
 1

Pattern Recognition Techniques Applied to the Abstraction of Traces of Inter-

Process Communication

Luay Alawneh and Abdelwahab Hamou-Lhadj
Software Behaviour Analysis Lab

Department of Electrical and Computer Engineering

Concordia University

1455 de Maisonneuve Blvd. West

Montreal, QC, Canada H3G 1M8

{l_alawne, abdelw}@ece.concordia.ca

Abstract— The large number of processors in high

performance computing and distributed applications is

becoming a major challenge in the analysis of the way an

application’s processes communicate with each other. In this

paper, we propose an approach that facilitates the

understanding of large traces of inter-process communication

by extracting communication patterns that characterize their

main behavior. Two algorithms are proposed. The first one

permits the recognition of repeating patterns in traces of MPI

(Message Passing Interaction) applications whereas the second

algorithm searches if a given communication pattern occurs in

a trace. Both algorithms are based on the n-gram extraction

technique used in natural language processing. Unlike existing

work, our approach operates on the trace as it is generated (i.e.

on the fly) and does not require complex and computationally-

expensive data structures. We show the effectiveness and

efficiency of our approach in detecting communication

patterns from large traces generated from three target

systems.

Keywords- Trace of Inter-Process Communication; Pattern

Recongintion; Message Passing Interface; Dynamic Analysis;

Program Comprehension

I. INTRODUCTION

Understanding how processes communicate in HPC

(High Performance Computing) distributed applications can

be a difficult task due to the large number of processes

involved and the various ways they can communicate [1].

Recently, there has been an increase in the number of tools

that focus on studying execution traces generated from HPC

systems to help understand their behavior. Most of these

studies rely on some sort of visualization methods to help

engineers navigate through traces in an efficient way (e.g.

[2, 3]). These approaches, however, have limited use when

applied to large traces – As the trace size grows, usually due

the number of processes involved, the visualization tool

often creates clutter and conceals meaningful content,

making it difficult to follow the process interactions [2, 3, 4-

6]. There is clearly a need for trace abstraction methods that

can reduce the clutter and hence facilitate the understanding

and analysis of trace content despite the trace being

massive.

In this paper, we propose a trace abstraction approach

that is based on extracting communication patterns from

inter-process communication traces. A pattern can be

defined as a sequence of events repeated non-contiguously

in a trace. Patterns have been shown to be an excellent way

to understand the content of large traces since they often

describe high-level concepts of the program under study [7].

Pattern recognition techniques have also been used

successfully in the past to simplify the analysis of routine

call traces [30]. This led us to embark on investigating ways

to apply a pattern recognition approach to abstracting out

the content of inter-process communication traces.

More specifically, we present, in this paper, two

algorithms that aim to facilitate the understanding and

analysis of inter-process communication traces. The first

algorithm detects the exact repeating patterns in a trace.

Detecting such patterns should reduce the effort to

understand the program behavior by allowing software

engineers to focus on examining the extracted

communication patterns first before they decide to explore

other aspects of the trace (if this would be needed at all).

The second algorithm detects patterns in a trace that are

similar to a pre-defined pattern (i.e., a known

communication pattern provided as input). The objective is

to allow software engineers to verify whether the traced

scenario implements a specific communication pattern or

not. This is particularly important in the context of

distributed systems since some applications are

implemented according to known (and documented) process

communication topologies.

There exist some studies that also focus on detecting

communication patterns in inter-process communication

traces [4-6]. These studies, however, suffer from scalability

problems due to the complexity of the algorithms they use

and which depend on the use of computationally-expensive

data structures (e.g. suffix trees) that are inefficient in terms

of time and space [8]. Existing approaches also detect

patterns in inter-process communication traces in a post-

mortem manner. In other words, they process the trace after

it has been entirely generated. This is often impractical for

very large traces. In this paper, we present very efficient

pattern recognition algorithms and that can process the trace

 2

as generated (i.e., on the fly). Our algorithms are based on

n-gram extraction techniques, a concept used extensively in

the area of natural language processing [9, 10]. The n-gram

extraction approach has also been shown to be useful in

detecting DNA patterns [11] and patterns in musical notes

[12] efficiently.

Also, in this paper, we focus on target Single Program

Multiple Data (SPMD) HPC applications that use the MPI

(Message Passing Interface) standard [13]. MPI is the de

facto standard for inter-process message passing paradigm,

and it is used in most of today‟s distributed systems.

The rest of the paper is organized as follows. In Section

2, we present the related work followed by a definition of

communication patterns in Section 3. In Section 4, we

present our overall approach and describe the algorithms we

have developed. In Section 5, we present the effectiveness

of our approach by applying it to traces generated from

three different systems. We conclude our work in Section 6.

II. RELATED WORK

In this section, we present the research studies that cover
trace abstraction techniques in parallel systems based on
pattern detection and how these studies differ from ours.

Preissl et al. [4] proposed an algorithm for the detection
of patterns in MPI traces. Their approach is based on
detecting maximal repeats using compressed suffix trees.
Then, they find the occurrences of the maximal repeats in the
trace to be used in the communication pattern construction.
Our approach does an on-the-fly detection of the maximal
repeats and their occurrences in the trace. Also, we present
an algorithm for finding similar patterns in the trace which is
not targeted in their work.

Knüpfer et al. [14] proposed an algorithm based on the
compressed complete call graph (cCCG) and the pattern
graph (a derivative of the cCCG). This approach only looks
for contiguous repetitions and does not detect those that are
found interspersed in the trace. This approach is not
comprehensive since it is necessary to detect non-contiguous
repetitions, which will be more useful in reflecting the
behavior embedded in a trace.

Roberts and Zilles [15] presented a trace visualization
tool called TraceVis. It uses the trace graph (visualizes
execution traces as instructions flowing through the
processor pipeline) to detect regions of similar inter-process
communications and processor activity. In this approach,
pattern detection depends on the user‟s ability to identify
similar inter-process communications in the trace. Though
this may be possible for small traces, dealing with large
traces that involve a large number of processes is almost
always impossible using this approach.

