that it is still 

important to investigate the use of stack traces, especially that there 

is a recognized need to have stack traces for debugging, bug 

reproduction, and other software maintenance tasks. We should 

expect to see more bug reporting systems collect stack traces 

automatically whenever a BR is submitted.   

3.2 Predicting BR product and component fields 

using BR description 

We compared our approach to an approach that uses the description 

of BRs such as the one presented by Sureka in [12]. The authors 

applied two different techniques, TF-IDF and a dynamic language 

model classifier, to predict faulty components. They showed that 

these approaches have similar accuracy. Since both approaches 

have the same performance, we compared our approach which uses 

stack traces and categorical features to Sureka’s approach using 

TF-IDF. Sureka did not tackle the unbalanced label distribution 

problem, and because we are applying their approach to an 

unbalance dataset, we have added the cost sensitive KNN to their 

approach. 

We extracted the descriptions from all BRs in our datasets. We 

tokenized words in the descriptions and built feature vectors, which 



  

 

 

consist of all distinct words in the descriptions of a BR.  Next, we 

used TF-IDF (Equation 2) to give weight the feature vector of each 

BR. We created a sorted set of BRs using the submission date. With 

the incoming of each new BR, its weighed feature vector is 

compared to the weighted feature vector of all previous BRs in the 

sorted set. Next, we used the same cost sensitive K nearest neighbor 

method (Equation 11) to select the BR that is most similar. 

3.3  Predicting BR product and component fields 

using a random classifier 

Our proposed classification approach is also compared to a method 

that predicts the faulty product and component of bugs with respect 

to different class labels. Assume we have N faulty product classes 

and the number of BRs that belong to each class is 𝐵𝑝1
… … 𝐵𝑝𝑁

.  

The accuracy of correctly predicting a faulty product of each bug 

by randomly choosing product label 𝑃𝑖 is calculated by Equation 

(12). We use the same technique for components: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑃𝑖)   =
𝐵𝑝𝑖

∑ 𝐵𝑝𝑗
𝑁
𝑗=1

                          (12) 

3.4 Evaluation Metrics 

We used precision, recall, and F-measure to assess the effectiveness 

of our approach. These metrics are widely used in the literature [7, 

20] to evaluate the accuracy of a classifier. We defined precision as 

Equation (13) We calculated the precision for each product and 

component label separately. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑝𝐿) =
# 𝑜𝑓 𝑏𝑢𝑔𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑙𝑎𝑏𝑒𝑙𝑝𝐿

# 𝑜𝑓𝑏𝑢𝑔𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑜 ℎ𝑎𝑣𝑒 𝑙𝑎𝑏𝑒𝑙𝑝𝐿
    (13) 

Recall is defined as (14). 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑃𝐿)   =
# 𝑜𝑓 𝑏𝑢𝑔𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑙𝑎𝑏𝑒𝑙 𝑃𝐿

# 𝑜𝑓 𝑏𝑢𝑔𝑠 𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑦 ℎ𝑎𝑣𝑖𝑛𝑔 𝑙𝑎𝑏𝑒𝑙 𝑃𝐿
     (14) 

We built the confusion matrix separately for each product or 

component field. We combined precision and recall values and 

present them as one value, F-measure: 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 (𝑝𝐿)   =  
2 ×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
               (15) 

To compare the results of our approach to an approach that uses BR 

descriptions, we measured the improvement achieved by one 

method over the other. More precisely, if we denote the F-measure 

of Sureka’s [12] approach as 𝐹_𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑇 and the F-measure of 

our approach by 𝐹_𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑆𝐶 , we calculate the improvement 

using Equation (16) as follows:  

Improvement =  
𝐹−𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑆𝐶 − 𝐹−𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑇

𝐹−𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑇
            (16) 

Because we have a large number of components for each product 

and that the precision and recall must be calculated separately for 

each component, we used the macro-average precision to show the 

average precision of the components of each product. If we denote 

precision of the first component as 𝑃𝐶1 and the n’th component 

precision as 𝑃𝐶𝑛, we can use the equation provided by Manning et 

al. [10] to calculate the macro-average precision: 

𝑀𝑎𝑐𝑟𝑜𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑃𝐶1+ 𝑃𝐶2+⋯.+𝑃𝐶𝑛

𝑛
             (17) 

Similarly, if we denote recall of the first component as 𝑅𝐶1and the 

n’th component recall as 𝑅𝐶𝑛 , the macro-average recall is 

calculated using the following equation [10]. 

