
Predicting Bug Report Fields Using Stack Traces and Categorical

Attributes

Korosh K. Sabor
Concordia University

 Montréal, QC, Canada
k_kooche@ece.concordia.ca

Abdelwahab Hamou-Lhadj
Concordia University

 Montréal, QC, Canada
abdelw@ece.concordia.ca

Abdelaziz Trabelsi
Concordia University

 Montréal, QC, Canada
trabelsi@ece.concordia.ca

Jameleddine Hassine
 King Fahd University of

Petroleum and Minerals

Dhahran, Saudi Arabia
jhassine@kfupm.edu.sa

ABSTRACT

Studies have shown that the lack of information about a bug often

delays the bug report (BR) resolution process. Existing approaches

rely mainly on BR descriptions as the main features for predicting

BR fields. BR descriptions, however, tend to be informal and not

always reliable. In this study, we show that the use of stack traces,

a more formal source, and categorical features of BRs provides

better accuracy than BR descriptions. We focus on the prediction

of faulty components and products, two important BR fields, often

used by developers to investigate a bug. Our method relies on

mining historical BRs in order to predict faulty components and

products of new incoming bugs. We map stack traces of historical

BRs to feature vectors, weighted using TF-IDF. The vectors,

together with a selected set of BR categorical information, are then

fed to a classification algorithm. The method also tackles the

problem of unbalanced data. Our approach achieves an average

accuracy of 58% (when predicting faulty components) and 60%

(when predicting faulty products) on Eclipse dataset and 70%

(when predicting faulty components) and 70% (when predicting

faulty products) on Gnome dataset. For both datasets, our approach

improves over the method that uses BR descriptions by a large

margin, up to an average of 46%.

KEYWORDS
Software Bugs Reports, Mining Software Repositories, Software

Maintenance and Evolution, Machine Learning

1 Introduction

Bug report tracking systems are designed to help users and

developers report bugs. By using these systems, end users submit a

bug reports (BRs) by entering a description, attaching a stack trace,

and providing categorical attributes such as severity level, platform

information, and the faulty products and components. When a BR

is submitted, it is examined by a triaging team with the objective of

redirecting it to the developers who are familiar with the affected

software components in order to provide a fix. To this end, triagers

rely heavily on the information provided in the BRs. The problem

is that this information is not always reliable. It has been shown that

it is common for users to enter incorrect BR fields [2, 7].

Bettenburg et al. [2] showed that there is an important gap between

what users provide as input and what developers need to fix a bug.

They added that since end users do not usually have technical

knowledge about the system, it is very difficult for them to report

BR fields accurately. In addition, Xia et al. [20] showed that 80%

of BRs have their fields reassigned several times after they have

already been submitted to developers.

Among the reassigned BR fields, the component and product fields

are the ones that tend to be reassigned the most [6, 7, 12 21]. These

fields also happen to be very important since they are used by

triaging teams to route BRs to the right development team as shown

by Somasundaram et al. [17]. The same authors empirically showed

that incorrect components often delay the resolution of BRs.

Figure 1: Eclipse BR #215679 history information (from

https://bugs.eclipse.org/bugs/show_activity.cgi?id=215679)

As a motivating example, consider the history of Eclipse BR

#215679, shown in Figure 1. The report was first assigned to a

developer to be fixed on January 17th, 2008. The component and

product fields were first changed from UI and Platform to PHP

Explorer View and PDT, respectively. After 16 months, these fields

were changed again to Common and DLTK, which were the correct

fields. Clearly there is a need to develop techniques and tools that

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

CASCON’19, November 4-6, 2019, Toronto, Canada

 2019 Association for Computing Machinery.

mailto:permissions@acm.org

Figure 2: Overall approach

can predict the correct product and component fields at the time of

submission of a BR. Such techniques can provide tremendous help

to triagers in processing the BRs.

There exist studies that aim at predicting these fields. Sureka et al.

[12] proposed an approach based on BR descriptions to predict

faulty components. Wang et al. [19] compared the effectiveness of

different machine learning techniques to predict faulty components.

These techniques treat the problem as a classification problem by

building a model from historical BRs that can later be used to

predict whether or not the field of an incoming BR will be

reassigned (and ideally predict the correct field), relying on BR

descriptions as the main features. BR descriptions, however, vary

in the quality of their content as shown by Bettenburg et al. [2]. In

this paper, we propose an alternative approach to automatically

predict the component and product fields of BRs using a

combination of stack traces and categorical attributes (more

precisely, the system version, severity, and platform). A stack trace

contains a sequence of running functions and threads in the system

at the time of the crash. They have been used to diagnose the causes

of failures [28], bug reproduction [29, 30], and prediction of BR

severity [13]. This is because they tend to be a more formal source

of information than BR descriptions and comments that are entered

by end users (including developers) using natural language. Stack

traces are therefore a useful alternative, especially when BR

descriptions and comments suffer from quality problems due to

noise in the data and the ambiguity and imprecision associated with

the use of natural language.

The motivation behind using categorical features comes from the

work of Xia et al. [20] who showed that these features (called meta

features in their paper) enhance the prediction of BR fields that will

most likely be reassigned. Categorical features are also used by Sun

et al. in [16] as additional features to detect duplicate BRs.

We show the effectiveness of our approach by applying it to Eclipse

and Gnome BRs. Moreover, we show that our approach

outperforms techniques that rely solely on BR descriptions (e.g.,

[12, 19]). To the best of our knowledge, this is the first time that

stack traces are used with or without other features to predict faulty

product and component fields of BRs.

The remainder of this paper is organized as follows. Our approach

is described in Section 2. The experimental protocol is provided in

Section 3. We present and discuss the results in Section 4. In

Section 5, we discuss the threats to validity of our approach. We

present related work in Section 6, followed by a conclusion and

future work.

2 Approach

Figure 2 shows our approach for predicting the correct products and

components of BRs, which is composed of two main phases:

training and testing.

For this study, we train our classification algorithm using a linear

combination of stack trace similarity and BR categorical attributes,

namely the system version, severity, and platform. We chose these

categorical attributes because they are the main BR fields that

describe the properties of the faulty system. We present the steps of

the training and testing phases of our approach in the following

subsections.