Kunz et al. [5] presented a technique based on finite state
automata to find patterns in the trace that match an input
pattern. A problem with using finite state machines is the
scalability problem for very large traces. Also, this work did
not propose an algorithm for detecting repeating patterns in
the trace.

Ma et al. [6] proposed an approach for comparing the
communication patterns found in the traces generated from

different systems in order to find the degree of similarity
between them. The degree of similarity between two traces is
measured using the correlation coefficient followed by an
undirected communication graph that depicts the
communication topology among the processes. Then, the
similarity between the generated graphs is determined using
graph isomorphism metrics. Our work targets the detection
of repeating and similar patterns in a single trace file. In the
future, we intend to compare communication patterns
generated from different systems.

Köckerbauer et al. [16] proposed the use of a pattern
matching technique to simplify the debugging of large
message passing parallel programs by identifying patterns in
the trace file that are similar to a predefined pattern. First, the
user specifies a description of the communication pattern to
be searched for in the trace file. This pattern description is
then translated to abstract syntax trees. The ASTs are then
scaled up to the number of processes in the trace (or the
number of the target processes in the trace). The pattern
matching process is run on each process trace individually.
In their work, they used a hash-based search to detect exact
and similar patterns on each process trace. Finally, the
matching patterns are merged in order to get the
communication pattern which should be exact or a variation
of the specified pattern by the user.

Moore et al. proposed a pattern matching method for
detecting patterns of inefficient behavior based on wait states
in order to be used in KOJAK (a performance analysis tool
for high performance parallel applications) [17]. These
patterns of inefficient behavior are identified by converting
the trace into a compact call-path profile which classifies
patterns based on the time spent. This approach only looks
for events that cause performance degradation and does not
focus on the inter-process communication.

III. COMMUNICATION PATTERNS IN MPI TRACES

We define a pattern as a sequence of events that are
repeating non-contiguously in a trace. We use the term
process pattern to refer to a sequence of events that are
repeated non-contiguously in one particular process in the
trace file. We use the term communication pattern to refer to
a group of process patterns that construct an inter-process
communication pattern. For example, in Figure 1, Process 1
(P1) has two events (Send to P2 and Receive from P2) that
are repeating non-contiguously in this sample trace.
Similarly, the figure shows that the rest of the processes have
non-contiguous repetitions of MPI communication events.
Considering these process patterns, a communication pattern
is constructed by combining the partner events among the
processes. Therefore, Figure 1 shows a communication
pattern repeated twice (each instance is shown in a dashed
rectangle). The solid bars represent different events that are
not part of the pattern.

MPI communication patterns may involve point-to-point

(operations that involves only two processes) and/or

collective operations (operations that involve all the

processes). For example, a communication pattern may only

involve MPI collective operations such as MPI_Bcast (an

 3

MPI operation that can be used by a process to broadcast a

message to all other processes), MPI_Gather (this is used by

a process to collect information from other processes),

which will be repeated on all the processes in the group of

processes involved in this communication.
It should also be noted that a communication pattern

depicts how the processes are communicating and not what
data they are exchanging. For example, each pattern in
Figure 1 may have different data but the processes are still
communicating based on the same pattern.

P1

P2

P3

P4

Figure 1. A Communication Pattern

In addition, some known communication patterns are

well documented in the literature [18]. They are often used

as guidelines on the proper way to implement in an inter-

process communication mechanism (for more details about

the list of documented communication patterns, please refer

to [18]). For example, Figure 2a presents the wavefront

communication pattern that is used to sweep data from the

first node to the last node diagonally as depicted in the 2D

virtual topology in 2b. This pattern does not have a heavy

communication load as only a few processes send messages

at the same time.

P9P8P7

P6P5P4

P3P2P1

P1

P2

P3

P4

P5

P6

P7

P8

P9

(a) Wavefront Pattern (b) Wavefront Topology

Figure 2. The wavefront pattern and topology

Figure 3 shows another example of a documented

communication pattern, and which presents two patterns

that are used in implementing collective communications.

The Binary Tree pattern Figure 3a is used to implement All-

to-One MPI collective operations. For example, the

MPI_Reduce operation is implemented using this pattern.

The Butterfly Pattern shown in Figure 3b is communication

pattern that is used to implement All-to-All MPI collective

operations.

Understanding the communication patterns (whether they

are documented or not) that exist in an MPI program can

help software engineers in debugging MPI applications and

in performance optimization [4]. For example, a software

engineer may decide to replace a point-to-point

communication pattern by collective operations. Also,

communication patterns can play an important role in

revealing the process communication topology which

usually helps in understanding the structure of the MPI

program.

Figure 3. Examples of known communication patterns

IV. PATTERN RECOGNITION APPROACH

In this section, we describe the overall approach of

applying pattern recognition techniques for extracting

communication patterns from MPI traces. We also present

the algorithms that we have developed to achieve this.

A. Overview of the approach

Our approach for detecting patterns in MPI traces and for

searching if a given pattern exists in a trace is shown in

Figures 4a and 4b respectively. The former aims to detect

any non-contiguous repetitions of events in an MPI trace, no

matter if the detected patterns are among the ones that are

documented or not. The latter can be used by software

engineers to verify if the processes in the traced scenario

communicate according to a known communication pattern.

We expect that software engineers would most likely use

this capability to detect the existence of documented

communication patterns (such as the wavefront pattern, the

butterfly pattern, etc.) in a trace.

MPI Trace
Pattern Detection

Algorithm
(per process)

Communication

Patterns

Construction

Algorithm

(a) Pattern Detection Algorithm

MPI Trace
Pattern

Matching

Algorithm
(per process)

Communication

Patterns

Construction

AlgorithmInput Pattern

T1

(b) Pattern Matching Algorithm

Tn

...

L1

Ln

...

T1

Tn

...

{P1}

...

{Pn}

{P1}

...

{Pn}

Figure 4. Pattern detection and pattern matching approach

(b) Butterfly Pattern

P1

P2

P3

P4

P5

P6

P7

P8

P1

P2

P3

P4

P5

P6

P7

P8

(a) Binary Tree Pattern

 4

The steps of our approach start in both cases by

decomposing the input MPI trace into n trace files (T1…

Tn), each corresponding to a process in the trace. During this

step, we also preprocess the information contained in a trace

by removing contiguous repetitions due to loops, and by

removing the message envelope (message size, tag and data

type) since we are only interested in the way the processes

communicate independently from the data they exchange.