𝑀𝑎𝑐𝑟𝑜𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑅𝐶1+ 𝑅𝐶2+⋯.+𝑅𝐶𝑛

𝑛
                (18) 

4 Results and Discussion 

4.1 Results 

For simplicity reason, we use the notation BRFPst+cat to refer to 

our approach for predicting BR fields using stack traces and 

categorical features. We also use BRFPdesc to refer to an approach 

that uses BR descriptions. 

Table 2 and Table 4 show the precision, recall, and F-measure of 

BRFPst+cat in Eclipse and Gnome datasets. In our experiments, we 

varied K from 1 to 10 and recorded K which provides the best 

accuracy. This is a common practice in machine learning when 

using KNN. Table 3 and Table 5 show the macro precision, recall 

and F-measure of our approach when predicting the BR component 

fields in Eclipse and Gnome datasets. Note that the detailed 

precision and recall for each component can be found on 

http://www.ece.concordia.ca/~abdelw/cascon19. 

RQ1.  Can stack traces and categorical features be used to 

predict the product field of a BR and if so, what would be the 

accuracy and how does it compare to the use of BR 

descriptions? 

When applied to Eclipse products, the results show that our 

approach, BRFPst+cat, predicts faulty products with an average F-

measure of 60%. The average precision and recall is 58% and 62%, 

respectively. For Gnome, we applied our approach to seven 

products and predicted faulty products with an average precision of 

74% and an average recall of 67%. The average F-measure is 70%.  

Table 2 shows the average F-measure improvement of predicting 

faulty products using our approach for Eclipse compared to the use 

of BR descriptions, BRFPdesc. Based on the results of Table 2, we 

have improved the average F-measure from almost 5% to 143.1% 

for different products. The average F-measure improvement rate 

over all Eclipse products is 46%.  

Table 4 shows that the average F-measure improvement of 

predicting faulty products using BRFPst+cat compared to 

BRFPdesc for Gnome. The results show an improvement ranging 

from 4% to 174.44% for different products. In average, using stack 

traces and categorical features improves the accuracy by 41% 

across all products in Gnome. 

Finding 1: 

The use of stack traces and categorical features (system version, 

severity, and platform) provides better accuracy in predicting BR 

product fields compared to the use of BR descriptions. 

 

RQ2.  Can stack traces and categorical features be used to 

predict the component field of a BR and if so, what would be 

the accuracy and how does it compare to the use of BR 

descriptions? 

Table 3 shows the macro average F-measure improvement to 

predict bugs components using BRFPst+cat compared to 



 

 

BRFPdesc for Eclipse. Based on the results, the improvement 

ranges from 0% to 42%. Moreover, the macro average F-measure 

of the components of each product has improved using the 

proposed approach. Table 5 presents the results for the Gnome 

dataset. The improvement ranges from 14.73% to 50%. For the 

components of each product, the proposed approach outperforms 

BRFPdesc.  

Finding 2: 

The use of stack traces and categorical features (system version, 

severity, and platform) provides better accuracy in predicting BR 

component fields compared to the use of BR descriptions. 

 

RQ3. How does our approach compare to a random classifier? 

Table 2 and Table 4 show the product prediction accuracy of our 

approach using stack trace and categorical features compared to a 

random approach for Eclipse and Gnome respectively. Our 

approach outperforms a random approach when predicting faulty 

products in Eclipse and Gnome datasets with an average 

improvement of 200% and 250% respectively. Similarly, as we can 

see in Table 3 and Table 5, our approach outperforms a random 

classifier for predicting fault components by 205% and 391% for 

Eclipse and Gnome respectively. 

Finding 3: 

Our classification approach combined with stack traces 

outperforms significantly a random classification method.  