2.1 Training Phase

We build a training model using the distinct functions extracted

from all stack traces of the BR training dataset. Then, for each stack

trace 𝑇𝑖 , a feature vector is constructed and weighted using TF-IDF

(term frequency/inverse document frequency). More formally,

each stack trace 𝑇 is mapped to a vector of size 𝑚 functions, where

each function name 𝑓𝑖 in the vector is either one (appeared in

the stack trace) or zero (did not appear in the stack trace). The

feature vector is weighted by the term frequency (𝑡𝑓):

𝜙𝑡𝑓(𝑓, 𝑇) = 𝑓𝑟𝑒𝑞(𝑓𝑖); 𝑖 = 1, … , 𝑚 (1)

In Equation (1), 𝑓𝑟𝑒𝑞(𝑓𝑖) is the number of times the function

𝑓𝑖 appears in 𝑇divided by the total number of functions in the stack

trace, 𝐿 . We use IDF to give weight to rare functions while

decreasing the weight of frequent functions. The feature vector

weighed by the TF-IDF is therefore given by:

𝜙𝑡𝑓.𝑖𝑑𝑓(𝑓, 𝑇, 𝛤) =
Κ

𝑑𝑓(𝑓𝑖)
𝑓𝑟𝑒𝑞(𝑓𝑖); 𝑖 = 1, … , 𝑚 (2)

where the document frequency 𝑑𝑓(𝑓𝑖) is the number of stack traces

𝑇𝑘 in the collection of 𝛤 of size 𝐾 which contains function name 𝑓𝑖.

To compare two stack traces, we measure the distance between

their corresponding feature vectors using the cosine similarity

measure. (Other distance metrics can also be used). Given V1 and

V2, two features vectors representing stack traces from two BRs,

the cosine similarity is as follows [20]:

𝐶𝑜𝑠(𝜃) =
𝑉1.𝑉2

|𝑉1|.|𝑉2|
 (3)

To add categorical attributes, we measure the similarity of two BRs

𝐵1 and 𝐵2 as follows:

𝑆𝐼𝑀 (𝐵1, 𝐵2) = ∑ 𝑤𝑖 ∗ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑖
4
𝑖=1 (4)

In Equation (4), the parameters 𝑓𝑒𝑎𝑡𝑢𝑟𝑒1, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒2 , 𝑓𝑒𝑎𝑡𝑢𝑟𝑒3 ,

and 𝑓𝑒𝑎𝑡𝑢𝑟𝑒4 are defined in the Table 1.

The SIM function in Equation (4) contains four parameters

(𝑤1, 𝑤2, 𝑤3, 𝑤4) that we used to weigh each feature. These weights

are adjusted in a separate training phase. We use 10% of our dataset

to train these parameters. To optimize parameters, we use the Rank

Net Cost function (RNC) provided by Sun et al. [16], which is

defined in Equation (5). Note that other optimization functions can

be used. The comparison of various optimization functions is out

of the scope of this paper.

𝑌 = 𝑆𝐼𝑀(𝑖𝑟𝑟, 𝑞) – 𝑆𝐼𝑀 (𝑟𝑒𝑙, 𝑞)

𝑅𝑁𝐶(𝑌) = 𝐿𝑜𝑔(1 + 𝑒𝑌) (5)

Table 1. Features used to measure BR similarities

Feature Value

𝑓𝑒𝑎𝑡𝑢𝑟𝑒1
Cosine similarity of stack traces based on the

constructed term vectors.

𝑓𝑒𝑎𝑡𝑢𝑟𝑒2 = {
1 𝑖𝑓 𝐵1. 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = 𝐵2. 𝑣𝑒𝑟𝑠𝑖𝑜𝑛
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑓𝑒𝑎𝑡𝑢𝑟𝑒3 = {
1 𝑖𝑓 𝐵1. 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 = 𝐵2. 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑓𝑒𝑎𝑡𝑢𝑟𝑒4 = {
1 𝑖𝑓 𝐵1. 𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚 = 𝐵2. 𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The values of 𝑤1, 𝑤2, 𝑤3, 𝑤4 are obtained by minimizing the cost

function of Equation (5), which is achieved by maximizing the

similarity of BRs with the same product or component fields and

minimizing the similarity of BR with different products or

components. To achieve this, we use the gradient descent

algorithm, provided by Sun et al. [16].

The algorithm adjusts each free parameter x in each iteration

according to the value of the coefficient Ƞ and the partial derivative

of RNC with respect to each free parameter x. Then the four free

parameters (𝑤1, 𝑤2, 𝑤3, 𝑤4) are used to calculate the similarity of

each incoming BR to all previous BRs in the dataset to predict the

faulty product and component fields using the cost sensitive K-

Nearest Neighbor (KNN).

2.2 Testing Phase

We simulate the submission of BRs to a bug tracker based on real

data. Each time a new BR is submitted we will compare it to

previous BRs by measuring the similarity between its stack trace

(more precisely the corresponding feature vector) and categorial

attributes to all the previous BRs that were submitted. In other

words, only stack traces and categorical features of BRs submitted

before the current simulated time can be used. Note that this

requires updating the existing feature vectors by adding the

functions that were not seen before as well as updating the TF-IDF

weights. This technique was also used by Lerch et al. when

detecting duplicate bug reports [26].

The calculated similarities are then used to build a list of similarity

values that shows how similar the current stack trace of the

incoming BR is to all previous stack traces of all BRs in the training

dataset. We use the cost sensitive KNN algorithm to retrieve the

most similar BRs to the incoming BR.

The KNN classification process is performed into two phases. In

the first phase, the similarity of the incoming BR (Bi), in the testing

dataset to all the BRs in the training dataset is calculated. In the

second phase, the K-nearest BRs in the training dataset are then

selected and the label of the incoming Bi is selected by a majority

vote. That is, the label of the instance 𝑋 associated to Bi is

determined using a labelled dataset 𝐶 and a majority voting scheme

according to the following equation [11]:

𝐶(𝑋) =
𝑎𝑟𝑔𝑚𝑎𝑥
𝑐𝑗 ∈ 𝐶 𝑠𝑐𝑜𝑟𝑒 (𝑐𝑗 , 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝑘(𝑋)) (6)

In the above equation, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝑘(𝑋) is the K-nearest neighbors

of instance 𝑋, argmax returns the label which maximizes the score

function; it is defined as follows [11]:

𝑆𝑐𝑜𝑟𝑒(𝑐𝑗 , 𝑁) = ∑ [𝑐𝑙𝑎𝑠𝑠(𝑦) = 𝑐𝑗]𝑌∈𝑁 (7)

In the above equation, 𝑐𝑙𝑎𝑠𝑠(𝑦) = 𝑐𝑗 is evaluated to one if

𝑐𝑙𝑎𝑠𝑠(𝑦) = 𝑐𝑗 and to zero if 𝑐𝑙𝑎𝑠𝑠(𝑦) ≠ 𝑐𝑗. That is, the label with

the highest frequency of occurrences among the K-returned labels

is considered as the output label.