The pattern detection algorithm is used to detect repeated

sequences in each process. The pattern matching algorithm

is used to find the patterns in a trace that match a given

pattern. In this case, the input pattern is also decomposed

into n process patterns (L1… Ln). Each process pattern Li is

compared to its process trace file Ti in order to extract its

similar patterns. Note that the patterns do not have to be

identical. A measure of similarity is discussed later in the

paper.

After extracting the patterns from each process trace (for

both algorithms), they are used as input for the

communication patterns construction algorithm to generate

the inter-process communication patterns. The three

algorithms will be explained in detail in the following

subsections.

B. The Pattern Detection Algorithm

Our algorithm for detecting patterns in each process trace
operates on each process trace individually and detects their
non-contiguous repetitions (process patterns). The MPI
events in the trace file can be seen as a stream of data. This
led us to use the concept of n-grams applied in statistical
natural language processing to detect the patterns in an MPI
trace. Our approach, however, extends existing applications
of the n-gram extraction algorithms by varying the sizes of
the n-gram dynamically whenever a pattern is detected,
which is similar to the approach used in the Lempel-Ziv-
Welch data compression algorithm [20]. This is particularly
important in our approach since, unlike existing pattern
recognition techniques used for MPI traces, our proposed
algorithm has the advantage of operating on the trace as it is
generated (i.e., on the fly), and it is capable of detecting
repeating patterns in one single pass.

In a given sequence, an n-gram is a subsequence of n
items in that sequence. In our study, the smallest n-gram that
may be considered as a repeat is a bi-gram (two consecutive
MPI events). We consider a repeat is a sequence that appears
at least twice in a given string without overlapping. There
are several types of repeats that may exist in a stream of data.
We consider the following types of repeats that will be used
later in the pattern detection algorithm. Let considerp1 as the
start position of substring 1, p2 the start position of substring
2, and l is their length):

1. Tandem Repeats: repeats that are directly adjacent to

each other.

Given a string S of length n, a Tandem pair in S is a

tuple (p1, p2, l) such that

∃ S[p1 .. p1 + l – 1] = S[p2 .. p2 + l – 1] and p2 > p1

and S[p2 - 1] = S[p1 + l – 1]. This type of repeat is

usually generated from loops in the program.

2. Maximal Repeat (Interspersed Repeats): a repeat that

cannot be extended to the left and to the right.

Given a string S of length n, a maximal pair in S is a

tuple (p1, p2, l) such that

∃ S[p1 .. p1 + l – 1] = S[p2 .. p2 + l – 1] and p2 > p1

and S[p1 + l] ≠ S[p2 + l] and S[p1 - 1] ≠ S[p2 - 1]

3. Super Maximal Repeat: a maximal repeat that does not

occur in any other maximal repeat.
We show an example of the three types of the

aforementioned repeats:

1

A B C A B C N A B C D R A B C A B C DM

2 43 5
As we can see, „ABC‟ is a maximal repeat that occurs

three times in the string at 1, 2, 4. The occurrence at 2 is a
tandem (contiguous) repeat since it is directly following the
first occurrence of „ABC‟. Also, „ABCD‟, which is found at
3 and 5, is a super maximal repeat since it contains another
maximal repeat and is not contained in any other maximal
repeat.

The process pattern detection algorithm is presented in
Algorithm 1. We use three main objects in the algorithm.
The n-gram object keeps track of the current n-gram and its
position. A pattern object contains the pattern sequence, its
positions in the trace and its frequency (number of
occurrences). The Pattern List is the dictionary that holds the
detected pattern objects. Moreover, we use two pointers that
slide over the trace in order to return the next n-gram that
will be used in detecting the patterns. Since the minimum
length of a repeat is two, we should be able to read a bi-gram
from the trace. Therefore, the two pointers are always
adjacent so a bi-gram could be returned when needed. In the
algorithm, we also show how the n-gram grows in size
whenever a pattern is detected.

The first five lines are declarations that will be used by
the algorithm. The aNewPattern indicates whether the
current pattern is new or existing. The aMatch variable
indicates whether the current pattern can be constructed from
its prefix pattern at its previous positions (returned by the
check pattern occurrences algorithm). The tandemRepeats is
an integer value indicating how many times the current
pattern is repeated contiguously right after its current
position.

The algorithm starts by reading the first bi-gram, at line
6, which will be considered as the first pattern added to the
detected patterns list. At line 10, the algorithm will check if
the detected pattern is repeated contiguously in the following
events in the trace. If the pattern is repeated contiguously
more than once, then the two pointers will advance ((repeats
- 1) * pattern size) steps forward in the trace. The pointers
will start at the beginning of the last detected tandem repeat
since it may be part of a bigger pattern. The algorithm will

 5

repeatedly read the next bi-grams from the trace file and add
them to the pattern list until a bi-gram match is detected. In
this case, the algorithm will enter the do-while loop at line 15
and will add the next event from the trace to the right of the
matching bi-gram which will result in a tri-gram. This occurs
by the call to the ConstructNGram function at line 18, which
is a utility function that constructs the n-gram.

