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Abstract 
 
Dynamic analysis consists of analyzing the behavior of 

a software system to extract its proprieties.  There have 
been many studies that use dynamic information to 
extract high-level views of a software system or simply 
help software engineers to perform their daily 
maintenance activities more effectively. One of the 
biggest challenges that such tools face is to deal with very 
large execution traces. By analyzing the execution traces 
of the software systems we are working on, we noticed 
that they contain many redundancies that can be 
removed. This led us to create a comprehension-driven 
compression framework that compresses the traces to 
make them more understandable. In this paper, we 
present and explain its components. The compression 
framework is reversible that is the original trace can be 
reconstructed from its compressed version. In addition to 
that, we conducted an experiment with the execution 
traces of two software systems to measure the gain 
attained by such compression.  

 

1. Introduction 
Dynamic analysis is used in a large variety of 

applications in software engineering such as software 
testing, software performance analysis and, lately, reverse 
engineering and program comprehension. Generally 
speaking, it consists of analyzing the behavior of a 
software system to extract its proprieties.  

Dynamic information is typically expressed in the form 
of execution traces. It is extracted by instrumenting the 
code or modifying the execution environment. One of the 
main advantages of run-time information is its precision 
[1]. In this way, a software engineer can instrument 
exactly the source code that needs to be analyzed and 
ignore the other parts. In addition to that, dynamic 
analysis becomes crucial when it comes to understand the 

behavior of object-oriented systems. Indeed, dynamic 
binding makes it almost impossible to fully understand 
such systems by merely performing static analysis of the 
source code [7, 8].  

In reverse engineering in general and program 
comprehension in particular, there have been many 
studies that use dynamic information to extract high-level 
views of a software system or simply help software 
engineers to perform their daily maintenance activities 
more effectively [4, 6, 7, 10, 11, 12]. However, because 
of the considerable size of the data gathered by 
performing dynamic analysis, there is a need to create 
efficient tools to assist software engineers. One of the 
challenges that such tools face is to deal with very large 
execution traces.  

By analyzing the execution traces of the software 
systems we are working on, we noticed that they contain 
many redundancies that can be removed. This led us to 
create a comprehension-driven compression framework. 
In this paper, we present and explain its components. The 
compression framework is reversible – that is the original 
trace can be reconstructed from its compressed version. In 
addition to that, we experimented with two software 
systems to estimate the gain attained by such 
compression.  

In information theory, there are many known data 
compression techniques and algorithms. They are all 
based on the same principle, which is compressing data by 
removing redundancy [2]. Based on this, the key concept 
of data compression is to “assign short codes to common 
events (symbols or phrases) and long codes to rare 
events” [2]. Even though these techniques produce very 
good results, the information, once compressed, is no 
longer readable by humans.  So such algorithms certainly 
will not help in program comprehension. The framework 
for compression presented in this paper allows software 
engineers to better comprehend an execution trace by 
significantly reducing its size and at the same time 



keeping its content readable, hence the name 
comprehension-driven compression framework. 

There are two types of compression techniques [2]: 
lossless and lossy. Lossless compression techniques 
achieve compression in such a way that the exact original 
data set can be reconstructed from its compressed version. 
Lossy compression techniques produce better 
compression by dropping some information – but the 
original data set cannot be exactly reproduced. This paper 
is generally about lossless compression. However, in 
program comprehension, lossy compression of execution 
traces can be useful as well. We leave this point as future 
work.  

This paper focuses on traces of procedure calls, since 
many of today’s legacy systems were developed using the 
procedural paradigm. This is the case, for example, with 
the large telecommunication system we are working on, 
provided to us by the company that sponsors our research. 
However, our framework can also be applied to object-
oriented systems by considering method invocations. First 
we show that any procedure-call trace can be represented 
by a rooted ordered labeled tree. Then, we reduce the 
problem of detecting redundancies to the common 
subexpression problem described in [3, 5, 9]; we 
introduce this and explain it in depth in section 2. The 
common subexpression problem consists of transforming 
a rooted tree to an acyclic graph in such a way all the 
isomorphic subtrees are represented only once.  

The rest of this paper is organized as follows. In 
section 2, we explain the common subexpression problem 
and a linear algorithm that solves it. In section 3, we 
present the compression framework and its components. 
In section 4, we present the results of applying the 
framework to the execution traces of two software 
systems. In section 5, we present our conclusions and 
future directions 

In this paper, we use the word trace to mean 
procedure-call trace and the words redundancy and 
repetition are interchangeable. 