 

4.2 Discussion 

Despite the overall excellent performance of BRFPst+cat when 

applied to both Eclipse and Gnome datasets, there were cases where 

our approach did not perform well when predicting the right 

components. These cases are shown in the add-on material 

submitted with this paper (in the paper, we only show 

macro_averages). We found that this happens mainly when (1) the 

number of stack traces is small, and/or (2) the BR descriptions 

contain bug reproduction steps or source code information; these 

BRs are usually submitted by developers. 

For the Eclipse product “E4”, components “Resources” and 

“Tools”, BRFPst+cat achieved lower accuracy than BRFPdesc. 

The improvement is -8.35and -13% respectively. Our model needs 

a sufficient number of stack traces to generalize and make an 

accurate prediction. When the number of stack traces is low, which 

is the case for these components, it is less likely to have shared 

functions (used as features) among stack traces due to uniqueness 

of stack traces compared to BR descriptions, which contain 

common words since they are written in a natural language. 

Because the number of stack traces of BRs associated with these 

components is low, the feature vectors built using functions in stack 

traces did not properly characterize the corresponding BRs in the 

vector space, resulting in a cosine similarity among stack traces 

based on Equation (3) that converged to zero. 

For the “Incubator” component of the Eclipse “PDE” product, the 

use of BR descriptions yields better results than our approach 

(improvement achieved by our approach of -33.30%). By further 

investigating the BRs associated with this component, we observed 

that they contain detailed steps on how to reproduce the bug 

embedded in the BR description. An example of a snippet of BR 

for this component is shown in Table 6. The same observation holds 

for the “Device Kit” component of the Eclipse Equinox product 

where most BRs related contain the bug reproduction steps in their 

description (see BR #192746 in Table 7 for an example). 

Table 6. Eclipse BR #213234 

BR Field Value 

Product PDE 

Component Incubators 

Header 
[api tooling] invalid thread access setting up API 

tooling 

Description 

steps: 

1. open the editor for an element that will have a 

source tag added to it by the wizard 

2. make a change to the type and do not save it 

3. start the setup wizard 

specific example I used to reproduce: 

1. get debug.ui from head 

2. open FileLink and make a change, do not save 

3. run the setup wizard on debug 

 

For the Gnome dataset, our approach outperforms BRFPdesc in 

most cases except for predicting the components “gnome-games” 

and “gconf-editor”. We found that this is due to the fact that the 

BRs of these components contain information which are mostly 

technical and different from the categorical information provided 

in the bug tracking system. For example, in BR #408425 (see Table 

8), we have information such as distribution of the Linux 

environment, release information of the OS, memory status, etc. 

The same observation holds for the “gconf-editor” component of 

the Gnome “Applications” product. 

4.3 Implications and Limitations 

In this section, we discuss the implications of our findings.  

On stack traces: Our findings clearly show the importance of stack 

traces in predicting the product and component fields of BRs. This 

confirms the need to collect stack traces whenever a bug report is 

submitted. Traces should not be copied and pasted in BR 

descriptions, as it is the case in many bug tracking systems. Bug 

report tracking systems should be designed in a way that facilitates 

the collection and mining of stack traces. It is recognized that stack 

traces require storage and processing capabilities because of their 

size. For Mozilla products, for example, stack traces are only kept 

for one year because of the overhead caused by managing these 

traces [14]. Therefore, simply collecting traces may not be 

sufficient, we need to investigate better ways to structure their 

content by reducing noise and other elements that may not be 

needed to characterize the corresponding BRs. We should also look 

at using trace abstraction and reduction techniques such as the ones 

presented in [31]. The authors showed that abstractions constructed 

from stack traces can be used in an efficient way to detect duplicate 

BRs. 

 

 



Table 2. Product prediction accuracy for Eclipse 

Product 
BR Descriptions 

BR Stack traces and categorical 

features 

Random Improvement 

over 

description  

Improvement 

over random 

Precision Recall F-Measure Precision Recall F-Measure Accuracy 

Platform 46% 68% 54.80% 55% 68% 60% 50.2% 9.50% 19.5% 

JDT 47% 68% 55.50% 69% 68% 68.40% 30.1% 23.20% 127.2% 

PDE 27% 23% 24.80% 50% 76% 60.30% 9% 143.10% 570% 

Equinox 34% 37% 35.40% 60% 48% 53.30% 7.9% 50.50% 574.6% 

E4 55% 47% 50.60% 56% 50% 52.80% 2.7% 4.34% 1855.5% 

AVERAGE 42% 49% 44% 58% 62% 60% 20% 46% 200% 

Table 3. Component prediction accuracy (Eclipse) 