Pattern Detection: this algorithm runs for each

process separately to find repeating patterns

Г: checkPatternOccurence

advanceSteps = (tandemRepeats - 1) * patternSize

1. PatternList: List of extracted patterns

2. aNewPattern: Boolean

3. aMatch: Boolean

4. tandemRepeats: Integer

5. currentPattern: Pattern

6. while(next n-gram is not null){

7. p = position of nextNGram

8. aNewPattern = UpdatePatternList(nextNGram, p)

9. currentPattern = getPattern(nextNGram)

10. tandemRepeats = checkTandem(currentPattern)

11. if (tandemRepeats > 1) then

12. advancePointers(advanceSteps)

13. end if

14. if aNewPattern is false then

15. do{

16. aMatch = false

17. currentPattern = getPattern(nextNGram)

18. nextNGram = constructNGram(nextNGram)

19. UpdatePatternList(nextNGram , p)

20. nextPattern = getPattern(nextNGram)

21. aMatch = Г(nextPattern,p, currentPattern)

22. tandemRepeats = checkTandem(currentPattern)

23. if (tandemRepeats > 1) then

24. aMatch = true

25. advancePointers(advanceSteps)

26. end if

27. if aMatch is false then

28. remove nextPattern from PatternList

29. end if
30. } while(aMatch)

31. end if

32. end while

Algorithm 1. Pattern Detection Algorithm

Then, the algorithm will check whether the tri-gram can
be constructed from the previous occurrence of its bi-gram
by calling the checkPatternOccurence (shown as Γ in the
algorithm) function at line 21. In the checkPatternOccurence
function, if the previous occurrence of the bi-gram can be
constructed to match the detected tri-gram, the frequency of
the tri-gram pattern will be incremented and the frequency of
the bi-gram will be decremented. Since we have a repeating
tri-gram, the algorithm will read the next event and add it to
the tri-gram (line 18) and again check if the previous
occurrence (line 21) of the tri-gram can be extended to match
the new quad-gram. Again, at line 22, the algorithm will
check whether the new constructed pattern has a tandem

repeat or not, if yes, the two pointers will be advanced as
described previously. As can be seen from the algorithm, the
n-gram will grow in size whenever it has a match in the
pattern list. If the constructed n-gram cannot be detected at
any previous position of its prefix n-gram, then it will be
removed from the pattern list at line 28.

We also present the Check Pattern Occurrence in
Algorithm 2. This algorithm is being called by the code
presented in Algorithm 1 as ‘checkPatternOccurence’ or ‘Г
function. It is used to detect if the new pattern can also be
detected at the previous positions of its prefix patterns (e..g.,
for a pattern „abcd’ its prefix pattern is „abc’). If the pattern
can be detected at the previous positions, the algorithm will
return true.

Check Pattern Occurrence: checks if nextPattern can be

constructed from the previous positions of current Pattern.

Returns true if nextPattern can be found at its prefixPattern
previous positions

Signature: nextPattern, nextPatternPosition, prefixPattern

1. curPosition: position of the prefixPattern

2. aMatch = false

3. for each curPosition of prefixPattern positions{

4. if curPosition EQUALS nextPatternPosition then

5. continue // get next position

6. if nextPattern has curPosition then

7. aMatch = true

8. prefixPattern.decrementFrequency

9. prefixPattern.removePosition(curPosition)

10. continue //get next position

11. end if

12. currentNGram = prefixPattern.getNGram

13. currentNGram.position = curPosition

14. add next unigram to currentNGram at curPosition

15. if nextPattern.NGram EQUALS currentNGram then

16. aMatch = true

17. prefixPattern.decrementFrequency

18. prefixPattern.removePosition(curPosition)

19. nextPattern.incrementFrequency

20. nextPattern.addPosition(curPosition)

21. end if

22. end for each

23. return aMatch

Algorithm 2. Check Pattern Occurrences Algorithm

The algorithm will iterate on the positions of the prefix
pattern in order to find whether the next pattern can be
detected at these positions (line 3). Line 4 makes sure not to
continue the iteration when the prefix pattern position is the
same as the next pattern position. Also, lines 6 through 10
make sure not to continue in the current iteration if next
pattern already has the current position curPosition. If none
of the conditions at line 4 and 6 is true, then the next unigram
in the trace that follows the prefix pattern at curPosition will
be appended to prefix pattern. Whenever the prefix pattern
can be extended to match the new pattern, the frequency of
the prefix pattern is decremented and its position is removed
(lines 17 to 20 in Algorithm 2). In the following, we
demonstrate using a short example how the n-gram based

 6

algorithm is able to detect the different types of repeats in the
trace.

Figure 5 presents a trace of 17 point-to-point
communication events (S2 means Send to 2 and R2 means
Receive from 2). The algorithm starts by reading the first bi-
gram „S2, S3‟ at position 1 and add it as a new pattern to the
pattern list. Since there is no contiguous repeat for the
pattern, the next bi-gram „S3, R2‟ will be read and added as a
new pattern.

Trace:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S2 S3 R2 S5 S2 S3 R2 S2 S3 R2 S2 S3 R2 S4 S2 S3 R2

Execution:

Pattern New?
Has

Tandem?
Freq. Pos.

Next
Action

1 S2 S3 Yes No 1 1 next bi-gram

2 S3 R2 Yes No 1 2 next bi-gram

3 R2 S5 Yes No 1 3 next bi-gram

4 S5 S2 Yes No 1 4 next bi-gram

5 S2 S3 No No 2 1, 5
Construct

from current
n-gram

6 S2 S3 R2 Yes Yes 4
1, 5, 8,

11

Append
event at

position 14

7 S2 S3 R2 R4 Yes No 1 11 next bi-gram

8 S4 S2 Yes No 1 14 next bi-gram

9 S2 S3 No No 2 8, 12
Construct

from current
n-gram

10 S2 S3 R2 No No 5
1, 5, 8,
11, 15

End of
Trace

Result:

Detected Pattern Frequency Positions

S2 S3 R2 5 1, 5, 8, 11, 15

Figure 5. Process Pattern Detection Example

Similarly, there is no contiguous repeat for this new
pattern, therefore the algorithm will continue reading until it
reads „S2, S3‟ at position 5. Since this is an existing pattern,
its frequency will be incremented and its position will be
added to the pattern positions list. Again the algorithm will
check for contiguous repeats which also do not exist in this
case. However, since this is an existing pattern, the next uni-
gram in the trace will be added to the pattern resulting in „S2,
S3, R2‟ as a new pattern. The algorithm will detect that there
are two contiguous repeats (tandem) of this pattern. Also, the
check pattern occurrence function will be called and detect
that at position 1 (position of prefix pattern „S2, S3‟ this new
pattern can be detected. Then, the algorithm will append the
next event following the last tandem repeat which will result
in the pattern found at row 7 in the Execution table in Figure
3. When the algorithm reaches the end of the trace, it will
find that „S2, S3, R2‟ is the only maximal repeat with
frequency more than 1 in the trace. This example shows how

the n-gram-based algorithm is able to detect patterns
(maximal repeats) in trace files of MPI applications.