2. The common subexpression problem 
Any tree can be represented in a compact form by 

representing the occurrences of the same subtrees only 
once [5]. The result is a directed acyclic graph (see Figure 
1). This process solves what is called the “common 
subexpression problem”, and is also called “sharing” or 
“subtree factoring”. The main advantage of such a 
transformation is to save memory, but it can also facilitate 
the construction of tools to explore trees efficiently. 

An early work in the common subexpression problem 
was presented by Downy, Sethi and Tarjan [3]. They 
suggested solving it using a linear-time algorithm based 
on radix sorting. However, their algorithm seems to be of 

theoretical interest only due to its complexity and the use 
of a large number of hidden constants.  

A more practical algorithm is presented by Flajolet et 
al [5]. Their top-down recursive algorithm computes the 
compact form of a rooted binary tree in expected linear 
time. The algorithm combines a dynamically maintained 
table and hashing techniques to assign a unique identifier 
(UID) to each distinct subtree. Two subtrees are then 
isomorphic if their corresponding roots have the same 
identifier. The unique identifier of a node n consists of a 
triple <Label(n), UID(Left(n)), UID(Right(L))> where 
Right(n) and Left(n) represent the right and left children of 
n and Label(n) represents the label of the node n. The 
unique identifier is computed for each node. However, 
before assigning it to the node, the algorithm checks if the 
identifier has not already been assigned to another node. 
For this purpose, the algorithm uses a hash table to store 
the identifiers. If yes, the identifier is then returned from 
the table. Otherwise, the algorithm allocates the new 
identifier to the node and updates the table. The time the 
algorithm takes to compute the unique identifiers is 
constant because the input tree is a binary tree. Since a 
hash table is accessible in an expected constant time, the 
running time of the algorithm is reduced to the time it 
takes to traverse the tree, which is linear. 

Valiente presents an iterative version of Flajolet et al’s 
algorithm [9]. His algorithm is based on a bottom-up 
traversal of the tree using a queuing mechanism. 
Veliente’s approach extends the concept of unique 
identifiers to the notion of certificates and signatures. A 
certificate is a positive integer between 1 and n (n 
represents the size of the tree). The certificates are 
assigned to the nodes in such a way that two nodes have 
the same certificate if and only if the trees rooted at them 
are isomorphic as illustrated in Figure 1. To compute the 
certificate, the algorithm uses a signature scheme that 
identifies each node. The signature is similar to the unique 

A 

A 

C B 

E 

C 

C B 

A 

1 2 

3 2 2 1 

3 4 

5 

A E A C B 
1 2 3 4 5 

Figure 1. Compacted directed acyclic graph 
of a tree 



identifier of Flajolet et al’s algorithm. Similarly to the 
previous algorithm, a hash table is used to maintain the 
certificates and signatures, which limits the complexity of 
the algorithm to the time it takes to traverse the tree and 
the time it takes to compute the signature. If the degree of 
the tree (the number of children of any given node) is 
bounded by a constant, then the algorithm takes linear 
time.  

3. Trace compression framework 
In this section, we present a framework for trace 

compression without loss of information. The framework 
takes as input an execution trace file based on procedure 
calls and returns as output its compressed form. The trace 
file can be seen as a sequence of calls C0C1...Cn-1 where n 
represents the size of the trace (number of calls). 
Generally speaking, Ci is composed of a triple <Fi, Pi, Li> 
where Fi is the file name of the file that declares the called 
procedure, Pi stands for the procedure call and Li is a 
positive number representing the nesting level. Figure 2a 
shows an example of a trace containing 6 calls. The same 
trace can be represented by a tree as shown in figure 2b.  

In the case of concurrent systems, the process’ names 
are also indicated, usually before the file name, which 
extends the definition of a call to a quadruple. Some other 
information may be traced as well such as the running 
time of each procedure and so on.  