Product 

BR Descriptions 
BR Stack Traces with categorical 

features 

Random Improvement 

over 

description 

model 

Improvement 

over random 

Precision Recall F-Measure Precision Recall F-Measure 

Accuracy 

Platform 35% 29% 31.71% 50% 41% 45.05% 5.8% 42.04% 676% 

JDT 52% 49% 50.45% 67% 64% 65.46% 20% 29.74% 227% 

PDE 61% 56% 58.39% 68% 60% 63.75% 25% 9% 155% 

Equinox 55% 37% 44.23% 63% 43% 51.11% 11% 15.53% 364% 

E4 73% 58% 64.64% 78% 56% 65.19% 33% 0% 97% 

AVERAGE 55% 46% 50% 65% 53% 58% 18.96% 19% 205% 

Table 4. Product prediction accuracy (Gnome) 

Product 

BR Description Bug Random Improvement 

over 

description 

model 

Improvement 

over random 

Precision Recall F-Measure Precision Recall F-Measure 
Accuracy 

Deprecated 71% 75% 72.94% 81% 77% 78.94% 15.8% 8.23% 399.62% 

Core 65% 73% 68.76% 70% 73% 71.46% 35.7% 3.93% 100.17% 

Other 60% 65% 62.4% 68% 68% 68% 16.2% 8.97% 319.75% 

Platform 69% 38% 49% 92% 72% 80.78% 2.3% 64.83% 3412.17% 

Applications 74% 62% 67.47% 83% 72% 77.1% 29.6% 14.29% 160.47% 

Infrastructure 35% 52% 41.83% 46% 47% 46.49% 0.1% 11.13% 46390.00% 

Bindings 36% 18% 24% 78% 57% 65.86% 0.07% 174.44% 93985.71% 

AVERAGE 59% 55% 55% 74% 67% 70% 20% 41% 250.00% 

Table 5. Components prediction accuracy (Gnome) 

Product 

BR Descriptions BR Stack Traces with categorical features Random Improvement 

over 

description 

model 

Improvement 

over random 

Precision Recall F-Measure Precision Recall F-Measure 
Accuracy 

Deprecated 59% 59% 59% 96% 71% 81.63% 5% 38.35% 1532.60% 

Core 65% 41% 50.28% 73% 62% 67.05% 11% 33.35% 509.55% 

Other 50% 42% 45.65% 75% 63% 68.48% 5.5% 50% 1145.09% 

Platform 62% 48% 54.10% 85% 67% 74.93% 5.8% 38.51% 1191.90% 

Applications 58% 47% 51.92% 68% 53% 59.57% 8.3% 14.73% 617.71% 

Infrastructure 60% 53% 56.28% 72% 63% 67.20% 50% 19.40% 34.40% 

Bindings 61% 55% 57.84% 78% 66% 71.50% 14.2% 23.61% 403.52% 

AVERAGE 59% 49% 54% 78% 64% 70% 14.25% 31% 391.23% 

 



Table 7. Eclipse BR #192746 

BR Field Value 

Product Equinox 

Component Incubator.DeviceKit 

Header Try to create new DK project fails 

Description 

Steps to recreate: 

1. New->Other->Device Kit->Device Kit 

Components->Connection 

2. Connection Name = Something 

3. Finish becomes enabled click to attempt to 

create the connection 

4. Device Kit Error 

Found this error in the log 

!SESSION 2008-02-26 23:40:00.369 -------------

-------- 

eclipse.buildId=M20071023-1652 

java.version=1.5.0_13 

java.vendor=Apple Computer, Inc. 

BootLoader constants: OS=macosx, 

ARCH=x86, WS=carbon, NL=en_US 

 

Table 8. Gnome BR #408425 

BR Field Value 

Product Deprecated 

Component gnome-games 

Header Crash while closing the window 

Description 

If you click the New button in the toolbar, so that 

the ‘new game’ dialog shows up, and then you 

close the window using the window manager 

close button, HEAD crashes. 

