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Abstract— The large number of processors in high 

performance computing and distributed applications is 

becoming a major challenge in the analysis of the way an 

application’s processes communicate with each other. In this 

paper, we propose an approach that facilitates the 

understanding of large traces of inter-process communication 

by extracting communication patterns that characterize their 

main behavior. Two algorithms are proposed. The first one 

permits the recognition of repeating patterns in traces of MPI 

(Message Passing Interaction) applications whereas the second 

algorithm searches if a given communication pattern occurs in 

a trace. Both algorithms are based on the n-gram extraction 

technique used in natural language processing. Unlike existing 

work, our approach operates on the trace as it is generated (i.e. 

on the fly) and does not require complex and computationally-

expensive data structures. We show the effectiveness and 

efficiency of our approach in detecting communication 

patterns from large traces generated from three target 

systems. 

Keywords- Trace of Inter-Process Communication; Pattern 

Recongintion; Message Passing Interface; Dynamic Analysis; 

Program Comprehension 

I. INTRODUCTION 

Understanding how processes communicate in HPC 

(High Performance Computing) distributed applications can 

be a difficult task due to the large number of processes 

involved and the various ways they can communicate [1]. 

Recently, there has been an increase in the number of tools 

that focus on studying execution traces generated from HPC 

systems to help understand their behavior. Most of these 

studies rely on some sort of visualization methods to help 

engineers navigate through traces in an efficient way (e.g. 

[2, 3]). These approaches, however, have limited use when 

applied to large traces – As the trace size grows, usually due 

the number of processes involved, the visualization tool 

often creates clutter and conceals meaningful content, 

making it difficult to follow the process interactions [2, 3, 4-

6]. There is clearly a need for trace abstraction methods that 

can reduce the clutter and hence facilitate the understanding 

and analysis of trace content despite the trace being 

massive.  

In this paper, we propose a trace abstraction approach 

that is based on extracting communication patterns from 

inter-process communication traces. A pattern can be 

defined as a sequence of events repeated non-contiguously 

in a trace. Patterns have been shown to be an excellent way 

to understand the content of large traces since they often 

describe high-level concepts of the program under study [7]. 

Pattern recognition techniques have also been used 

successfully in the past to simplify the analysis of routine 

call traces [30]. This led us to embark on investigating ways 

to apply a pattern recognition approach to abstracting out 

the content of inter-process communication traces. 

More specifically, we present, in this paper, two 

algorithms that aim to facilitate the understanding and 

analysis of inter-process communication traces. The first 

algorithm detects the exact repeating patterns in a trace. 

Detecting such patterns should reduce the effort to 

understand the program behavior by allowing software 

engineers to focus on examining the extracted 

communication patterns first before they decide to explore 

other aspects of the trace (if this would be needed at all). 

The second algorithm detects patterns in a trace that are 

similar to a pre-defined pattern (i.e., a known 

communication pattern provided as input). The objective is 

to allow software engineers to verify whether the traced 

scenario implements a specific communication pattern or 

not. This is particularly important in the context of 

distributed systems since some applications are 

implemented according to known (and documented) process 

communication topologies.  

There exist some studies that also focus on detecting 

communication patterns in inter-process communication 

traces [4-6]. These studies, however, suffer from scalability 

problems due to the complexity of the algorithms they use 

and which depend on the use of computationally-expensive 

data structures (e.g. suffix trees) that are inefficient in terms 

of time and space [8]. Existing approaches also detect 

patterns in inter-process communication traces in a post-

mortem manner. In other words, they process the trace after 

it has been entirely generated. This is often impractical for 

very large traces. In this paper, we present very efficient 

pattern recognition algorithms and that can process the trace 
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as generated (i.e., on the fly). Our algorithms are based on 

n-gram extraction techniques, a concept used extensively in 

the area of natural language processing [9, 10]. The n-gram 

extraction approach has also been shown to be useful in 

detecting DNA patterns [11] and patterns in musical notes 

[12] efficiently.  

Also, in this paper, we focus on target Single Program 

Multiple Data (SPMD) HPC applications that use the MPI 

(Message Passing Interface) standard [13]. MPI is the de 

facto standard for inter-process message passing paradigm, 

and it is used in most of today‟s distributed systems.  

The rest of the paper is organized as follows. In Section 

2, we present the related work followed by a definition of   

communication patterns in Section 3. In Section 4, we 

present our overall approach and describe the algorithms we 

have developed. In Section 5, we present the effectiveness 

of our approach by applying it to traces generated from 

three different systems. We conclude our work in Section 6. 

II. RELATED WORK 

In this section, we present the research studies that cover 
trace abstraction techniques in parallel systems based on 
pattern detection and how these studies differ from ours.  

Preissl et al. [4] proposed an algorithm for the detection 
of patterns in MPI traces. Their approach is based on 
detecting maximal repeats using compressed suffix trees. 
Then, they find the occurrences of the maximal repeats in the 
trace to be used in the communication pattern construction. 
Our approach does an on-the-fly detection of the maximal 
repeats and their occurrences in the trace. Also, we present 
an algorithm for finding similar patterns in the trace which is 
not targeted in their work. 

Knüpfer et al. [14] proposed an algorithm based on the 
compressed complete call graph (cCCG) and the pattern 
graph (a derivative of the cCCG). This approach only looks 
for contiguous repetitions and does not detect those that are 
found interspersed in the trace. This approach is not 
comprehensive since it is necessary to detect non-contiguous 
repetitions, which will be more useful in reflecting the 
behavior embedded in a trace. 