C. The Pattern Matching Algorithm

In this section, we present our algorithm for extracting

similar communication patterns in an MPI trace to a

predefined input pattern. The pattern under study can be

provided by the user or it can be provided from the list of

patterns detected using our first algorithm presented in the

previous section. The input communication pattern is stored

as a list where each entry corresponds to the sequence of

events of one process only. These events are inter-process

communication events such as this send event „MPI_Send

(target = P5, Size = 256)‟.

Similar to the pattern detection algorithm, this algorithm

detects similar patterns on each process trace separately.

The output of this algorithm is input to the communication

pattern construction algorithm presented in the next section.

The degree of similarity between the patterns is determined

by the number of shared events between them.
We use the Edit Distance [21] (also known as

Levenshtein Distance) function to calculate the degree of
similarity between the two patterns. In order to determine the
areas in the trace that could potentially match the input
pattern, we use the Lemma proposed by Jokinen and
Ukkonen [22] for our filtration process. This Lemma is
based on calculating the shared n-grams between the pattern
and the target string. Several research studies for
approximate string matching exist that are based on this
Lemma [23, 24]. The Lemma is presented in the following:

Lemma: N-gram based Filter (Jokinen and Ukkonen [22])

Let a string S1 of length m with at most k edit distance

from another string S2 of length m, then at least m + 1 – kn +
n of the n-grams in S1 occur in S2.

The process of determining similar patterns consists of
two steps. The first step is the filtration (fast) process which
uses the above lemma, and the second step is the edit
distance function (slower). We slide a window of length m,
which is the length of the input pattern on a process trace
until there is a potential match (window shares at least m + 1
– kn + n with the pattern). A window that is identified as a
potential match is verified using the edit distance function.

In order to reduce the number of verified windows, and
to reduce the total execution time consequently, we use
positioned n-grams to preprocess the pattern. We build a
table for all the n-grams in the pattern with their positions in
the pattern. We use the positioned n-grams table in the
filtration process to shift the window to the right (in the
trace) based on the position of the first n-gram found in the
window under test. For example, if the position of the n-
gram in the n-gram table is 3 and the same n-gram was found
at position 5 in the window, then we slide the window to the
right by two steps in order to avoid verifying two non-
matching windows using the edit distance function.

Algorithm 3 describes our procedure for detecting
communication patterns that are similar to a pattern P. As

 7

mentioned previously, this algorithm runs for every process
separately. In line 5, it will iterate on each window in the
trace. The window (w) may shift to the right based on its
position in the n-gram positioned table (lines 6-8). Based on
the number of shared n-grams between the pattern and the
window determined in line 9, the edit distance will be
computed in line 11. If edit distance is less than or equal to k,
then the window w will be added to the MatchingPatternList
at line 12 and the window will be shifted to start at the next
adjacent window at line 13. Every process in the MPI trace
should have its own MatchingPatternList which will be used
in the algorithm described in the next section for the
communication patterns construction. The
MatchingPatternList contains the patterns and their start
positions in the trace.

Pattern Matching: this algorithm runs for each

process separately to find similar patterns

p: pattern under study of size m

threshold = pattern size – n + 1 – k.n

k:maximum allowed edit distance

n: n-gram size

firstSharedNGramDisplacement: displacement between

position of first shared q-gram in w and its position in

the q-gram position table

1. w: window of size m

2. MatchingPatternList: List of matched windows

3. // MatchingPatternList also holds the position of w

4. sharedNGrams: Integer

5. while(next w is not null){

6. if (firstSharedNGramDisplacement > 0) then

7. shiftWindow(firstSharedNGramDisplacement)

8. end if

9. sharedNGrams = countSharedNGrams(p, w)

10. if sharedNGrams > threshold then

11. if editDistance(p, w) <= k then

12. add w to MatchingPatternList

13. jump to next adjacent window

14. end if

15. end if

16. end while

Algorithm 3. Pattern Matching Algorithm

We show the correctness of the algorithm using the
example shown in Figure 6. We used alphabets instead of
MPI events for simplicity. The figure shows the input pattern
and to its right its n-grams along with their positions (n-gram
position table). The window size is the same as of the size of
the pattern. We slide the window on the string and find the
number of shared n-grams. For window #12 and window
#22, the window is shifted to the right based on the position
of the „ab’ n-gram (line 7 in the algorithm). Also, since a
match was detected at window # 16 with k = 1, the window
was shifted to point at window # 22.

This example shows the usefulness of using the concept

of n-grams in the filtration step. The filtration step reduces

the execution time since it reduces the number of windows

to be checked using the edit distance function for all the

windows in the trace. The filtration step could be improved

in order to avoid checking non-matching windows using the

edit distance function. One more issue that needs to be tuned

is the window size. In some cases, the window size should

be decreased to minimum of (m – k). For example, window

9 „b c d e f y‟ has an edit distance of 2 while if we consider

the window as „b c d e f‟ (size is m – k + 1) then the edit

distance will be 1 which increases the degree of similarity to

the input pattern. The same can be done for window # 10

since „c d e f’ has an edit distance of 2 while ‘c d e f y e’ has an

edit distance of 5. Currently, we are handling these cases in

another step (after the execution of the algorithm) by

checking windows with at most 2k edit distance and

reducing there window size to verify if a shorter window

may have a similar match to the input pattern. However, we

have to keep in mind that a matching window may be

contained in a larger pattern which is not the same as the

input pattern. Therefore, the software engineer should be

informed that a group of windows are similar to or match

the input pattern but they exist in a larger pattern in the trace

which means that the input pattern may be a subset of some

patterns in the trace.