Distribution: Fedora Core release 6 (Zod) 

Gnome Release: 2.17.90 2007-02-10 (JHBuild) 

BugBuddy Version: 2.17.3 

System: Linux 2.6.19-1.2895.fc6 #1 SMP Wed 

Jan 10 19:28:18 EST 2007 i686 

X Vendor: The X.Org Foundation 

X Vendor Release: 70101000 

Selinux: Enforcing 

Accessibility: Enabled 

GTK+ Theme: Clearlooks 

Icon Theme: gnome 

 

On BR categorical attributes: We showed that categorial 

attributes namely version, platform, and severity, enhance the 

prediction accuracy. The problem is that these attributes themselves 

may be entered incorrectly, which is a threat to validity for our 

approach (see next section). Our findings strengthen the need to 

have these attributes automatically and correctly generated. Users 

should never have to enter these attributes.  

On BR descriptions: Although many studies showed that BR 

descriptions are useful in various BR triaging activities, after 

working with many large BR repositories (some of them from 

industry) we remain very skeptical as to the sole use of descriptions 

for prediction tasks. We found many BRs where the descriptions 

consist mainly of snippets of stack traces. We only found 

descriptions that are poorly written and hard to understand. In 

addition, unless there are clear guidelines on how to write proper 

descriptions and that these guidelines are enforced, descriptions 

remain largely inaccurate and imprecise. 

Limitation 1 - Sparsity of stack traces: The main limitations of 

our approach is that, for the time being, only a small portion of BRs 

come with stack traces. Our Eclipse dataset contains only 10% of 

BRs with stack traces. We hope that the findings of this paper will 

encourage the collection of stack traces in a systematic manner. 

Limitation 2 - Scalability: In our approach, we compare each 

incoming BR with all the BRs that were submitted before. This 

process updates the feature vectors by adding the new functions that 

were not learned from the previous BRs and by updating the TF-

IDF weights. We opted for this process to simulate how BRs are 

processed in real world. This method, however, incurs a high 

computational cost.  

5 Threats to Validity 

Our proposed approach and the conducted experiments are subject 

to threats to validity. 

There is a threat to validity with respect to the training dataset we 

used to optimize the free parameters w1, w2, w3, and w4 used to 

weigh the features in the linear combination of stack traces and 

categorical attributes (see Equation (4)). A different threshold may 

lead to different results.  

Another threat to internal validity exists in the way we implemented 

the approach for extracting words from BR descriptions. We simply 

tokenize each BR description and used the extracted words to form 

feature vectors. We did not resort to any natural language 

processing method. The use of a powerful natural language 

processing method may result in better performance of an approach 

that uses BR descriptions. 

Finally, the misclassification cost in Equation (10) is calculated 

using our own proposed heuristic. However, this parameter could 

be adjusted using an exhaustive domain search or training machine 

learning methods. Using a more optimal parameter could further 

enhance the product and component prediction capability of our 

approach. 

While we managed to work on two large bug repositories, which 

are extensively used in the literature, the low number of stack traces 

is a threat to validity. We cannot claim that these results apply to 

other bug reports. Therefore, the presented observations and 

findings are best interpretable with respect to the particular bug 

reports we chose and studied. 

6 Related Work 

Bettenburg et al. [2] studied the quality of BRs and showed that 

there is an important gap between what users provide as an input 

and what developers need to fix a bug. They argued that since users 

do not usually have technical knowledge about the system, it is very 

difficult for them to properly report the faulty products and 

components. 

Guo et al. [6] introduced the bug pong concept as sending the bug 

between development teams similar to ping pong ball. The authors 



 

 

showed that it happens when a faulty component is not correctly 

identified in the BR. They also showed that incorrect selection of 

the faulty components increases the bug processing time. 

Breu et al. [3] showed that the questions asked when submitting 

BRs can be grouped into eight categories: missing information, 

clarification, triaging, debugging, correction, status inquiry, 

resolution, and administration. They showed that triaging questions 

are mostly due to the fact that users enter the wrong products and 

components when reporting a bug. 