Roberts and Zilles [15] presented a trace visualization 
tool called TraceVis. It uses the trace graph (visualizes 
execution traces as instructions flowing through the 
processor pipeline) to detect regions of similar inter-process 
communications and processor activity. In this approach, 
pattern detection depends on the user‟s ability to identify 
similar inter-process communications in the trace. Though 
this may be possible for small traces, dealing with large 
traces that involve a large number of processes is almost 
always impossible using this approach.  

Kunz et al. [5] presented a technique based on finite state 
automata to find patterns in the trace that match an input 
pattern. A problem with using finite state machines is the 
scalability problem for very large traces. Also, this work did 
not propose an algorithm for detecting repeating patterns in 
the trace.  

Ma et al. [6] proposed an approach for comparing the 
communication patterns found in the traces generated from 

different systems in order to find the degree of similarity 
between them. The degree of similarity between two traces is 
measured using the correlation coefficient followed by an 
undirected communication graph that depicts the 
communication topology among the processes. Then, the 
similarity between the generated graphs is determined using 
graph isomorphism metrics. Our work targets the detection 
of repeating and similar patterns in a single trace file. In the 
future, we intend to compare communication patterns 
generated from different systems. 

Köckerbauer et al. [16] proposed the use of a pattern 
matching technique to simplify the debugging of large 
message passing parallel programs by identifying patterns in  
the trace file that are similar to a predefined pattern. First, the 
user specifies a description of the communication pattern to 
be searched for in the trace file. This pattern description is 
then translated to abstract syntax trees. The ASTs are then 
scaled up to the number of processes in the trace (or the 
number of the target processes in the trace). The pattern 
matching process is run on each process trace individually. 
In their work, they used a hash-based search to detect exact 
and similar patterns on each process trace. Finally, the 
matching patterns are merged in order to get the 
communication pattern which should be exact or a variation 
of the specified pattern by the user. 

Moore et al. proposed a pattern matching method for 
detecting patterns of inefficient behavior based on wait states 
in order to be used in KOJAK (a performance analysis tool 
for high performance parallel applications) [17]. These 
patterns of inefficient behavior are identified by converting 
the trace into a compact call-path profile which classifies 
patterns based on the time spent. This approach only looks 
for events that cause performance degradation and does not 
focus on the inter-process communication. 

III. COMMUNICATION PATTERNS IN MPI TRACES 

We define a pattern as a sequence of events that are 
repeating non-contiguously in a trace.  We use the term 
process pattern to refer to a sequence of events that are 
repeated non-contiguously in one particular process in the 
trace file. We use the term communication pattern to refer to 
a group of process patterns that construct an inter-process 
communication pattern. For example, in Figure 1, Process 1 
(P1) has two events (Send to P2 and Receive from P2) that 
are repeating non-contiguously in this sample trace. 
Similarly, the figure shows that the rest of the processes have 
non-contiguous repetitions of MPI communication events. 
Considering these process patterns, a communication pattern 
is constructed by combining the partner events among the 
processes. Therefore, Figure 1 shows a communication 
pattern repeated twice (each instance is shown in a dashed 
rectangle). The solid bars represent different events that are 
not part of the pattern.  

MPI communication patterns may involve point-to-point 

(operations that involves only two processes) and/or 

collective operations (operations that involve all the 

processes). For example, a communication pattern may only 

involve MPI collective operations such as MPI_Bcast (an 
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MPI operation that can be used by a process to broadcast a 

message to all other processes), MPI_Gather (this is used by 

a process to collect information from other processes), 

which will be repeated on all the processes in the group of 

processes involved in this communication.  
It should also be noted that a communication pattern 

depicts how the processes are communicating and not what 
data they are exchanging. For example, each pattern in 
Figure 1 may have different data but the processes are still 
communicating based on the same pattern. 

 

P1

P2

P3

P4
 

Figure 1. A Communication Pattern 

In addition, some known communication patterns are 

well documented in the literature [18]. They are often used 

as guidelines on the proper way to implement in an inter-

process communication mechanism (for more details about 

the list of documented communication patterns, please refer 

to [18]). For example, Figure 2a presents the wavefront 

communication pattern that is used to sweep data from the 

first node to the last node diagonally as depicted in the 2D 

virtual topology in 2b. This pattern does not have a heavy 

communication load as only a few processes send messages 

at the same time.   
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(a) Wavefront Pattern (b) Wavefront Topology
 

Figure 2. The wavefront pattern and topology 

Figure 3 shows another example of a documented 

communication pattern, and which presents two patterns 

that are used in implementing collective communications. 

The Binary Tree pattern Figure 3a is used to implement All-

to-One MPI collective operations. For example, the 

MPI_Reduce operation is implemented using this pattern. 

The Butterfly Pattern shown in Figure 3b is communication 

pattern that is used to implement All-to-All MPI collective 

operations. 

Understanding the communication patterns (whether they 

are documented or not) that exist in an MPI program can 

help software engineers in debugging MPI applications and 

in performance optimization [4]. For example, a software 

engineer may decide to replace a point-to-point 

communication pattern by collective operations. Also, 

communication patterns can play an important role in 

revealing the process communication topology which 

usually helps in understanding the structure of the MPI 

program. 

 

 

Figure 3. Examples of known communication patterns 

IV. PATTERN RECOGNITION APPROACH 

In this section, we describe the overall approach of 

applying pattern recognition techniques for extracting 

communication patterns from MPI traces. We also present 

the algorithms that we have developed to achieve this. 