Input Pattern: a b c d e f  0: a b, 1: b c, 2: c d, 3: d e, 4: e f
Trace: a b c d m h k o b c d e f y e a b h d e f r s a b c d e f

m = 6, n = 2, k = 1, t >= m – n + 1 – kn  t >= 3 shared n-grams

W# Window Shared n-grams ED Action

1 a b c d m h ab, bc, cd 2

2 b c d m h k bc, cd Skip window

3 c d m h k o cd Skip window

4 d m h k o b Skip window

5 m h k o b c bc Skip window

6 h k o b c d bc, cd Skip window

7 k o b c d e bc, cd, de 3

8 o b c d e f bc, cd, de, ef 1

9 b c d e f y bc, cd, de, ef 2

10 c d e f y e cd, de, ef 5

11 d e f y e a de, ef Skip window

12 e f y e a b ab at position 4 4 Jump to w#16

13 f y e a b h

14 y e a b h d

15 e a b h d e

16 a b h d e f ab, de, ef 1 Jump to w#22

17 b h d e f r

18 h d e f r s

19 d e f r s a

20 e f r s a b

21 f r s a b c

22 r s a b c d ab at position 2 Jumpt to w#24

23 s a b c d e

24 a b c d e f ab,bc,cd,de,ef 0 Done

Figure 6. Example of applying the pattern matching algorithm

Once all the similar patterns were detected for each

process. We start building the communication patterns using

the Communications Patterns Construction algorithm

presented in the next section. In order to consider the

communication pattern as a similar match, we need to check

whether the total edit distance (sum of edit distance from

each process similar match) is still within the specified

 8

threshold. This is computed by relating the total number of

errors (differences) to the total number of events in the

constructed communication pattern. Therefore, some similar

patterns per process may be within the specified threshold

but their communication pattern may have an error that is

larger than the threshold.

D. Communication Patterns Construction Algorithm

In this section, we present the algorithm for assembling
the process patterns detected either through the pattern
detection algorithm or the pattern matching algorithm into
communication patterns that encompass all the
communicating processes. We input the process detected
patterns (detected in the previous steps) into this algorithm
and start iterating on all corresponding patterns (for pattern
p1, its corresponding patterns are those patterns that have
partner events with p1) until a communication pattern is
constructed. When using this algorithm to construct each
process patterns detected using the pattern detection
algorithm presented in Section 5, the output will be the set of
all communication patterns that are repeating in the trace. On
the other hand, when using this algorithm to construct the
similar matching patterns on each process detected using the
pattern matching algorithm presented in Section 6, the output
will be the set of all communication patterns that are similar
to the given input communication pattern.

The communication patterns construction algorithm is

presented in Algorithm 4. It uses the ordered pattern

positions list generated from the first step (any of the two

previously presented algorithms). For each pattern position

(line 5), the corresponding patterns on the other processes

will be detected by locating their partner events. We iterate

on the positions of each detected pattern since at different

positions the same pattern may have different partner

patterns which will result in different communication

patterns. For each pattern, the algorithm will check if it is

already part of a communication pattern. The

communication pattern will be retrieved or a new

communication pattern will be created accordingly (lines 6-

11). In some cases, an event that is included in a pattern

may have a partner event that is not included in any pattern.

This single partner event will not be detected using the

pattern detection algorithms since we consider the minimum

pattern size as two events (bi-gram). This event will be

added to the resulting communication pattern with the

condition that its process does not have any other partner

events at a dispersed location. The single events will be

retrieved using the call at line 12 and they will be added to

the communication pattern in the following „for-each’ loop

at line 12. At line 16, all the corresponding process patterns

will be retrieved and then added (if not already exist) to the

communication pattern inside the „for-each’ loop at line 17.

Communication Pattern Construction: constructs the

communication patterns by iterating on the process patterns

AllProcessesPatternList: a list of all process patterns;

it contains all patterns detected in the previous step

getCorrespondingProcessPatternsList: returns the

corresponding patterns based on the partner events

1. CommPatternList: communication patterns list

2. CommPattern: current communication pattern

3. foreach ProcessPatternList in AllProcessesPatternList{

4. foreach pattern in ProcessPatternList{

5. foreach position i in pattern positions list{

6. if pattern at position i is part of a Comm Pattern then

7. CommPattern = getCommPattern(pattern, position)

8. else

9. create new CommPattern

10. CommPatternList.add(CommPattern)

11. end if

12. getCorrespondingSingleEventList(pattern)

13. foreach correspondingEvent{//not in a pattern

14. CommPattern.add(correspondingEvent)

15. end for each

16. getCorrespondingProcessPatternsList(pattern)

17. foreach correspondingPattern {

18. if correspondingPattern ∉ CommPattern then

19. CommPattern.add(correspondingPattern)

20. end if

21. end for each

22. end for each

23. end for each

24. end for each

25. ExtractDistinctCommunicationPatterns

Algorithm 4. Communication pattern Construction

After the algorithm finishes iterating on all the process

patterns, it will output the distinct communication patterns

at line 25. The resulting communication patterns may

involve all or a subset of the processes in the trace.

We acknowledge that the number of resulting patterns

might in some cases be considerably high and there is

therefore a need to determine the most important ones for

further investigation. Some factors for ranking patterns

based on their importance that can be considered include the

pattern frequency (most frequent patterns mean that the

system depends greatly on this behavior to accomplish its

objective), the number of events in the repeating pattern,

the number of processes involved, etc. In this paper, we

focused on presenting algorithms for detecting repeating and

similar patterns in MPI traces. Pattern ranking is left as a

subject for further studies.

V. CASE STUDY

We used three traces generated from three different

applications to validate our proposed algorithms. In the

following, we present our trace analysis results on each

system trace. Our experiments were performed on a 1.83

GHz Intel Core 2 Duo CPU with 3.0 GB of RAM.

 9

A. Weather Research & Forecasting (WRF)

We tested our pattern detection algorithm (presented in

Section 5) on a trace file generated by the VampirTrace [25]

trace analysis tool. The trace file had 336960 point-to-point

events. It was generated from the Weather Research and

Forecasting (WRF) Model (a collaborative effort from

different partners in order to provide operational forecasting

and atmospheric research needs) system. The tested instance

of the application contains 16 processes. The trace file

format used by the VampirTrace is called the Open Trace

Format (OTF) [26] which comes with several APIs for

reading the trace data.