To further improve the prediction capability of our approach, more

weights have been given to BRs of the training dataset closer to the

incoming BR, Bi . We achieve this using the reciprocal of the

similarity of bugs which is the outcome of each of the four free

parameters involved in Equation (4). More formally, let the

distance of the closest BR in the sorted list of the K-nearest

instances be 𝑑𝑖𝑠𝑡1, and the distance of the farthest bug be 𝑑𝑖𝑠𝑡𝑘.

The weight of each label can be computed by the following

equation introduced by Gou et al. [24]. In this equation, 𝑑𝑖𝑠𝑡𝑖 is the

distance of BR 𝑖.

𝑤𝑖 = {

𝑑𝑖𝑠𝑡𝑘 − 𝑑𝑖𝑠𝑡𝑖

d𝑖𝑠𝑡𝑘− 𝑑𝑖𝑠𝑡1
𝑖𝑓𝑑𝑖𝑠𝑡𝑘 ≠ 𝑑𝑖𝑠𝑡1

1 𝑖𝑓𝑑𝑖𝑠𝑡𝑘 = 𝑑𝑖𝑠𝑡1

 (8)

It follows that the score function defined by Equation (7) must be

updated to incorporate the calculated weights in Equation (8) [11].

The following equation encompasses the desired changes.

Score (𝑐𝑗 , 𝑁) = ∑ 𝑤(𝑥, 𝑦) × [𝑐𝑙𝑎𝑠𝑠(𝑦) = 𝑐𝑗]𝑌∈𝑁 (9)

In the above equation, 𝑤(𝑥, 𝑦) is the weight of each instance in the

top K-similar returned instances, which is obtained from its

distance to the incoming Bi and the associated instance x. Then, the

label with the resulting high score is selected to be the output label.

In large software repositories such as Eclipse, Gnome, and Mozilla,

some products or components have fewer BRs in the bug tracking

system, which results in an unbalanced distribution of labels,

causing a bias towards the majority class labels. We used cost

sensitive learning to overcome the unbalanced dataset distribution

problem with Eclipse and Gnome datasets. To apply cost sensitive

learning, we first convert the output of the KNN classifier into the

probability of the test instance belonging to each class label. Then,

we construct a cost matrix in which the probability of belonging to

each class label is exchanged with an average cost of belonging to

each class label. If we consider number of different class labels as

C, the number of instances of class j in the training set as 𝑠𝑗 , and

the number of instances of the majority class in the training set as s

then the misclassification cost of each class label 𝐶𝑗 could be

calculated by Equation (10) [13].

𝑀𝐶𝑗 =
𝑆

𝑆𝑗
 (10)

Assume we have M classes and the incoming bug belongs to each

of these classes with probabilities of 𝑃1 … … 𝑃𝑚, and assume that

each class has a misclassification cost of 𝐶𝑂1 … … 𝐶𝑂𝑚, then the

cost of assigning the bug report to each of those classes is calculated

by Equation (11) [23].

𝐶𝐶𝑂𝑖 = ∑ 𝐶𝑂𝑗 × 𝑃𝑗𝑗 ∈𝑚 𝑎𝑛𝑑 𝑗≠𝑖 (11)

Based on the output probabilities and using a cost matrix, the

classifier makes an optimal cost-sensitive prediction, by choosing

the class label with the least classification cost.

3 Experimental Protocol

We conducted experiments to address the following research

questions:

RQ1. Can stack traces and categorical features (system version,

severity, and platform) be used to predict the product field

of a BR? If so, what would be the prediction accuracy and

how does it compare with the use of BR descriptions?

RQ2. Can stack traces and categorical features (system version,

severity, and platform) be used to predict the component

field of a BR? If so, what would be the prediction accuracy

and how does it compare with the use of BR descriptions?

RQ3. How does our approach compare to a random classifier?

3.1 Datasets

In this work, we used BRs extracted from two large open-source

software projects: Eclipse and Gnome. These systems have their

BRs open and accessible to researchers and have been widely used

in the literature [1, 8, 9, 18, 22, 25]. We included Eclipse BRs

submitted between October 2001 to February 2015 and all Gnome

BRs for the period of February 1999 to August 2015.

In this work, we focused only on Eclipse products and components

that pertain to Eclipse core and did not include the plugins. Eclipse

has five products: Platform, JDT, PDE, Equinox and E4, each of

which contains a set of components.

Gnome is a collection of Unix-based projects. Although it uses the

same bug tracking system as Eclipse, Gnome’s BRs are structured

slightly differently. The concept of product in Gnome refers to a

BR class; each class contains a set of components (called products

in Gnome).

In Eclipse and Gnome bug repositories, stack traces are embedded

in BR descriptions. We used regular expressions to extract stack

traces from bug report descriptions. For Eclipse we used the same

regular expression provided by Lerch et al. [26]. For Gnome, after

examining carefully the way stack traces are organized, we

designed the following regular expression. In Gnome, a stack trace

starts with a frame number following by a hex number. Function

name and the parameters are presented next. Based on the

debugging configuration, function parameters are followed by

keywords ‘from’ or ‘at’, and library or filename.

([#NUMBER] [HEX ADDRESS] [IN] [FUNCTION NAME] [(]

[PARAMETERS] [)] ([FROM] | [AT]) ([LIBRARYNAME] |

[FILENAME]))*

Figure 3: Regular expression for extracting stack traces from

Gnome BR descriptions

The total number of Eclipse BRs is 193,177, but only 19,458 (10%)

have stack traces. This low percentage results from the fact that up

to 2015, stack traces had to be appended manually by users.