A. Overview of the approach 

Our approach for detecting patterns in MPI traces and for 

searching if a given pattern exists in a trace is shown in 

Figures 4a and 4b respectively. The former aims to detect 

any non-contiguous repetitions of events in an MPI trace, no 

matter if the detected patterns are among the ones that are 

documented or not. The latter can be used by software 

engineers to verify if the processes in the traced scenario 

communicate according to a known communication pattern. 

We expect that software engineers would most likely use 

this capability to detect the existence of documented 

communication patterns (such as the wavefront pattern, the 

butterfly pattern, etc.) in a trace. 
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Figure 4. Pattern detection and pattern matching approach 
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The steps of our approach start in both cases by 

decomposing the input MPI trace into n trace files (T1… 

Tn), each corresponding to a process in the trace. During this 

step, we also preprocess the information contained in a trace 

by removing contiguous repetitions due to loops, and by 

removing the message envelope (message size, tag and data 

type) since we are only interested in the way the processes 

communicate independently from the data they exchange. 

The pattern detection algorithm is used to detect repeated 

sequences in each process. The pattern matching algorithm 

is used to find the patterns in a trace that match a given 

pattern. In this case, the input pattern is also decomposed 

into n process patterns (L1… Ln). Each process pattern Li is 

compared to its process trace file Ti in order to extract its 

similar patterns. Note that the patterns do not have to be 

identical. A measure of similarity is discussed later in the 

paper. 

After extracting the patterns from each process trace (for 

both algorithms), they are used as input for the 

communication patterns construction algorithm to generate 

the inter-process communication patterns. The three 

algorithms will be explained in detail in the following 

subsections. 

B. The Pattern Detection Algorithm 

Our algorithm for detecting patterns in each process trace 
operates on each process trace individually and detects their 
non-contiguous repetitions (process patterns).  The MPI 
events in the trace file can be seen as a stream of data. This 
led us to use the concept of n-grams applied in statistical 
natural language processing to detect the patterns in an MPI 
trace. Our approach, however, extends existing applications 
of the n-gram extraction algorithms by varying the sizes of 
the n-gram dynamically whenever a pattern is detected, 
which is similar to the approach used in the Lempel-Ziv-
Welch data compression algorithm [20]. This is particularly 
important in our approach since, unlike existing pattern 
recognition techniques used for MPI traces, our proposed 
algorithm has the advantage of operating on the trace as it is 
generated (i.e., on the fly), and it is capable of detecting 
repeating patterns in one single pass.  

In a given sequence, an n-gram is a subsequence of n 
items in that sequence. In our study, the smallest n-gram that 
may be considered as a repeat is a bi-gram (two consecutive 
MPI events). We consider a repeat is a sequence that appears 
at least twice in a given string without overlapping.  There 
are several types of repeats that may exist in a stream of data. 
We consider the following types of repeats that will be used 
later in the pattern detection algorithm. Let considerp1 as the 
start position of substring 1, p2 the start position of substring 
2, and l is their length): 
 

1. Tandem Repeats: repeats that are directly adjacent to 

each other.  

Given a string S of length n, a Tandem pair in S is a 

tuple (p1, p2, l) such that 

 

∃ S[p1 .. p1 + l – 1] = S[p2 .. p2 + l – 1] and p2 > p1 

and S[p2 - 1] = S[p1 + l – 1]. This type of repeat is 

usually generated from loops in the program. 

 

2. Maximal Repeat (Interspersed Repeats): a repeat that 

cannot be extended to the left and to the right.  

 

Given a string S of length n, a maximal pair in S is a 

tuple (p1, p2, l) such that 

∃ S[p1 .. p1 + l – 1] = S[p2 .. p2 + l – 1] and p2 > p1 

and S[p1 + l] ≠ S[p2 + l]  and S[p1 - 1] ≠  S[p2 - 1] 

 

3. Super Maximal Repeat: a maximal repeat that does not 

occur in any other maximal repeat. 
We show an example of the three types of the 

aforementioned repeats: 

1

A B C A B C N A B C D R A B C A B C DM

2 43 5  
As we can see, „ABC‟ is a maximal repeat that occurs 

three times in the string at 1, 2, 4. The occurrence at 2 is a 
tandem (contiguous) repeat since it is directly following the 
first occurrence of „ABC‟. Also, „ABCD‟, which is found at 
3 and 5, is a super maximal repeat since it contains another 
maximal repeat and is not contained in any other maximal 
repeat. 

The process pattern detection algorithm is presented in 
Algorithm 1. We use three main objects in the algorithm. 
The n-gram object keeps track of the current n-gram and its 
position. A pattern object contains the pattern sequence, its 
positions in the trace and its frequency (number of 
occurrences). The Pattern List is the dictionary that holds the 
detected pattern objects. Moreover, we use two pointers that 
slide over the trace in order to return the next n-gram that 
will be used in detecting the patterns. Since the minimum 
length of a repeat is two, we should be able to read a bi-gram 
from the trace. Therefore, the two pointers are always 
adjacent so a bi-gram could be returned when needed. In the 
algorithm, we also show how the n-gram grows in size 
whenever a pattern is detected. 

The first five lines are declarations that will be used by 
the algorithm. The aNewPattern indicates whether the 
current pattern is new or existing. The aMatch variable 
indicates whether the current pattern can be constructed from 
its prefix pattern at its previous positions (returned by the 
check pattern occurrences algorithm). The tandemRepeats is 
an integer value indicating how many times the current 
pattern is repeated contiguously right after its current 
position.  