P16P15P14P13

P12P11P10P9

P8P7P6P5

P4P3P2P1

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

P16

MPI Virtual Topology

Figure 7. Detected Repeating Pattern in WRF

In this trace, we detected two main patterns, one consists
of point-to-point operations and the other one is composed of
collective operations. The right side of Figure 7 depicts the
point-to-point communication pattern found in the WRF
trace. The left side shows that the MPI virtual topology that
is used in implementing the traced feature consists of a 2D-
mesh were each process communicates with its direct
neighbors only. The communication pattern and the topology
facilitate the understanding of the communication behavior
in the program. The total execution time to detect this pattern
was 37 seconds which is still reasonable considering the
trace length.

Our analysis shows that this repeating pattern exists in

different contexts of the program. Here, a context means the

function that the pattern occurs in. The detected pattern is

repeated 3510 in the trace file. The point-to-point

communication pattern exists in the

START_DOMAIN_EM and SOLVE_EM functions.

START_DOMAIN_EM is called once in the program and

SOLVE_EM function is called 100 times. The

START_DOMAIN_EM call occurs before the SOLVE_EM

calls. The detected pattern in the execution trace helped us

locate the important communications in the program. These

inter-process communications were used in setting up the

data to compute several weather parameters such as

moisture coefficients, the diagnostic quantities pressure and

others.

The execution trace contained two collective patterns

(patterns from MPI collective operations) as shown in

Figure 8. The root process in the collective operations is P1.

Moreover, Pattern 2 shows in the first 3 elements of Pattern

1 but was detected at different locations in the trace that

were not part of the occurrences of Pattern 1.

Collective Pattern 1 Collective Pattern 2

MPI_Bcast

MPI_Gather

MPI_Gatherv

MPI_Gather

MPI_Scatterv

MPI_Bcast

MPI_Gather

MPI_Gatherv

60 repetitions 116 repetitions

Figure 8. Detected Collective Pattern

B. Scalar Pentadiagonal (SP) - NAS Parallel Benchmark

We also tested the algorithm presented in Section 5 on
another trace generated from the Scalar Pentadiagonal (SP)
included in the NAS Parallel Benchmark [27]. This trace
contained 38544 point-to-point events. SP solves three sets
of uncoupled systems of equations in the x, y, and in the z
dimensions starting with the x-dimension. The trace file was
collected from a run that consisted of 4 processes
collaborating in order to solve a synthetic computational
fluid dynamics (CFD) problem.

Figure 9. Detected Pattern in SP

After applying the pattern detection algorithm, we
noticed that the processes of this application communicate
according to the sequence shown in Figure 9. This pattern
was detected in 401 non-contiguous locations in the trace. As
it can be seen from the figure, all the processes communicate
the solution of their parts of the equations to all other
processes in the program. The total execution time to detect
this pattern was 12 seconds. We intend to compare the
performance of our approach to other studies in future work,
although we believe, based on the study presented in [4] and
where the authors tackled the problem of efficient detection
of communication patterns, we believe that the obtained total
execution time shows that our algorithm is considered
efficient.

C. 2D Solution to Cellular Nuclear Burning – FLASH 2.0

The largest trace file in our case study was generated
from the two-dimensional implementation of the Cellular
Nuclear Burning problem [28]. Flash solves complex
systems of equations for hydrodynamics and nuclear burning
which uses Paramesh library [29] for adaptive mesh
refinement on rectangular grid. The generated trace file
contained 633490 point-to-point MPI events generated from
16 processes. We were able to detect 202 distinct patterns.

P2

P3

P4

P1

 10

Some of these patterns were repeated a few times and others
were repeated for a few thousand times. Figure 8 shows a
detected pattern from the same trace. The total execution
time for detecting the patterns was 228 seconds. This long
execution time is due to the large number of distinct patterns
in the trace.

Figure 10. Two detected patterns in the 2D cellular problem

Figure 8 shows two patterns that were detected using the
pattern detection algorithm. Pattern 10a is repeated 927 times
and pattern 10b was only repeated 5 times in the trace. It can
be seen in the two patterns that processes P6 to P15 have the
same communications (process patterns). That is why in the
communication pattern construction algorithm we iterate on
all the positions of the detected process patterns. If not all of
the positions were taken into account then some of the
communication patterns will not be detected in the trace.
These two patterns are used in filling the guard cells in the
mesh. We also detected more complex patterns that we
cannot include in this paper due to space limitation.

We also tested the pattern matching algorithm on this
trace to detect similar patterns to an input pattern. In this case
study, we were able to detect similar patterns that differ in
message size, tag value, and that have different number of
communications. For example, when considering the
message envelope for pattern 8b, we detected 4 instances of
the pattern when the size of the message sent from P1 to P6
is 24. The input pattern differs from the detected patterns in
the message size which is 0. In this example, a maximum
edit distance of 1 was allowed.

We detected many other similar patterns using the similar
pattern detection algorithm. In the case studies, we found out
that when n increases, the total execution time increases.
This can be justified since the number of verified windows
using the edit distance function increases. Moreover, in some
cases, we found that the window size should be less than the
size of the pattern but also not less than m – k in order to
have a similar match.

VI. CONCLUSION & FUTURE WORK

In this paper, we presented a new approach for detecting
exact and similar patterns in MPI execution traces. Our
approach is based on the concept of n-grams applied in
different areas such as statistical natural language processing,
DNA and Musical notes. To the best of our knowledge, this
is the first work that utilizes this concept for detecting inter-
process communication patterns.

We presented two algorithms and demonstrated their
results on three trace files. The results showed that the n-
gram concepts can be used to detect the repeating patterns in
traces generated from parallel systems. In the future, we are
planning on improving the similar pattern detection
algorithm by applying sampling on the trace file. This will
result in a faster algorithm but with a tradeoff on its accuracy
thereof.

We also intend to apply the algorithms on traces that
involve a larger number of processes in order to verify the
second part of the algorithm for assembling the inter-process
communication patterns. Finally, we will present a pattern
ranking scheme to categorize the detected patterns based on
different criteria.

REFERENCES

[1] K. El Maghraoui, B. K. Szymanski, C. A. Varela, “An Architecture
for Reconfigurable Iterative MPI Applications in Dynamic
Environments,” In Proc. of the 6th International Conference On
Parallel Processing And Applied Mathematics, pp. 258-271, 2005.

