Reasoning about the Concept of Utilities™

Abdelwahab Hamou-Lhadj
University of Ottawa
800 King Edward Avenue
Ottawa, Ontario, Canada
ahamou(@site.uottawa.ca

Abstract

Understanding large software systems is a hard task if
effective tool support is not provided. We hypothesize that
efficient detection of utility components can help reduce
the space of components that need to be analysed. This
can be applied to several software engineering areas
such as software visualisation, architecture recovery and
dynamic analysis. However, to achieve this goal, the
concept of utility components needs to be better
understood. In our early work, we organized a
brainstorming session with twenty software engineers of
the company that supports our research to discuss several
research questions including the concept of utilities. This
paper discusses the ideas that came out of this session
with respect to various research questions surrounding
what constitutes a utility, and how to detect them. In
particular, we consider heuristics besides simple fan-in
and fan-out.

1. Introduction

Without efficient tool support, the analysis of a large
system becomes extremely very difficult. This is because
there is a tendency to lose track of the system’s artifacts
and the relationships among them. This situation may be
worse in the case of dynamic analysis; in our experience,
the analysis of run-time information from even a small
object-oriented system can be extremely complex.

Our research focuses on investigating techniques for
filtering large execution traces to simplify their analysis.
For this purpose, we implemented several pattern
matching algorithms to compress the traces to the level
where humans can understand important aspects of their
structure [3]. However, these algorithms tend to be
conservative. That is, they consider that all the trace
components have the same level of importance, which is
not always true in practice. Zayour, for example,
experimented with routine-call execution traces of a large
telecommunication system and showed that some routines

* This research is supported by NSERC, NCIT and QNX Software Systems

Timothy C. Lethbridge
University of Ottawa
800 King Edward Avenue
Ottawa, Ontario, Canada
tel@site.uottawa.ca

can be considered as low-level implementation details and
can be removed from the traces without affecting their
content from the program comprehension perspective
[10].

Developing efficient techniques for detecting utility
components can also be useful in other areas in software
engineering. The common practice is to use heuristics that
are based on computing a component’s fan-in and fan-out:
The rationale behind this is that something that is called
from a lot of places is likely to be a utility, whereas
something that itself makes many calls to other
components is likely to be too complex and too highly
coupled to be considered a utility. However, utilities can
be of different types and have different scopes. Some
utilities may be global to the whole system whereas others
can be specific to a particular subsystem, which make
these heuristics hard to generalize.

In this paper, we discuss the concept of utility
components, and investigate answers to the following
questions:

1. What do software engineers consider to be a utility?

2. What types of utilities exist in a large software
system?

3. What other techniques can be used to detect them
besides fan-in and fan-out?

4. What are the research questions that need to be
addressed for efficient detection of utilities?

The aim of the next section is to investigate the first
three questions. Section 3 presents the research questions
that need to be addressed for detecting utilities.

Much of the data we have used to develop and validate
the ideas in this paper comes from our interaction with
QNX Software Systems. We have studied traces of their
software systems, and, perhaps more importantly, we have
discussed the concept of utilities with software engineers
at that company. Many of the points in the next section

were raised at a two-hour brainstorming session which
involved 20 QNX software engineers.

2. What Constitutes a Utility?

In the UML 1.5 specification, a utility class is defined
as “a grouping of global variables and procedures in the
form of a class declaration. This is not a fundamental
construct, but a programming convenience.” [7]

This definition is too specific to be able to derive a
complete understanding of what a utility is, since there are
other kinds of utilities, such as utility methods or
packages. However, it points towards three interesting
aspects of utilities that deserve investigation: a utility's
scope, role and packaging.

Scope of a utility: The UML definition cited above,
suggests that utilities most often have a global scope.
Along the same lines, Muller et al. [4] refer to
components used by several other components of the
system as ommnipresent nodes. They explain that these
components obscure the relationships between system
artifacts and need to be filtered out. They compute fan-in
and allow the user of their software engineering tools to
filter out the components that exceed a certain
‘omnipresent threshold’.

In the QNX brainstorming session, the participants also
said that a key aspect of utilities is that their usage of them
tends to be distributed around the system.

However, we believe it is essential to realize that
utilities do not always have a global scope. In our recent
analysis of a medium size object-oriented system called
WEKA [9], we found that while the system implements
some utilities that are global to the whole system, others
are specific to particular subsystems. For example, the
class Utils is a global utility class and the class M5Utils is
defined in the m5 package and is only referred to by a
small set of classes. Obviously using the same
omnipresent threshold for these two kinds of utilities
would be ineffective.

To address this issue, we introduce the concept of a
utility context. A utility context is the context within
which the utility is defined and used. We believe that
effective detection of utilities therefore requires
determination and consideration of a system’s context
boundaries. Any technique that is used to detect utilities
(e.g. fan-in) should take into account these boundaries. In
a well-structured software system, the packages,
namespaces and other modularization constructs will form
the natural utility contexts.