The algorithm starts by reading the first bi-gram, at line 
6, which will be considered as the first pattern added to the 
detected patterns list. At line 10, the algorithm will check if 
the detected pattern is repeated contiguously in the following 
events in the trace. If the pattern is repeated contiguously 
more than once, then the two pointers will advance ((repeats 
- 1) * pattern size) steps forward in the trace. The pointers 
will start at the beginning of the last detected tandem repeat 
since it may be part of a bigger pattern. The algorithm will 
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repeatedly read the next bi-grams from the trace file and add 
them to the pattern list until a bi-gram match is detected. In 
this case, the algorithm will enter the do-while loop at line 15 
and will add the next event from the trace to the right of the 
matching bi-gram which will result in a tri-gram. This occurs 
by the call to the ConstructNGram function at line 18, which 
is a utility function that constructs the n-gram. 

 
 

Pattern Detection: this algorithm runs for each  

process separately to find repeating patterns 

Г:  checkPatternOccurence 

advanceSteps = (tandemRepeats - 1) * patternSize 

1. PatternList: List of extracted patterns 

2. aNewPattern: Boolean 

3. aMatch: Boolean 

4. tandemRepeats: Integer 

5. currentPattern: Pattern 

6. while(next n-gram is not null){ 

7.     p = position of nextNGram 

8.     aNewPattern = UpdatePatternList(nextNGram, p) 

9.     currentPattern = getPattern(nextNGram) 

10.     tandemRepeats = checkTandem(currentPattern) 

11.     if (tandemRepeats > 1) then 

12.       advancePointers(advanceSteps) 

13.    end if               

14.     if aNewPattern is false then 

15.       do{ 

16.            aMatch = false   

17.            currentPattern = getPattern(nextNGram) 

18.            nextNGram  = constructNGram(nextNGram) 

19.            UpdatePatternList(nextNGram , p) 

20.            nextPattern = getPattern(nextNGram) 

21.            aMatch = Г(nextPattern,p, currentPattern)     

22.            tandemRepeats = checkTandem(currentPattern) 

23.            if (tandemRepeats > 1) then       

24.               aMatch = true 

25.               advancePointers(advanceSteps) 

26.            end if     

27.            if aMatch is false then 

28.                remove nextPattern from PatternList 

29.            end if 
30.           } while(aMatch)  

31.      end if 

32. end while 

 

 

 

Algorithm 1. Pattern Detection Algorithm 

Then, the algorithm will check whether the tri-gram can 
be constructed from the previous occurrence of its bi-gram 
by calling the checkPatternOccurence (shown as Γ in the 
algorithm) function at line 21. In the checkPatternOccurence 
function, if the previous occurrence of the bi-gram can be 
constructed to match the detected tri-gram, the frequency of 
the tri-gram pattern will be incremented and the frequency of 
the bi-gram will be decremented. Since we have a repeating 
tri-gram, the algorithm will read the next event and add it to 
the tri-gram (line 18) and again check if the previous 
occurrence (line 21) of the tri-gram can be extended to match 
the new quad-gram. Again, at line 22, the algorithm will 
check whether the new constructed pattern has a tandem 

repeat or not, if yes, the two pointers will be advanced as 
described previously. As can be seen from the algorithm, the 
n-gram will grow in size whenever it has a match in the 
pattern list. If the constructed n-gram cannot be detected at 
any previous position of its prefix n-gram, then it will be 
removed from the pattern list at line 28. 

We also present the Check Pattern Occurrence in 
Algorithm 2. This algorithm is being called by the code 
presented in Algorithm 1 as ‘checkPatternOccurence’ or ‘Г 
function. It is used to detect if the new pattern can also be 
detected at the previous positions of its prefix patterns (e..g., 
for a pattern „abcd’ its prefix pattern is „abc’).  If the pattern 
can be detected at the previous positions, the algorithm will 
return true.  

Check Pattern Occurrence: checks if nextPattern can be  

constructed from the previous positions of current Pattern.  

Returns true if nextPattern can be found at its prefixPattern  
previous positions 

Signature: nextPattern, nextPatternPosition, prefixPattern 

1. curPosition: position of the prefixPattern 

2. aMatch = false 

3.  for each curPosition of prefixPattern positions{ 

4.    if curPosition EQUALS nextPatternPosition then    

5.       continue // get next position 

6.    if nextPattern has curPosition then 

7.       aMatch = true 

8.       prefixPattern.decrementFrequency 

9.       prefixPattern.removePosition(curPosition) 

10.       continue //get next position 

11.    end if 

12.    currentNGram = prefixPattern.getNGram 

13.    currentNGram.position = curPosition 

14.    add next unigram to currentNGram at curPosition  

15.    if nextPattern.NGram EQUALS currentNGram then 

16.       aMatch = true 

17.       prefixPattern.decrementFrequency 

18.       prefixPattern.removePosition(curPosition) 

19.       nextPattern.incrementFrequency 

20.       nextPattern.addPosition(curPosition) 

21.    end if 

22. end for each 

23. return aMatch 

 
 

 

Algorithm 2. Check Pattern Occurrences Algorithm 

The algorithm will iterate on the positions of the prefix 
pattern in order to find whether the next pattern can be 
detected at these positions (line 3). Line 4 makes sure not to 
continue the iteration when the prefix pattern position is the 
same as the next pattern position. Also, lines 6 through 10 
make sure not to continue in the current iteration if next 
pattern already has the current position curPosition. If none 
of the conditions at line 4 and 6 is true, then the next unigram 
in the trace that follows the prefix pattern at curPosition will 
be appended to prefix pattern. Whenever the prefix pattern 
can be extended to match the new pattern, the frequency of 
the prefix pattern is decremented and its position is removed 
(lines 17 to 20 in Algorithm 2). In the following, we 
demonstrate using a short example how the n-gram based 
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algorithm is able to detect the different types of repeats in the 
trace. 