[2] The Vampir Performance Visualizer, http://www.vampir.eu

[3] A. Chan, W. Gropp, and E. Lusk, “An efficient format for nearly
constant-time access to arbitrary time intervals in large trace files,”
Journal of Scientific Programming, 16(2-3), pp. 155–165, 2008.

[4] R. Preissl, T. Köckerbauer, M. Schulz, D. Kranzlmüller, B. R. de
Supinski, and D. J. Quinlan, “Detecting patterns in MPI
communication traces,” In Proc. of ICPP, pp. 230–237, 2008.

[5] T. Kunz, M. F. H. Seuren, “Fast detection of communication patterns
in distributed executions,” In Proc. of CASCON, 1997.

[6] Chao Ma, Yong Meng Teo, Verdi March, Naixue Xiong, Ioana
Romelia Pop, Yan Xiang He, Simon See, "An approach for matching
communication patterns in parallel applications," ipdps, pp.1-12,
2009 IEEE International Symposium on Parallel&Distributed
Processing, 2009.

[7] H. Safyallah and K. Sartipi, “Dynamic Analysis of Software Systems
using Execution Pattern Mining”, In Proc. 14th IEEE International
Conference on Program Comprehension, 2006, pp. 84-88.

[8] Gonzalo Navarro , Veli Mäkinen, Compressed full-text indexes,
ACM Computing Surveys (CSUR), v.39 n.1, p.2-es, 2007.

[9] P. F. Brown, V. J. Della Pietra, P. V. deSouza, J. C. Lai, and R. L.
Mercer, “Class-based n-gram models of natural language”,
Computational Linguistics, vol. 18, pp. 467–479, 1992.

[10] Kim JY, Shawe-Taylor J (1994) Fast string matching using an n-gram
algorithm. Softw Pract Exper 94(1):79–88.

[11] Jie Zheng, Stefano Lonardi, "Discovery of Repetitive Patterns in
DNA with Accurate Boundaries," bibe, pp.105-112, Fifth IEEE
Symposium on Bioinformatics and Bioengineering (BIBE'05), 2005

[12] Nikunj Patel, Padma Mundur, An n-gram based approach to finding
the repeating patterns in musical data. Proceedings of the European
IMSA. Grindelwald, Switzerland, 2005.

[13] Message Passing Interface Forum. MPI: A Message Passing Interface
Standard, June 1995. URL: http://www.mpi-forum.org.

[14] Knüpfer, A., Voigt, B., Nagel, W.E., Mix, H.: Visualization of
repetitive patterns in event traces. In: Kågström, B., Elmroth, E.,

(a) (b)

P2

P4

P3

P5

P6

P7

P9

P8

P10

P11

P12

P13

P14

P15

P16

P1

http://www.vampir.eu/

 11

Dongarra, J., Waśniewski, J. (eds.) PARA 2006. LNCS, vol. 4699,
pp. 430–439. Springer, Heidelberg (2007).

[15] J. Roberts and C. Zilles. TraceVis: an execution trace visualization
tool. In Proc.MoBS 2005, Madison, USA, 2005.

[16] Thomas Köckerbauer, Christof Klausecker and Dieter Kranzlmüller,
Scalable Parallel Debugging with g-Eclipse, Book Chapter, Springer
Berlin Heidelberg, 2010.

[17] S. Moore, F. Wolf, J. Dongarra, S. Shende, A. Malony, and B. Mohr.
A Scalable Approach to MPI Application Performance Analysis.
LNCS, 3666:309–316, 2005.

[18] N. Palma, "Performance Evaluation of Interconnection Networks
using Simulation: Tools and Case Studies" PhD Dissertation,
Department of Computer Architecture and Technology, University,
Spain, 2009.

[19] Z. Volkovich and et al., “The method of n-grams in large-scale
clustering of DNA texts,” Pattern Recognition, 2005.

[20] T. A Welch., “A technique for high-performance data compression”,
Computer, Vol. 17, No. 6, pp. 8-19, June 1984.

[21] A. Levenshtein, “Binary Codes Capable of Correcting Deletions,
Insertions and Reversals,” Soviet Physics Doklady, vol. 10, no. 8, pp.
707-710, 1966.

[22] Jokinen, P., and Ukkonen, E. Two algorithms for approximate string
matching in static texts. In In Proc. 2nd Ann. Symp. on Mathematical
Foundations of Computer Science, 240–248. 1991.

[23] X. Cao, S. C. Li, and A. K. H. Tung. Indexing DNA Sequences Using
q-grams. In Proceedings of the International Conference on Database
Systems for Advanced Applications (DASFAA), 2005.

[24] Rasmussen K, Stoye J, Myers EW. Efficient q-Gram Filters for
Finding All ϵ-Matches Over a Given Length. Journal of
Computational Biology. 2006;13:296–308.

[25] VampirTrace, ZIH, Technische Universitat, Dresden, http://tu-
dresden.de/die_tu_dresden/zentrale_einrichtungen/zih.

[26] A. Knüpfer, R. Brendel, H. Brunst, H. Mix, W. Nagel, Introducing
the Open Trace Format (OTF), in: Proc. of the International
Conference on Computational Science (ICS), 2006, pp. 526–533.

[27] NAS Parallel Benchmarks,
http://www.nas.nasa.gov/Resources/Software/npb.html.

[28] FLASH3 User's Guide,
http://flash.uchicago.edu/website/codesupport/flash3_ug_3p2/node31.
html

[29] MacNeice, P., Olson, K.M., Mobarry, C., de Fainchtein, R. and
Packer, C., PARAMESH: a parallel adaptive mesh refinement
community toolkit. Comput. Phys Commun. v126. 330.

[30] Abdelwahab Hamou-Lhadj, "Techniques to Simplify the Analysis of
Execution Traces for Program Comprehension", Ph.D. Dissertation,
School of Information Technology and Engineering (SITE),
University of Ottawa., 2005.

http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih
http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih
http://www.nas.nasa.gov/Resources/Software/npb.html
http://flash.uchicago.edu/website/codesupport/flash3_ug_3p2/node31.html
http://flash.uchicago.edu/website/codesupport/flash3_ug_3p2/node31.html