Automatic submission of stack traces to the Eclipse BR repository

has been made possible by Eclipse at the end of 2015. So far, these

stack traces have not been made publicly available. In the case of

Gnome, the total number of BRs is 629,549, among which 201,580

(32%) have stack traces. The sparsity of stack traces is the main

limitation of our approach. Nevertheless, we believe that it is still

important to investigate the use of stack traces, especially that there

is a recognized need to have stack traces for debugging, bug

reproduction, and other software maintenance tasks. We should

expect to see more bug reporting systems collect stack traces

automatically whenever a BR is submitted.

3.2 Predicting BR product and component fields

using BR description

We compared our approach to an approach that uses the description

of BRs such as the one presented by Sureka in [12]. The authors

applied two different techniques, TF-IDF and a dynamic language

model classifier, to predict faulty components. They showed that

these approaches have similar accuracy. Since both approaches

have the same performance, we compared our approach which uses

stack traces and categorical features to Sureka’s approach using

TF-IDF. Sureka did not tackle the unbalanced label distribution

problem, and because we are applying their approach to an

unbalance dataset, we have added the cost sensitive KNN to their

approach.

We extracted the descriptions from all BRs in our datasets. We

tokenized words in the descriptions and built feature vectors, which

consist of all distinct words in the descriptions of a BR. Next, we

used TF-IDF (Equation 2) to give weight the feature vector of each

BR. We created a sorted set of BRs using the submission date. With

the incoming of each new BR, its weighed feature vector is

compared to the weighted feature vector of all previous BRs in the

sorted set. Next, we used the same cost sensitive K nearest neighbor

method (Equation 11) to select the BR that is most similar.

3.3 Predicting BR product and component fields

using a random classifier

Our proposed classification approach is also compared to a method

that predicts the faulty product and component of bugs with respect

to different class labels. Assume we have N faulty product classes

and the number of BRs that belong to each class is 𝐵𝑝1
… … 𝐵𝑝𝑁

.

The accuracy of correctly predicting a faulty product of each bug

by randomly choosing product label 𝑃𝑖 is calculated by Equation

(12). We use the same technique for components:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑃𝑖) =
𝐵𝑝𝑖

∑ 𝐵𝑝𝑗
𝑁
𝑗=1

 (12)

3.4 Evaluation Metrics

We used precision, recall, and F-measure to assess the effectiveness

of our approach. These metrics are widely used in the literature [7,

20] to evaluate the accuracy of a classifier. We defined precision as

Equation (13) We calculated the precision for each product and

component label separately.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑝𝐿) =
𝑜𝑓 𝑏𝑢𝑔𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑙𝑎𝑏𝑒𝑙𝑝𝐿

𝑜𝑓𝑏𝑢𝑔𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑜 ℎ𝑎𝑣𝑒 𝑙𝑎𝑏𝑒𝑙𝑝𝐿
 (13)

Recall is defined as (14).

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑃𝐿) =
𝑜𝑓 𝑏𝑢𝑔𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑙𝑎𝑏𝑒𝑙 𝑃𝐿

𝑜𝑓 𝑏𝑢𝑔𝑠 𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑦 ℎ𝑎𝑣𝑖𝑛𝑔 𝑙𝑎𝑏𝑒𝑙 𝑃𝐿
 (14)

We built the confusion matrix separately for each product or

component field. We combined precision and recall values and

present them as one value, F-measure:

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 (𝑝𝐿) =
2 ×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (15)

To compare the results of our approach to an approach that uses BR

descriptions, we measured the improvement achieved by one

method over the other. More precisely, if we denote the F-measure

of Sureka’s [12] approach as 𝐹_𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑇 and the F-measure of

our approach by 𝐹_𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑆𝐶 , we calculate the improvement

using Equation (16) as follows:

Improvement =
𝐹−𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑆𝐶 − 𝐹−𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑇

𝐹−𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑇
 (16)

Because we have a large number of components for each product

and that the precision and recall must be calculated separately for

each component, we used the macro-average precision to show the

average precision of the components of each product. If we denote

precision of the first component as 𝑃𝐶1 and the n’th component

precision as 𝑃𝐶𝑛, we can use the equation provided by Manning et

al. [10] to calculate the macro-average precision:

𝑀𝑎𝑐𝑟𝑜𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑃𝐶1+ 𝑃𝐶2+⋯.+𝑃𝐶𝑛

𝑛
 (17)

Similarly, if we denote recall of the first component as 𝑅𝐶1and the

n’th component recall as 𝑅𝐶𝑛 , the macro-average recall is

calculated using the following equation [10].

𝑀𝑎𝑐𝑟𝑜𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑅𝐶1+ 𝑅𝐶2+⋯.+𝑅𝐶𝑛

𝑛
 (18)

4 Results and Discussion

4.1 Results

For simplicity reason, we use the notation BRFPst+cat to refer to

our approach for predicting BR fields using stack traces and

categorical features. We also use BRFPdesc to refer to an approach

that uses BR descriptions.

Table 2 and Table 4 show the precision, recall, and F-measure of

BRFPst+cat in Eclipse and Gnome datasets. In our experiments, we

varied K from 1 to 10 and recorded K which provides the best

accuracy. This is a common practice in machine learning when

using KNN. Table 3 and Table 5 show the macro precision, recall

and F-measure of our approach when predicting the BR component

fields in Eclipse and Gnome datasets. Note that the detailed

precision and recall for each component can be found on

http://www.ece.concordia.ca/~abdelw/cascon19.

RQ1. Can stack traces and categorical features be used to

predict the product field of a BR and if so, what would be the

accuracy and how does it compare to the use of BR

descriptions?

When applied to Eclipse products, the results show that our

approach, BRFPst+cat, predicts faulty products with an average F-

measure of 60%. The average precision and recall is 58% and 62%,

respectively. For Gnome, we applied our approach to seven

products and predicted faulty products with an average precision of

74% and an average recall of 67%. The average F-measure is 70%.

Table 2 shows the average F-measure improvement of predicting

faulty products using our approach for Eclipse compared to the use

of BR descriptions, BRFPdesc. Based on the results of Table 2, we

have improved the average F-measure from almost 5% to 143.1%

for different products. The average F-measure improvement rate

over all Eclipse products is 46%.

Table 4 shows that the average F-measure improvement of

predicting faulty products using BRFPst+cat compared to

BRFPdesc for Gnome. The results show an improvement ranging

from 4% to 174.44% for different products. In average, using stack

traces and categorical features improves the accuracy by 41%

across all products in Gnome.