Figure 5 presents a trace of 17 point-to-point 
communication events (S2 means Send to 2 and R2 means 
Receive from 2). The algorithm starts by reading the first bi-
gram „S2, S3‟ at position 1 and add it as a new pattern to the 
pattern list. Since there is no contiguous repeat for the 
pattern, the next bi-gram „S3, R2‟ will be read and added as a 
new pattern.  

 
 

Trace: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

S2 S3 R2 S5 S2 S3 R2 S2 S3 R2 S2 S3 R2 S4 S2 S3 R2 
 

Execution: 

# Pattern New? 
Has 

Tandem? 
Freq. Pos. 

Next 
Action 

1 S2 S3   Yes No 1 1 next bi-gram 

2 S3 R2   Yes No 1 2 next bi-gram 

3 R2 S5   Yes No 1 3 next bi-gram 

4 S5 S2   Yes No 1 4 next bi-gram 

5 S2 S3   No No 2 1, 5 
Construct 

from current 
n-gram 

6 S2 S3 R2  Yes Yes 4 
1, 5, 8, 

11 

Append 
event at 

position 14 

7 S2 S3 R2 R4 Yes No 1 11 next bi-gram 

8 S4 S2   Yes No 1 14 next bi-gram 

9 S2 S3   No No 2 8, 12 
Construct 

from current 
n-gram 

10 S2 S3 R2  No No 5 
1, 5, 8, 
11, 15 

End of 
Trace 

 

Result: 

Detected Pattern Frequency Positions 

S2 S3 R2 5 1, 5, 8, 11, 15 
       

Figure 5. Process Pattern Detection Example 

Similarly, there is no contiguous repeat for this new 
pattern, therefore the algorithm will continue reading until it 
reads „S2, S3‟ at position 5. Since this is an existing pattern, 
its frequency will be incremented and its position will be 
added to the pattern positions list. Again the algorithm will 
check for contiguous repeats which also do not exist in this 
case. However, since this is an existing pattern, the next uni-
gram in the trace will be added to the pattern resulting in „S2, 
S3, R2‟ as a new pattern. The algorithm will detect that there 
are two contiguous repeats (tandem) of this pattern. Also, the 
check pattern occurrence function will be called and detect 
that at position 1 (position of prefix pattern „S2, S3‟ this new 
pattern can be detected. Then, the algorithm will append the 
next event following the last tandem repeat which will result 
in the pattern found at row 7 in the Execution table in Figure 
3. When the algorithm reaches the end of the trace, it will 
find that „S2, S3, R2‟ is the only maximal repeat with 
frequency more than 1 in the trace. This example shows how 

the n-gram-based algorithm is able to detect patterns 
(maximal repeats) in trace files of MPI applications. 

C. The Pattern Matching Algorithm 

In this section, we present our algorithm for extracting 

similar communication patterns in an MPI trace to a 

predefined input pattern. The pattern under study can be 

provided by the user or it can be provided from the list of 

patterns detected using our first algorithm presented in the 

previous section. The input communication pattern is stored 

as a list where each entry corresponds to the sequence of 

events of one process only. These events are inter-process 

communication events such as this send event „MPI_Send 

(target = P5, Size = 256)‟. 

Similar to the pattern detection algorithm, this algorithm 

detects similar patterns on each process trace separately. 

The output of this algorithm is input to the communication 

pattern construction algorithm presented in the next section. 

The degree of similarity between the patterns is determined 

by the number of shared events between them.  
We use the Edit Distance [21] (also known as 

Levenshtein Distance) function to calculate the degree of 
similarity between the two patterns. In order to determine the 
areas in the trace that could potentially match the input 
pattern, we use the Lemma proposed by Jokinen and 
Ukkonen [22] for our filtration process. This Lemma is 
based on calculating the shared n-grams between the pattern 
and the target string. Several research studies for 
approximate string matching exist that are based on this 
Lemma [23, 24]. The Lemma is presented in the following: 
 

Lemma: N-gram based Filter (Jokinen and Ukkonen [22]) 
 
Let a string S1 of length m with at most k edit distance 

from another string S2 of length m, then at least m + 1 – kn + 
n of the n-grams in S1 occur in S2. 

The process of determining similar patterns consists of 
two steps. The first step is the filtration (fast) process which 
uses the above lemma, and the second step is the edit 
distance function (slower). We slide a window of length m, 
which is the length of the input pattern on a process trace 
until there is a potential match (window shares at least m + 1 
– kn + n with the pattern). A window that is identified as a 
potential match is verified using the edit distance function. 

In order to reduce the number of verified windows, and 
to reduce the total execution time consequently, we use 
positioned n-grams to preprocess the pattern. We build a 
table for all the n-grams in the pattern with their positions in 
the pattern. We use the positioned n-grams table in the 
filtration process to shift the window to the right (in the 
trace) based on the position of the first n-gram found in the 
window under test. For example, if the position of the n-
gram in the n-gram table is 3 and the same n-gram was found 
at position 5 in the window, then we slide the window to the 
right by two steps in order to avoid verifying two non-
matching windows using the edit distance function. 