A component that has fan-in from throughout the
system will be more likely to be a utility than a

component that has fan-in only from a single package. But
if the component is called from many different places in
that package, then it is more likely to be a utility than
something called from just a few specific places in that
package. So to detect utilities we need to consider
package boundaries and also the distribution of callers.

The utility context in a language like Java may well be
a package. In a language like C, where there are no
explicit packages, packages can be inferred from the
patterns of inclusions. However a scope as narrow as a
single class can be a utility context in some cases: There
may be private utility methods that are called by many
other methods in the class.

Although we have demonstrated above that utilities can
have scopes narrower than the entire system, our
brainstorming participants focused almost exclusively on
system-scope utilities. This might be because the word
utility is most often applied in the context of programming
languages built-in utilities and libraries as well as in the
context of a system’s architectural view.

It is important to notice that while some software
engineering tasks, such as recovering system architecture,
may only require detecting system-scope utilities, others,
such as understanding a large execution trace, require
consideration of all utilities.

Packaging of utilities: The QNX software engineers in
our brainstorming session confirmed the intuitive idea that
utilities tend to be grouped or packaged together in a
class, a namespace, a library or some other construct.

This concept is raised in a number of contexts: A UML
utility class for example, is a module that groups together
utilities that would otherwise have no “home”. Tzerpos
and Holt [5] observed that software engineers tend to
group components with large fan-in into one cluster that
they call the support library cluster.

It is important to differentiate these utility packages,
from the individual utilities they contain. It is also
important to note that not all utilities exist in groupings
that contain only other utilities; for example, accessing
methods in most classes can be considered utilities. In our
previous experiments, we showed that the removal of
accessing methods can result in a significant reduction of
the trace size [2].

In our brainstorming session, another issue that was
raised is that the utilities of a system are often designed
and or maintained by specific groups of people. This
knowledge can help to detect utilities in cases where there
is little or no explicit packaging.

Role of a utility: In the previous two points, we have
discussed the characteristic scope in which utilities are

defined and accessed, as well as how they are packaged.
However, scoping and packaging are applied to many
things, not just utilities. We must dig deeper in order to
consider the role of utilities as distinct from other entities.

Perhaps the clearest suggestion of a utility’s role can be
seen in the term “implementation convenience” used in
the UML definition discussed earlier.

A utility seems to represent a detail that is needed to
implement a general design element; it is at a lower level
of abstraction than that design element, and the design
element recurs in several places. Indeed, in many cases,
utilities can be seen as logical extensions of programming
languages, which all provide built-in facilities for
manipulating data and interacting with operating systems.
Indeed one can extend some programming languages to
explicitly incorporate user-defined utilities; this is
common practice in Smalltalk, for example: In that
language you can readily add new control constructs to
the system as a whole, new basic algorithms to many
system classes, and even new syntactic elements to the
language.

From our brainstorming session, it became clear that
utilities are things that a programmer shouldn’t have to
worry about when trying to see the ‘big picture’. A
programmer should understand the details of a
programming language before attempting to program in it.
Similarly a skilled programmer will naturally understand
‘at a glance’ what a user-defined utility is doing without
having to look at its details. The degree to which
something is a utility can therefore be measured according
to the extent to which it would be understood by a
software engineer in terms of what it does, or how it
works.

The above can help us identify different categories of
utilities that we present below. Future work should
validate these categories:

1) Utilities derived from the usage of a particular
programming language:

These are utilities that are created due to the nature of
the programming language that is used. For example, the
method toString() is typical to Java classes and all what it
does is to return some information about objects. Another
example is a class that implements the Enumeration
interface in Java. If asked to understand the methods of
this class, the analyst can easily predict the role of the
methods of the interface Enumeration.

2) Utilities derived from the usage of a particular
programming paradigm:

Some utilities might be created due to the programming
paradigm that is used. We saw the example of accessing

methods in object-oriented systems. That is, to preserve
information hiding, some utilities may need to be created.
Another example is the use of initializing functions such
as constructors or methods called by constructors to
initialize large objects.

3) Utilities that implement data structures:

Data structures are typically implementation details.
Although they might differ in the way they are
implemented, they almost always operate the same way
including inserting and removing members, sorting
elements etc.

4) Mathematical Functions:

Depending on the domain that is represented, in some
situations, mathematical functions can also be considered
as utilities. This includes logical functions such as
comparisons etc.

5) Input/Output Operations.

Numerous data storage, retrieval and transfer
techniques are now known by several software engineers.
The idea is that if they are implemented in a system then
they might be considered as utilities.

These categories are just an example of different
categories of utilities. There is definitely a need to future
research in this area.