Finding 1:

The use of stack traces and categorical features (system version,

severity, and platform) provides better accuracy in predicting BR

product fields compared to the use of BR descriptions.

RQ2. Can stack traces and categorical features be used to

predict the component field of a BR and if so, what would be

the accuracy and how does it compare to the use of BR

descriptions?

Table 3 shows the macro average F-measure improvement to

predict bugs components using BRFPst+cat compared to

BRFPdesc for Eclipse. Based on the results, the improvement

ranges from 0% to 42%. Moreover, the macro average F-measure

of the components of each product has improved using the

proposed approach. Table 5 presents the results for the Gnome

dataset. The improvement ranges from 14.73% to 50%. For the

components of each product, the proposed approach outperforms

BRFPdesc.

Finding 2:

The use of stack traces and categorical features (system version,

severity, and platform) provides better accuracy in predicting BR

component fields compared to the use of BR descriptions.

RQ3. How does our approach compare to a random classifier?

Table 2 and Table 4 show the product prediction accuracy of our

approach using stack trace and categorical features compared to a

random approach for Eclipse and Gnome respectively. Our

approach outperforms a random approach when predicting faulty

products in Eclipse and Gnome datasets with an average

improvement of 200% and 250% respectively. Similarly, as we can

see in Table 3 and Table 5, our approach outperforms a random

classifier for predicting fault components by 205% and 391% for

Eclipse and Gnome respectively.

Finding 3:

Our classification approach combined with stack traces

outperforms significantly a random classification method.

4.2 Discussion

Despite the overall excellent performance of BRFPst+cat when

applied to both Eclipse and Gnome datasets, there were cases where

our approach did not perform well when predicting the right

components. These cases are shown in the add-on material

submitted with this paper (in the paper, we only show

macro_averages). We found that this happens mainly when (1) the

number of stack traces is small, and/or (2) the BR descriptions

contain bug reproduction steps or source code information; these

BRs are usually submitted by developers.

For the Eclipse product “E4”, components “Resources” and

“Tools”, BRFPst+cat achieved lower accuracy than BRFPdesc.

The improvement is -8.35and -13% respectively. Our model needs

a sufficient number of stack traces to generalize and make an

accurate prediction. When the number of stack traces is low, which

is the case for these components, it is less likely to have shared

functions (used as features) among stack traces due to uniqueness

of stack traces compared to BR descriptions, which contain

common words since they are written in a natural language.

Because the number of stack traces of BRs associated with these

components is low, the feature vectors built using functions in stack

traces did not properly characterize the corresponding BRs in the

vector space, resulting in a cosine similarity among stack traces

based on Equation (3) that converged to zero.

For the “Incubator” component of the Eclipse “PDE” product, the

use of BR descriptions yields better results than our approach

(improvement achieved by our approach of -33.30%). By further

investigating the BRs associated with this component, we observed

that they contain detailed steps on how to reproduce the bug

embedded in the BR description. An example of a snippet of BR

for this component is shown in Table 6. The same observation holds

for the “Device Kit” component of the Eclipse Equinox product

where most BRs related contain the bug reproduction steps in their

description (see BR #192746 in Table 7 for an example).

Table 6. Eclipse BR #213234

BR Field Value

Product PDE

Component Incubators

Header
[api tooling] invalid thread access setting up API

tooling

Description

steps:

1. open the editor for an element that will have a

source tag added to it by the wizard

2. make a change to the type and do not save it

3. start the setup wizard

specific example I used to reproduce:

1. get debug.ui from head

2. open FileLink and make a change, do not save

3. run the setup wizard on debug

For the Gnome dataset, our approach outperforms BRFPdesc in

most cases except for predicting the components “gnome-games”

and “gconf-editor”. We found that this is due to the fact that the

BRs of these components contain information which are mostly

technical and different from the categorical information provided

in the bug tracking system. For example, in BR #408425 (see Table

8), we have information such as distribution of the Linux

environment, release information of the OS, memory status, etc.

The same observation holds for the “gconf-editor” component of

the Gnome “Applications” product.

4.3 Implications and Limitations

In this section, we discuss the implications of our findings.

On stack traces: Our findings clearly show the importance of stack

traces in predicting the product and component fields of BRs. This

confirms the need to collect stack traces whenever a bug report is

submitted. Traces should not be copied and pasted in BR

descriptions, as it is the case in many bug tracking systems. Bug

report tracking systems should be designed in a way that facilitates

the collection and mining of stack traces. It is recognized that stack

traces require storage and processing capabilities because of their

size. For Mozilla products, for example, stack traces are only kept

for one year because of the overhead caused by managing these

traces [14]. Therefore, simply collecting traces may not be

sufficient, we need to investigate better ways to structure their

content by reducing noise and other elements that may not be

needed to characterize the corresponding BRs. We should also look

at using trace abstraction and reduction techniques such as the ones

presented in [31]. The authors showed that abstractions constructed

from stack traces can be used in an efficient way to detect duplicate

BRs.

Table 2. Product prediction accuracy for Eclipse

Product
BR Descriptions

BR Stack traces and categorical

features

Random Improvement

over

description

Improvement

over random

Precision Recall F-Measure Precision Recall F-Measure Accuracy

Platform 46% 68% 54.80% 55% 68% 60% 50.2% 9.50% 19.5%

JDT 47% 68% 55.50% 69% 68% 68.40% 30.1% 23.20% 127.2%

PDE 27% 23% 24.80% 50% 76% 60.30% 9% 143.10% 570%

Equinox 34% 37% 35.40% 60% 48% 53.30% 7.9% 50.50% 574.6%

E4 55% 47% 50.60% 56% 50% 52.80% 2.7% 4.34% 1855.5%

AVERAGE 42% 49% 44% 58% 62% 60% 20% 46% 200%

Table 3. Component prediction accuracy (Eclipse)

Product

BR Descriptions
BR Stack Traces with categorical

features

Random Improvement

over

description

model

Improvement

over random

Precision Recall F-Measure Precision Recall F-Measure

Accuracy

Platform 35% 29% 31.71% 50% 41% 45.05% 5.8% 42.04% 676%

JDT 52% 49% 50.45% 67% 64% 65.46% 20% 29.74% 227%

PDE 61% 56% 58.39% 68% 60% 63.75% 25% 9% 155%

Equinox 55% 37% 44.23% 63% 43% 51.11% 11% 15.53% 364%

E4 73% 58% 64.64% 78% 56% 65.19% 33% 0% 97%

AVERAGE 55% 46% 50% 65% 53% 58% 18.96% 19% 205%

Table 4. Product prediction accuracy (Gnome)