Algorithm 3 describes our procedure for detecting 
communication patterns that are similar to a pattern P. As 
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mentioned previously, this algorithm runs for every process 
separately. In line 5, it will iterate on each window in the 
trace. The window (w) may shift to the right based on its 
position in the n-gram positioned table (lines 6-8). Based on 
the number of shared n-grams between the pattern and the 
window determined in line 9, the edit distance will be 
computed in line 11. If edit distance is less than or equal to k, 
then the window w will be added to the MatchingPatternList 
at line 12 and the window will be shifted to start at the next 
adjacent window at line 13. Every process in the MPI trace 
should have its own MatchingPatternList which will be used 
in the algorithm described in the next section for the 
communication patterns construction. The 
MatchingPatternList contains the patterns and their start 
positions in the trace. 

  

Pattern Matching: this algorithm runs for each  

process separately to find similar patterns 

p: pattern under study of size m 

threshold = pattern size – n + 1 – k.n 

k:maximum allowed edit distance 

n: n-gram size 

firstSharedNGramDisplacement: displacement between 

position of first shared q-gram in w and its position in  

the q-gram position table 

1. w: window of size m 

2. MatchingPatternList: List of matched windows 

3. // MatchingPatternList also holds the position of w 

4. sharedNGrams: Integer 

5. while(next w is not null){ 

6.     if (firstSharedNGramDisplacement > 0) then 

7.       shiftWindow(firstSharedNGramDisplacement) 

8.    end if 

9.    sharedNGrams =  countSharedNGrams(p, w)        

10.     if sharedNGrams > threshold then 

11.           if editDistance(p, w) <= k then          

12.               add w to MatchingPatternList 

13.               jump to next adjacent window 

14.           end if 

15.     end if 

16. end while 

 

 

 

Algorithm 3. Pattern Matching Algorithm 

We show the correctness of the algorithm using the 
example shown in Figure 6. We used alphabets instead of 
MPI events for simplicity. The figure shows the input pattern 
and to its right its n-grams along with their positions (n-gram 
position table). The window size is the same as of the size of 
the pattern. We slide the window on the string and find the 
number of shared n-grams. For window #12 and window 
#22, the window is shifted to the right based on the position 
of the „ab’ n-gram (line 7 in the algorithm). Also, since a 
match was detected at window # 16 with k = 1, the window 
was shifted to point at window # 22. 

This example shows the usefulness of using the concept 

of n-grams in the filtration step. The filtration step reduces 

the execution time since it reduces the number of windows 

to be checked using the edit distance function for all the 

windows in the trace. The filtration step could be improved 

in order to avoid checking non-matching windows using the 

edit distance function. One more issue that needs to be tuned 

is the window size. In some cases, the window size should 

be decreased to minimum of (m – k). For example, window 

# 9 „b c d e f y‟ has an edit distance of 2 while if we consider 

the window as „b c d e f‟ (size is m – k + 1) then the edit 

distance will be 1 which increases the degree of similarity to 

the input pattern. The same can be done for window # 10 

since „c d e f’ has an edit distance of 2 while ‘c d e f y e’ has an 

edit distance of 5.  Currently, we are handling these cases in 

another step (after the execution of the algorithm) by 

checking windows with at most 2k edit distance and 

reducing there window size to verify if a shorter window 

may have a similar match to the input pattern. However, we 

have to keep in mind that a matching window may be 

contained in a larger pattern which is not the same as the 

input pattern. Therefore, the software engineer should be 

informed that a group of windows are similar to or match 

the input pattern but they exist in a larger pattern in the trace 

which means that the input pattern may be a subset of some 

patterns in the trace. 
 

 

Input Pattern: a b c d e f  0: a b, 1: b c, 2: c d, 3: d e, 4: e f 
Trace: a b c d m h k o b c d e f y e a b h d e f r s a b c d e f 
 

m = 6, n = 2, k = 1, t >= m – n + 1 – kn  t >= 3 shared n-grams 
 

W# Window Shared n-grams ED Action 

1 a b c d m h ab, bc, cd 2  

2 b c d m h k bc, cd  Skip window 

3 c d m h k o cd  Skip window 

4 d m h k o b   Skip window 

5 m h k o b c bc  Skip window 

6 h k o b c d bc, cd  Skip window 

7 k o b c d e bc, cd, de  3  

8 o b c d e f bc, cd, de, ef 1  

9 b c d e f  y bc, cd, de, ef 2  

10 c d e f y  e cd, de, ef 5  

11 d e f y e  a de, ef  Skip window 

12 e f y e a  b ab at position 4 4 Jump to w#16 

13 f y e a b  h    

14 y e a b h d    

15 e a b h d e    

16 a b h d e f ab, de, ef 1 Jump to w#22 

17 b h d e f  r    

18 h d e f r  s    

19 d e f r s  a    

20 e f r s a  b    

21 f r s a b  c    

22 r s a b c d ab at position 2  Jumpt to w#24 

23 s a b c d e    

24 a b c d e f ab,bc,cd,de,ef 0 Done 
     

Figure 6. Example of applying the pattern matching algorithm 

Once all the similar patterns were detected for each 

process. We start building the communication patterns using 

the Communications Patterns Construction algorithm 

presented in the next section. In order to consider the 

communication pattern as a similar match, we need to check 

whether the total edit distance (sum of edit distance from 

each process similar match) is still within the specified 
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threshold. This is computed by relating the total number of 

errors (differences) to the total number of events in the 

constructed communication pattern. Therefore, some similar 

patterns per process may be within the specified threshold 

but their communication pattern may have an error that is 

larger than the threshold. 