3. Detecting Utilities: Research Issues

We divide the research questions that need to be
addressed for efficient detection of utilities into several
categories that we list here and explain in more detail in
what follows.

1. Efficient detection of the system context boundaries
2. Classification of utilities into categories

3. Detecting the extent to which a utility is called from
‘different’ places.

4. Using naming conventions for detecting utilities

The first research question addresses the scope of a
utility. As we previously stated, utilities can have different
scopes including the system level scope. To determine the
utility scope attribute, there is a need to determine the
system context boundaries. The system architecture can
certainly be used if it is deemed valid. Otherwise, there is
a need to recover it. For this purpose, there are several
clustering techniques that can be used [6, 8]. However,
software clustering is still an ongoing research topic with
its own set of research challenges [6]. In fact, one can

think of the utility detection problem as a subset of the
system decomposition problem.

The second research question is related to classifying
utilities into categories. We hypothesise that this is a step
towards detecting them. In the previous sections, we
discussed some categories that can be used. There is
definitely a need for more research in this area.

The third research question that must be addressed is
assessing, for any candidate utility, whether it is being
called from a variety of different places (within its
context), or else from some very specific places. In the
latter case, the candidate is less likely to be a utility. The
difficulty is determining whether the ‘very specific places’
are in fact just a narrower utility context.

Finally, design conventions including naming
conventions, comments etc can also be used to detect
utilities. For example, in many systems that we are
studying, we found that they contain namespaces named
using the word “Utils”. However, design conventions are
informal and there is a need to have a framework to
validate them before using them. Anquetil and Lethbridge
suggest a framework for evaluating naming conventions
[1]. Their framework was used to evaluate the names of
structured types (e.g. C structure). The idea is that if two
structured types have similar names then they should
represent similar concepts. They conducted an experiment
on a large telecommunication system and the results are
promising. In our case, the challenge is to apply this
framework to evaluate the names of different components
(e.g. method, class).

Conclusions

This paper discusses the concept of utilities. The
objective is being to understand the different dimensions
of this concept so we can ultimately automate the process
of detecting utilities.

We conclude that utilities can have different scopes
unlike the old thought that they can be only at the system
level. Also, utilities are often packaged together, but not
necessarily.

Most fundamentally, however, we conclude that utilities
implement general design concepts at a lower level of
abstraction than those design concepts.

We also discussed how utilities are usually
implementation details that can be divided into several
categories. We presented some categories that need to be
validated in future research.

Future work needs to focus on the research challenges
that are discussed in Section 3. To start with, we intend to
conduct a survey that will allow us to understand the
concept of utilities better.

References

[1] N. Anquetil, and T. C. Lethbridge, "Assessing the
Relevance of Identifier Names in a Legacy Software
System", CASCON, Toronto, Canada, 1998, pp. 213-
222

[2] A. Hamou-Lhadj, and T. C. Lethbridge, “Techniques
for Reducing the Complexity of Object-Oriented
Execution Traces”, In Proc. of the 2" Annual
“DESIGNFEST” on Visualizing Software for
Understanding and Analysis, Amsterdam, The
Netherlands, 2003, pp. 35-40

[3] A. Hamou-Lhadj, and T. Lethbridge, “An Efficient
Algorithm for Detecting Patterns in Traces of
Procedure Calls”, In Proc. of the I ICSE
International Workshop on Dynamic Analysis
(WODA), Portland, Oregon, USA, May 2003

[4] H. Muller, M. A. Orgun, S. R. Tilley, and J. S. Uhl,
"A Reverse Engineering Approach to Subsystem
Structure Identification", Journal of Software

Maintenance: Research and Practice, 5:181-204,
December 1993.

[5] V. Tzerpos and R. C. Holt, “ACDC : An Algorithm
for Comprehension-Driven Clustering”, In Proc. of
the Working Conference on Reverse Engineering,
Brisbane, Australia, November 2000, pp. 258-267

[6] V. Tzerpos and R. C. Holt, “Software Botryology,
Automatic Clustering of Software Systems”, In Proc.
of the International Workshop on Large-Scale
Software Composition, Vienna, August 1998, pp.
811-818

[7] UML 1.5 Superstructure
http://www.omg.org

Specification.

[8] T. A. Wiggerts, “Using Clustering Algorithms in
Legacy Systems Remodularization”, In the Proc. of
the 4" Working Conference on Reverse Engineering,
Amsterdam, The Netherlands, 1997, pp. 33-43

[91 L H. Witten, E. Frank, Data Mining: Practical Machine
Learning Tools and Techniques — with Java
Implementations, Morgan Kaufmann, 1999

[10]1. Zayour, “Reverse Engineering: A Cognitive
Approach, a Case Study and a Tool”, Ph.D.
dissertation, University of Ottawa, 2002,
www.site.uottawa.ca/~tcl/gradtheses/izayour