Product

BR Description Bug Random Improvement

over

description

model

Improvement

over random

Precision Recall F-Measure Precision Recall F-Measure
Accuracy

Deprecated 71% 75% 72.94% 81% 77% 78.94% 15.8% 8.23% 399.62%

Core 65% 73% 68.76% 70% 73% 71.46% 35.7% 3.93% 100.17%

Other 60% 65% 62.4% 68% 68% 68% 16.2% 8.97% 319.75%

Platform 69% 38% 49% 92% 72% 80.78% 2.3% 64.83% 3412.17%

Applications 74% 62% 67.47% 83% 72% 77.1% 29.6% 14.29% 160.47%

Infrastructure 35% 52% 41.83% 46% 47% 46.49% 0.1% 11.13% 46390.00%

Bindings 36% 18% 24% 78% 57% 65.86% 0.07% 174.44% 93985.71%

AVERAGE 59% 55% 55% 74% 67% 70% 20% 41% 250.00%

Table 5. Components prediction accuracy (Gnome)

Product

BR Descriptions BR Stack Traces with categorical features Random Improvement

over

description

model

Improvement

over random

Precision Recall F-Measure Precision Recall F-Measure
Accuracy

Deprecated 59% 59% 59% 96% 71% 81.63% 5% 38.35% 1532.60%

Core 65% 41% 50.28% 73% 62% 67.05% 11% 33.35% 509.55%

Other 50% 42% 45.65% 75% 63% 68.48% 5.5% 50% 1145.09%

Platform 62% 48% 54.10% 85% 67% 74.93% 5.8% 38.51% 1191.90%

Applications 58% 47% 51.92% 68% 53% 59.57% 8.3% 14.73% 617.71%

Infrastructure 60% 53% 56.28% 72% 63% 67.20% 50% 19.40% 34.40%

Bindings 61% 55% 57.84% 78% 66% 71.50% 14.2% 23.61% 403.52%

AVERAGE 59% 49% 54% 78% 64% 70% 14.25% 31% 391.23%

Table 7. Eclipse BR #192746

BR Field Value

Product Equinox

Component Incubator.DeviceKit

Header Try to create new DK project fails

Description

Steps to recreate:

1. New->Other->Device Kit->Device Kit

Components->Connection

2. Connection Name = Something

3. Finish becomes enabled click to attempt to

create the connection

4. Device Kit Error

Found this error in the log

!SESSION 2008-02-26 23:40:00.369 -------------

eclipse.buildId=M20071023-1652

java.version=1.5.0_13

java.vendor=Apple Computer, Inc.

BootLoader constants: OS=macosx,

ARCH=x86, WS=carbon, NL=en_US

Table 8. Gnome BR #408425

BR Field Value

Product Deprecated

Component gnome-games

Header Crash while closing the window

Description

If you click the New button in the toolbar, so that

the ‘new game’ dialog shows up, and then you

close the window using the window manager

close button, HEAD crashes.

Distribution: Fedora Core release 6 (Zod)

Gnome Release: 2.17.90 2007-02-10 (JHBuild)

BugBuddy Version: 2.17.3

System: Linux 2.6.19-1.2895.fc6 #1 SMP Wed

Jan 10 19:28:18 EST 2007 i686

X Vendor: The X.Org Foundation

X Vendor Release: 70101000

Selinux: Enforcing

Accessibility: Enabled

GTK+ Theme: Clearlooks

Icon Theme: gnome

On BR categorical attributes: We showed that categorial

attributes namely version, platform, and severity, enhance the

prediction accuracy. The problem is that these attributes themselves

may be entered incorrectly, which is a threat to validity for our

approach (see next section). Our findings strengthen the need to

have these attributes automatically and correctly generated. Users

should never have to enter these attributes.

On BR descriptions: Although many studies showed that BR

descriptions are useful in various BR triaging activities, after

working with many large BR repositories (some of them from

industry) we remain very skeptical as to the sole use of descriptions

for prediction tasks. We found many BRs where the descriptions

consist mainly of snippets of stack traces. We only found

descriptions that are poorly written and hard to understand. In

addition, unless there are clear guidelines on how to write proper

descriptions and that these guidelines are enforced, descriptions

remain largely inaccurate and imprecise.

Limitation 1 - Sparsity of stack traces: The main limitations of

our approach is that, for the time being, only a small portion of BRs

come with stack traces. Our Eclipse dataset contains only 10% of

BRs with stack traces. We hope that the findings of this paper will

encourage the collection of stack traces in a systematic manner.

Limitation 2 - Scalability: In our approach, we compare each

incoming BR with all the BRs that were submitted before. This

process updates the feature vectors by adding the new functions that

were not learned from the previous BRs and by updating the TF-

IDF weights. We opted for this process to simulate how BRs are

processed in real world. This method, however, incurs a high

computational cost.

5 Threats to Validity

Our proposed approach and the conducted experiments are subject

to threats to validity.

There is a threat to validity with respect to the training dataset we

used to optimize the free parameters w1, w2, w3, and w4 used to

weigh the features in the linear combination of stack traces and

categorical attributes (see Equation (4)). A different threshold may

lead to different results.

Another threat to internal validity exists in the way we implemented

the approach for extracting words from BR descriptions. We simply

tokenize each BR description and used the extracted words to form

feature vectors. We did not resort to any natural language

processing method. The use of a powerful natural language

processing method may result in better performance of an approach

that uses BR descriptions.

Finally, the misclassification cost in Equation (10) is calculated

using our own proposed heuristic. However, this parameter could

be adjusted using an exhaustive domain search or training machine

learning methods. Using a more optimal parameter could further

enhance the product and component prediction capability of our

approach.

While we managed to work on two large bug repositories, which

are extensively used in the literature, the low number of stack traces

is a threat to validity. We cannot claim that these results apply to

other bug reports. Therefore, the presented observations and

findings are best interpretable with respect to the particular bug

reports we chose and studied.

6 Related Work

Bettenburg et al. [2] studied the quality of BRs and showed that

there is an important gap between what users provide as an input

and what developers need to fix a bug. They argued that since users

do not usually have technical knowledge about the system, it is very

difficult for them to properly report the faulty products and

components.