D. Communication Patterns Construction Algorithm 

In this section, we present the algorithm for assembling 
the process patterns detected either through the pattern 
detection algorithm or the pattern matching algorithm into 
communication patterns that encompass all the 
communicating processes. We input the process detected 
patterns (detected in the previous steps) into this algorithm 
and start iterating on all corresponding patterns (for pattern 
p1, its corresponding patterns are those patterns that have 
partner events with p1) until a communication pattern is 
constructed. When using this algorithm to construct each 
process patterns detected using the pattern detection 
algorithm presented in Section 5, the output will be the set of 
all communication patterns that are repeating in the trace. On 
the other hand, when using this algorithm to construct the 
similar matching patterns on each process detected using the 
pattern matching algorithm presented in Section 6, the output 
will be the set of all communication patterns that are similar 
to the given input communication pattern. 

The communication patterns construction algorithm is 

presented in Algorithm 4. It uses the ordered pattern 

positions list generated from the first step (any of the two 

previously presented algorithms). For each pattern position 

(line 5), the corresponding patterns on the other processes 

will be detected by locating their partner events. We iterate 

on the positions of each detected pattern since at different 

positions the same pattern may have different partner 

patterns which will result in different communication 

patterns. For each pattern, the algorithm will check if it is 

already part of a communication pattern. The 

communication pattern will be retrieved or a new 

communication pattern will be created accordingly (lines 6-

11). In some cases, an event that is included in a pattern 

may have a partner event that is not included in any pattern. 

This single partner event will not be detected using the 

pattern detection algorithms since we consider the minimum 

pattern size as two events (bi-gram). This event will be 

added to the resulting communication pattern with the 

condition that its process does not have any other partner 

events at a dispersed location. The single events will be 

retrieved using the call at line 12 and they will be added to 

the communication pattern in the following „for-each’ loop 

at line 12. At line 16, all the corresponding process patterns 

will be retrieved and then added (if not already exist) to the 

communication pattern inside the „for-each’ loop at line 17.  

 

 

Communication Pattern Construction: constructs the 

communication patterns by iterating on the process patterns 

AllProcessesPatternList: a list of all process patterns; 

it contains all patterns detected in the previous step 

getCorrespondingProcessPatternsList: returns the  

corresponding patterns based on the partner events 

1. CommPatternList: communication  patterns list 

2. CommPattern: current communication pattern 

3. foreach ProcessPatternList in AllProcessesPatternList{ 

4.  foreach pattern in ProcessPatternList{ 

5.   foreach position i in pattern positions list{ 

6.     if pattern at position i is part of a Comm Pattern then 

7.       CommPattern = getCommPattern(pattern, position) 

8.     else 

9.       create new CommPattern 

10.       CommPatternList.add(CommPattern) 

11.     end if 

12.     getCorrespondingSingleEventList(pattern)  

13.     foreach correspondingEvent{//not in a pattern        

14.       CommPattern.add(correspondingEvent) 

15.    end for each  

16.    getCorrespondingProcessPatternsList(pattern)   

17.    foreach correspondingPattern {        

18.      if correspondingPattern ∉ CommPattern then 

19.         CommPattern.add(correspondingPattern) 

20.      end if 

21.    end for each 

22.   end for each 

23.  end for each 

24. end for each 

25. ExtractDistinctCommunicationPatterns 

 
 

Algorithm 4. Communication pattern Construction 

After the algorithm finishes iterating on all the process 

patterns, it will output the distinct communication patterns 

at line 25. The resulting communication patterns may 

involve all or a subset of the processes in the trace. 

We acknowledge that the number of resulting patterns 

might in some cases be considerably high and there is 

therefore a need to determine the most important ones for 

further investigation. Some factors for ranking patterns 

based on their importance that can be considered include the 

pattern frequency (most frequent patterns mean that the 

system depends greatly on this behavior to accomplish its 

objective),  the number of events in the repeating pattern, 

the number of processes involved, etc. In this paper, we 

focused on presenting algorithms for detecting repeating and 

similar patterns in MPI traces. Pattern ranking is left as a 

subject for further studies.  

V. CASE STUDY 

We used three traces generated from three different 

applications to validate our proposed algorithms. In the 

following, we present our trace analysis results on each 

system trace. Our experiments were performed on a 1.83 

GHz Intel Core 2 Duo CPU with 3.0 GB of RAM. 
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A. Weather Research & Forecasting (WRF) 

We tested our pattern detection algorithm (presented in 

Section 5) on a trace file generated by the VampirTrace [25] 

trace analysis tool. The trace file had 336960 point-to-point 

events. It was generated from the Weather Research and 

Forecasting (WRF) Model (a collaborative effort from 

different partners in order to provide operational forecasting 

and atmospheric research needs) system. The tested instance 

of the application contains 16 processes. The trace file 

format used by the VampirTrace is called the Open Trace 

Format (OTF) [26] which comes with several APIs for 

reading the trace data.  

 

P16P15P14P13

P12P11P10P9
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P3
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P5
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P10

P11

P12

P13

P14

P15

P16

MPI Virtual Topology

 

Figure 7. Detected Repeating Pattern in WRF 

In this trace, we detected two main patterns, one consists 
of point-to-point operations and the other one is composed of 
collective operations. The right side of Figure 7 depicts the 
point-to-point communication pattern found in the WRF 
trace. The left side shows that the MPI virtual topology that 
is used in implementing the traced feature consists of a 2D-
mesh were each process communicates with its direct 
neighbors only. The communication pattern and the topology 
facilitate the understanding of the communication behavior 
in the program. The total execution time to detect this pattern 
was 37 seconds which is still reasonable considering the 
trace length. 

Our analysis shows that this repeating pattern exists in 

different contexts of the program. Here, a context means the 

function that the pattern occurs in. The detected pattern is 

repeated 3510 in the trace file. The point-to-point 

communication pattern exists in the 

START_DOMAIN_EM and SOLVE_EM functions. 