Somasundaram et al. [17] showed that the component field in a BR 

helps triagers route the bug to the right development team. They 

have also shown that incorrect component categorization often 

delays the resolution of the BR. They used the description of bug 

reports and applied Support Vector Machine (SVM), Latent 

Dirichlet Allocation (LDA) with SVM and LDA with Kullback 

divergence (KL). They observed that LDA-KL produces more 

stable results than SVM.  

Shihab et al. [15] showed that the processing time of re-opened bug 

reports is twice more than the processing time of regular bugs. They 

observed that the description, fixing time, and the component of 

BRs are the most important factors in determining whether a bug 

will be re-opened. They showed that the reporters’ name is not an 

important factor in predicting re-opened bugs. They have structured 

their study in four dimensions: work habit (weekday of closing 

bugs), bug reports faulty component, bug fix (time spent to fix the 

bug), and people (experience of the bug fixer). They extracted 

features from these dimensions to build up a decision tree to predict 

whether a bug will be re-opened. They showed that both the BR 

dimension and faulty components have the best F-measure in 

predicting re-opened bug reports. 

Giger et al. [5] showed that, in Firefox BRs, the faulty component 

field is the most important factor in determining how fast a bug will 

be fixed. They showed that, in Gnome BRs, the component is the 

second most important field in determining the fixing time of a bug. 

Sureka [12] showed that the most important feature to localize the 

fault of a bug is the component. He showed that the component 

field is usually assigned wrongly by most users. He has revealed 

that the highest frequency of reassignment after the assignee field 

is the component field. The author used a statistical and a 

probabilistic model applied to the title and description of BRs to 

predict faulty components. The study achieved 42% accuracy when 

predicting the component field of a BR. The author also showed 

that TF-IDF applied to the description of BRs performs the same as 

Dynamic Language Model (DLM). To detect whether the 

component field of a BR will be reassigned, his approach has 

achieved 42% of accuracy. 

Lamkanfi et al. [7] revealed that the component field in Eclipse and 

Mozilla BRs tends to be regularly reassigned. They extracted all 

initial values of BR information including component, reporter, 

operating system, version, severity, and BR summary to decide 

whether the component of a bug will be reassigned. Their classifier 

has predicted reassigned bugs with an F-measure of over 44% and 

not reassigned bugs with an F-measure of over 83%. 

Xia et al. [27] showed that 80% of bugs have their fields reassigned. 

They have also revealed that the bugs which are reassigned take 

longer time to be fixed. They showed that the product and 

component fields usually get reassigned together. 

Xia et al. [20] used a multi label learning algorithm (ML.KNN) to 

predict reassignment of BR fields. To overcome the unbalanced 

dataset problem, they have used the IM-ML.KNN classification 

approach. Their approach achieved an F-measure ranging from 

56% to 62%. 

Wang et al. [19] used BR descriptions and summaries to predict the 

component field of a BR. They have created feature vectors using 

words in the descriptions and summaries. They weighed the feature 

vectors using TF-IDF. They compared the performance of support 

vector machines and Naïve Bayes machine learning techniques. 

They applied their approach to Eclipse BRs and showed that SVM 

models outperform Naïve Bayes models in predicting components. 

Maiga et al. [32] showed that severity fields of the bug reports are 

not usually precisely chosen by the software users in industry. 

Sabor et al. [33] showed that product and component field of bug 

reports could be predicted more accurately using deep learning 

methods.  

7  Conclusion 

In this paper, we proposed an approach to predict product and 

component fields of BRs that leverages stack traces and categorical 

features instead of BR descriptions. In our approach, we have used 

a linear combination of stack traces and categorical features 

similarity to predict products and components.  We tested our 

approach to two Eclipse and Gnome BR repositories. Oure 

experiment showed that our approach could predict the faulty 

product and component by an average F-measure of 65%. We 

showed that our approach outperforms the one which uses bug 

report descriptions to predict faulty product and components of 

bugs by 35% in average. Our approach could be effectively used to 

predict faulty product and components of a bug to eliminate the 

overhead of wrong assignment of the bugs to the development 

teams. As a future work, we also plan to use a training model to 

obtain the optimized misclassification cost for each product and 

component. Furthermore, we plan to use more advanced machine 

learning techniques such as deep learning. 
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