Guo et al. [6] introduced the bug pong concept as sending the bug

between development teams similar to ping pong ball. The authors

showed that it happens when a faulty component is not correctly

identified in the BR. They also showed that incorrect selection of

the faulty components increases the bug processing time.

Breu et al. [3] showed that the questions asked when submitting

BRs can be grouped into eight categories: missing information,

clarification, triaging, debugging, correction, status inquiry,

resolution, and administration. They showed that triaging questions

are mostly due to the fact that users enter the wrong products and

components when reporting a bug.

Somasundaram et al. [17] showed that the component field in a BR

helps triagers route the bug to the right development team. They

have also shown that incorrect component categorization often

delays the resolution of the BR. They used the description of bug

reports and applied Support Vector Machine (SVM), Latent

Dirichlet Allocation (LDA) with SVM and LDA with Kullback

divergence (KL). They observed that LDA-KL produces more

stable results than SVM.

Shihab et al. [15] showed that the processing time of re-opened bug

reports is twice more than the processing time of regular bugs. They

observed that the description, fixing time, and the component of

BRs are the most important factors in determining whether a bug

will be re-opened. They showed that the reporters’ name is not an

important factor in predicting re-opened bugs. They have structured

their study in four dimensions: work habit (weekday of closing

bugs), bug reports faulty component, bug fix (time spent to fix the

bug), and people (experience of the bug fixer). They extracted

features from these dimensions to build up a decision tree to predict

whether a bug will be re-opened. They showed that both the BR

dimension and faulty components have the best F-measure in

predicting re-opened bug reports.

Giger et al. [5] showed that, in Firefox BRs, the faulty component

field is the most important factor in determining how fast a bug will

be fixed. They showed that, in Gnome BRs, the component is the

second most important field in determining the fixing time of a bug.

Sureka [12] showed that the most important feature to localize the

fault of a bug is the component. He showed that the component

field is usually assigned wrongly by most users. He has revealed

that the highest frequency of reassignment after the assignee field

is the component field. The author used a statistical and a

probabilistic model applied to the title and description of BRs to

predict faulty components. The study achieved 42% accuracy when

predicting the component field of a BR. The author also showed

that TF-IDF applied to the description of BRs performs the same as

Dynamic Language Model (DLM). To detect whether the

component field of a BR will be reassigned, his approach has

achieved 42% of accuracy.

Lamkanfi et al. [7] revealed that the component field in Eclipse and

Mozilla BRs tends to be regularly reassigned. They extracted all

initial values of BR information including component, reporter,

operating system, version, severity, and BR summary to decide

whether the component of a bug will be reassigned. Their classifier

has predicted reassigned bugs with an F-measure of over 44% and

not reassigned bugs with an F-measure of over 83%.

Xia et al. [27] showed that 80% of bugs have their fields reassigned.

They have also revealed that the bugs which are reassigned take

longer time to be fixed. They showed that the product and

component fields usually get reassigned together.

Xia et al. [20] used a multi label learning algorithm (ML.KNN) to

predict reassignment of BR fields. To overcome the unbalanced

dataset problem, they have used the IM-ML.KNN classification

approach. Their approach achieved an F-measure ranging from

56% to 62%.

Wang et al. [19] used BR descriptions and summaries to predict the

component field of a BR. They have created feature vectors using

words in the descriptions and summaries. They weighed the feature

vectors using TF-IDF. They compared the performance of support

vector machines and Naïve Bayes machine learning techniques.

They applied their approach to Eclipse BRs and showed that SVM

models outperform Naïve Bayes models in predicting components.

Maiga et al. [32] showed that severity fields of the bug reports are

not usually precisely chosen by the software users in industry.

Sabor et al. [33] showed that product and component field of bug

reports could be predicted more accurately using deep learning

methods.

7 Conclusion

In this paper, we proposed an approach to predict product and

component fields of BRs that leverages stack traces and categorical

features instead of BR descriptions. In our approach, we have used

a linear combination of stack traces and categorical features

similarity to predict products and components. We tested our

approach to two Eclipse and Gnome BR repositories. Oure

experiment showed that our approach could predict the faulty

product and component by an average F-measure of 65%. We

showed that our approach outperforms the one which uses bug

report descriptions to predict faulty product and components of

bugs by 35% in average. Our approach could be effectively used to

predict faulty product and components of a bug to eliminate the

overhead of wrong assignment of the bugs to the development

teams. As a future work, we also plan to use a training model to

obtain the optimized misclassification cost for each product and

component. Furthermore, we plan to use more advanced machine

learning techniques such as deep learning.

ACKNOWLEDGMENTS

This research has been partly supported by the Natural Science and

Engineering Research Council of Canada (NSERC).

REFERENCES
[1] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y-G. Guéhéneuc,

“Is it a bug or an enhancement?: a text-based approach to classify

change request,” in Proceedings of the 2008 Conference of the Center

for Advanced Studies on Collaborative Research: Meeting of Minds
(CASCON), 2008.

[2] N. Bettenburg, S. Just, A. Schr¨oter, C. Weiss, R. Premraj, and T.

Zimmermann, “What makes a good bug report?” in Proceedings of

the 16th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ser. SIGSOFT ’08/FSE-16. New York 2008,
pp. 308–318.

[3] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann, “Frequently asked

questions in bug reports,” University of Calgary, Technical Report,
2009.

[4] J. Gou, L. Du, Y. Zhang, T. Xiong, « A New Distance-weighed K-

nearest Neighbor Classifier,” Journal of Information & Computational
Science, 2012, pp. 1429-1436.

[5] E. Giger, M. Pinzger, and H. Gall, “Predicting the fix timeof bugs,” in
Proceedings of the 2nd International Workshop on Recommendation
Systems for Software Engineering, 2010, pp. 52–56.

[6] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy, ““not my

bug!” and other reasons for software bug report reassignments,” in

Proceedings of the Conference on Computer Supported Cooperative
Work, 2011, pp. 395–404.

[7] A. Lamkanfi and S. Demeyer, “Predicting reassignments of bug
reports an exploratory investigation,” in Proceedings. of the 17th

European Conference on Software Maintenance and Reengineering
(CSMR), pp. 327–330.

[8] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting the

severity of a reported bug,” in Proceedings of the 7th IEEE Working
Conference on Mining Software Repositories, 2010, pp. 1–10.