START_DOMAIN_EM is called once in the program and 

SOLVE_EM function is called 100 times. The 

START_DOMAIN_EM call occurs before the SOLVE_EM 

calls. The detected pattern in the execution trace helped us 

locate the important communications in the program. These 

inter-process communications were used in setting up the 

data to compute several weather parameters such as 

moisture coefficients, the diagnostic quantities pressure and 

others.  

The execution trace contained two collective patterns 

(patterns from MPI collective operations) as shown in 

Figure 8. The root process in the collective operations is P1. 

Moreover, Pattern 2 shows in the first 3 elements of Pattern 

1 but was detected at different locations in the trace that 

were not part of the occurrences of Pattern 1. 

 

Collective Pattern 1 Collective Pattern 2 

MPI_Bcast 

MPI_Gather  

MPI_Gatherv 

MPI_Gather 

MPI_Scatterv 

MPI_Bcast 

MPI_Gather 

MPI_Gatherv 

60 repetitions 116 repetitions 

Figure 8. Detected Collective Pattern 

B. Scalar Pentadiagonal (SP) - NAS Parallel Benchmark 

We also tested the algorithm presented in Section 5 on 
another trace generated from the Scalar Pentadiagonal (SP) 
included in the NAS Parallel Benchmark [27]. This trace 
contained 38544 point-to-point events. SP solves three sets 
of uncoupled systems of equations in the x, y, and in the z 
dimensions starting with the x-dimension. The trace file was 
collected from a run that consisted of 4 processes 
collaborating in order to solve a synthetic computational 
fluid dynamics (CFD) problem.  

 

 

Figure 9. Detected Pattern in SP  

After applying the pattern detection algorithm, we 
noticed that the processes of this application communicate 
according to the sequence shown in Figure 9. This pattern 
was detected in 401 non-contiguous locations in the trace. As 
it can be seen from the figure, all the processes communicate 
the solution of their parts of the equations to all other 
processes in the program. The total execution time to detect 
this pattern was 12 seconds. We intend to compare the 
performance of our approach to other studies in future work, 
although we believe, based on the study presented in [4] and 
where the authors tackled the problem of efficient detection 
of communication patterns, we believe that the obtained total 
execution time shows that our algorithm is considered 
efficient.  

C. 2D Solution to Cellular Nuclear Burning – FLASH 2.0 

The largest trace file in our case study was generated 
from the two-dimensional implementation of the Cellular 
Nuclear Burning problem [28]. Flash solves complex 
systems of equations for hydrodynamics and nuclear burning 
which uses Paramesh library [29] for adaptive mesh 
refinement on rectangular grid. The generated trace file 
contained 633490 point-to-point MPI events generated from 
16 processes. We were able to detect 202 distinct patterns. 

P2 

P3 

P4 

P1 
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Some of these patterns were repeated a few times and others 
were repeated for a few thousand times.  Figure 8 shows a 
detected pattern from the same trace. The total execution 
time for detecting the patterns was 228 seconds. This long 
execution time is due to the large number of distinct patterns 
in the trace. 

 

Figure 10. Two detected patterns in the 2D cellular problem 

Figure 8 shows two patterns that were detected using the 
pattern detection algorithm. Pattern 10a is repeated 927 times 
and pattern 10b was only repeated 5 times in the trace. It can 
be seen in the two patterns that processes P6 to P15 have the 
same communications (process patterns). That is why in the 
communication pattern construction algorithm we iterate on 
all the positions of the detected process patterns. If not all of 
the positions were taken into account then some of the 
communication patterns will not be detected in the trace. 
These two patterns are used in filling the guard cells in the 
mesh. We also detected more complex patterns that we 
cannot include in this paper due to space limitation. 

We also tested the pattern matching algorithm on this 
trace to detect similar patterns to an input pattern. In this case 
study, we were able to detect similar patterns that differ in 
message size, tag value, and that have different number of 
communications. For example, when considering the 
message envelope for pattern 8b, we detected 4 instances of 
the pattern when the size of the message sent from P1 to P6 
is 24. The input pattern differs from the detected patterns in 
the message size which is 0. In this example, a maximum 
edit distance of 1 was allowed. 

We detected many other similar patterns using the similar 
pattern detection algorithm. In the case studies, we found out 
that when n increases, the total execution time increases. 
This can be justified since the number of verified windows 
using the edit distance function increases. Moreover, in some 
cases, we found that the window size should be less than the 
size of the pattern but also not less than m – k in order to 
have a similar match.  

VI. CONCLUSION & FUTURE WORK 

In this paper, we presented a new approach for detecting 
exact and similar patterns in MPI execution traces. Our 
approach is based on the concept of n-grams applied in 
different areas such as statistical natural language processing, 
DNA and Musical notes. To the best of our knowledge, this 
is the first work that utilizes this concept for detecting inter-
process communication patterns.  

We presented two algorithms and demonstrated their 
results on three trace files. The results showed that the n-
gram concepts can be used to detect the repeating patterns in 
traces generated from parallel systems. In the future, we are 
planning on improving the similar pattern detection 
algorithm by applying sampling on the trace file. This will 
result in a faster algorithm but with a tradeoff on its accuracy 
thereof. 

We also intend to apply the algorithms on traces that 
involve a larger number of processes in order to verify the 
second part of the algorithm for assembling the inter-process 
communication patterns. Finally, we will present a pattern 
ranking scheme to categorize the detected patterns based on 
different criteria. 
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