[9] A. Lamkan, S. Demeyer, Q. D. Soetens, and T. Verdonck,
“Comparing mining algorithms for predicting the severity of a

reported bug,” in Proc, of the European Conference on Software
Maintenance and Reengineering , 2011, pp. 249-258

[10] C. D. Manning, P. Raghavan, and H. Schutze. Introduction to
Information Retrieval. Cambridge University Press, NY, USA, 2008.

[11] F. Provost, T. Fawcett. Data Science for Business: What You Need to

Know about Data Mining and Data-Analytic Thinking, O'Reilly
Media, 2013.

[12] A. Sureka, “Learning to classify bug reports into components,” in
Proceedings on the 50th International Conference on Objects, Models,

Components, Patterns: 50th International Conference (TOOLS),
2012, pp. 288–303.

[13] K. K. Sabor, M. Hamdaqa, and A. Hamou-Lhadj, “Automatic
prediction of the severity of bugs using stack traces,” in Proceedings

of the 26th Annual International Conference on Computer Science and
Software Engineering, 2016, pp. 96–105.

[14] M. Castelluccio, C. Sansone, L. Verdoliva, and G. Poggi,

“Automatically analyzing groups of crashes for finding correlations,”
In Proceedings 2017 11th Jt. Meet. Found. Softw. Eng. - ESEC/FSE
2017, pp. 717–726, 2017.

[15] E. Shihab, A. Ihara, Y. Kamei, W. M. Ibrahim, M. Ohira, B. Adams,

A. E. Hassan, and K.-i. Matsumoto, “Predicting re opened bugs: A

case study on the Eclipse project,” in Proceedings of the 17th
Working Conference on Reverse Engineering (WCRE), 2010, pp.
249–258.

[16] C. Sun, D. Lo, S. C. Khoo and J. Jiang, "Towards more accurate

retrieval of duplicate bug reports," in Proceedings. of the 26th

IEEE/ACM International Conference on Automated Software

Engineering (ASE), 2011, pp. 253-262.

[17] K. Somasundaram and G. C. Murphy, “Automatic Categorization of
Bug Reports Using Latent Dirichlet Allocation”, in Proc. of the

Proceedings of the 5th India Software Engineering Conference
(ISEC), 2012, pp. 125-130.

[18] Y. Tian, D. Lo, and C. Sun, “Information retrieval based nearest

neighbor classification for fine-grained bug severity prediction,” in

Proceedings of the 19th Working Conference on Reverse Engineering
(WCRE), 2012, pp. 215–224.

[19] D. Wang, H. Zhang, R. Liu, M. Lin, and W. Wu, "Predicting Bugs’
Components via Mining Bug Reports," Journal of Software, 7(5),
2012, pp. 1149-1154.

[20] X. Xia, D. Lo, E. Shihab, and X. Wang, “Automated bug report field

reassignment and refinement prediction,” In IEEE Transactions on
Reliability, 65(3), 2016, pp. 1094–1113.

[21] J. Xie, M. Zhou and A. Mockus, "Impact of Triage: A Study of

Mozilla and Gnome," in Proceedings of the International Symposium
on Empirical Software Engineering and Measurement, 2013, pp. 247-
250.

[22] G. Yang, T. Zhang, and B. Lee, “Towards semi-automatic bug triage

and severity prediction based on topic model and multi feature of bug

reports,” in Proceedings of the 38th Annual Computer Software and
Applications Conference , 2014, pp. 97–106

[23] Z. Qin, A. T. Wang, C. Zhang, and S. Zhang. Cost-Sensitive
Classification with k Nearest Neighbors, In Proceedings of 6th

International Conference on Knowledge Science, Engineering and
Management , pages 112–131, , 2013.

[24] J. Gou, L. Du, Y. Zhang, T. Xiong, « A New Distance-weighed K-

nearest Neighbor Classifier,” Journal of Information & Computational
Science, 2012, pp. 1429-1436

[25] T. Zhang, G. Yang, B. Lee, and A. T. S. Chan, “Predicting severity of
bug report by mining bug repository with concept profile,” in

Proceedings of the 30th Annual ACM Symposium on Applied
Computing (SAC), 2015, pp. 1553–1558

[26] J. Lerch and M. Mezini, "Finding duplicates of your yet unwritten bug

report," in Proceedings of European Conference on Software
Maintenance and Reengineering, 2013, pp. 69-78.

[27] X. Xia, D. Lo, M. Wen, E. Shihab, and B. Zhou, “An empirical study
of bug report field reassignment,” in Proceedings of the IEEE

Conference on Software Maintenance, Reengineering, and Reverse
Engineering ,2014, pp. 174–183.

[28] R. Wu, H. Zhang, S.-C. Cheung, and S. Kim, “CrashLocator: locating
crashing faults based on crash stacks,” Proc. 2014 Int. Symp. Softw.
Test. Anal. - ISSTA 2014, pp. 204–214, 2014.

[29] M. Nayrolles, A. Hamou-Lhadj, S. Tahar, and A. Larsson, “A bug

reproduction approach based on directed model checking and crash
traces,” J. Softw. Evol. Process, vol. 29, no. 3, p. e1789, 2017.

[30] N. Chen and S. Kim, “Star: Stack trace based automatic crash

reproduction via symbolic execution,” PhD Thesis, Honk Kong Univ.
Sci. Technol., vol. 41, no. 2, pp. 198–220, 2015.

[31] K. Koochekian Sabor, A. Hamou-lhadj, and A. Larsson, “DURFEX :
A Feature Extraction Technique for Efficient Detection of Duplicate
Bug Reports,” in Proceedings of CASCON 2016, pp. 240–250, 2017.

[32] A. Maiga, A. Hamou-Lhadj, M. Nayrolles, K. Koochekian Sabor and

A. Larsson, "An empirical study on the handling of crash reports in a

large software company: An experience report," 2015 IEEE
International Conference on Software Maintenance and Evolution,
Bremen, 2015, pp. 342-351.

[33] K. K. Sabor, M. Nayrolles, A. Trabelsi and A. Hamou-Lhadj, "An

Approach for Predicting Bug Report Fields Using a Neural Network

Learning Model," 2018 IEEE International Symposium on Software
Reliability Engineering Workshops, Memphis, TN, 2018, pp. 232-
236.