 
C0 = F0  P0  0           C0 
C1 = F1  P1  1           ├─ C1 
C2 = F2  P2  2           │    └─ C2 
C3 = F3  P3  1           └─ C3 
C4 = F4  P4  2                  ├─ C4 
C5 = F5  P5  2                  └─ C5 

    a)                     b) 

Figure 2. Example of a procedure-call trace 

An easy way of compressing the trace is to take its tree 
representation and apply the common subexpression 
algorithm. However, due to the size of the trace, the 
degrees of the tree may vary considerably and therefore 
have a significant impact on the performance of the 
algorithm. To improve performance, and also help 
software engineers browse the trace more easily, we 
therefore propose preprocessing the trace tree before 
using the subexpression algorithm. Preprocessing the 
trace consists of detecting and removing non-overlapping 
contiguous redundancies generated by loops and 
recursion. Following preprocessing, we apply the 
common subexpression algorithm to remove any 
remaining redundancies.  

3.1 Trace Preprocessing  
Redundant calls caused by simple loops and recursion 

tend to encumber the trace and should be removed. We 

store the number of occurrences of each redundancy so it 
is possible to reconstruct the original trace. We 
distinguish between contiguous redundancies of a single 
procedure call and contiguous redundancies of a sequence 
of calls. 

The first type of redundancy is easy to detect in linear 
time. However, one needs to distinguish between repeated 
calls due to loops and those due to recursion. The former 
appear in the trace file in the form of contiguous calls 
with the same nesting level. That is Ci+1 is a repetition of 
Ci generated by a loop if Fi+1 = Fi, Pi+1 = Pi and Li+1 = Li. 
Repetitions due to recursion appear exactly the same way 
except that the nesting levels are increased by 1 after each 
call, that is Li+1 = Li+1. Once the redundant calls are 
detected, we need to represent them only once and store 
the number of their occurrences. For this purpose, we 
delete the repeated lines and add a counter to the call that 
represents them. 

The rest of this section discusses the second type of 
redundancy – detection of contiguous redundant 
sequences.  

In a trace based on procedure calls, the size of a 
sequence represents the number of procedure calls that 
exist in a loop or nested loops (we deal with nested 
sequences later). Let d be the largest size of a repeated 
sequence. It is a well-known fact that d is extremely small 
compared to the size of the trace.  

Once the contiguous sequences are detected, we need 
to remove them and replace them by the number of their 
occurrences. However, it is important to maintain the 
hierarchical nature of the trace as shown in Figure 3 so it 
is possible to use it as input for the next step of the 
framework. For this reason, we add a virtual call that will 
be inserted at the beginning of the repeated sequence. The 
number of occurrences is added between brackets as 
illustrated in Figure 3. A consequence of such a 
representation is to avoid detecting overlapping 
sequences.  

A  A 
├─ B  │ 
├─ C  ├─ Sequence (3) 
├─ B  │      ├─ B 
├─ C         │      └─ C 
├─ B  ├─ D 
├─ C         └─ E 
├─ D 
└─ E 

      a)       b) 

Figure 3. A contiguous sequence replaced with the 
number of its occurrences 

The rest of this section is organized as follows. First, 
we present an algorithm that detects non-overlapping 
contiguous sequences and represent them once. Then, we 
discuss its running time.  



Our algorithm is divided into two main steps. The first 
step is concerned with detecting non-nested contiguous 
redundancies. The second step uses the algorithm defined 
in the first step to detect nested sequences. In both steps, 
we are interested in non-overlapping sequences only. To 
begin with, we introduce the following definitions: 

Definition 1: 

Two calls Ci and Cj are similar (denoted as Ci = Cj) if they 
refer to the same file name, procedure name and nesting 
level. In addition to that, in case Ci and Cj are repeated 
(the first type of redundancy discussed above), they have 
to be repeated the same number of times. This last 
condition can be verified by comparing the counters of Ci 
and Cj. 

Definition 2: 

Two sequences of calls S1 = C1C2...Cn and S2 = C1C2...Cm 
are similar if n = m and Ci = Cj using Definition 1, for all 
i and j such that 0 < i ≤  n and 0 < j ≤  m. 

The algorithm of Figure 4 detects and removes non-
overlapping non-nested contiguous redundancies. The 
algorithm proceeds through the calls of the trace. For a 
call Ci, the algorithm looks at most d lines back starting 
from i-1 until it finds a call Cj such that Cj = Ci (according 
to Definition 1). If j exists, that means that CjCj+1…Ci-1 is 
a candidate redundant sequence, we will call S. In this 
case, the algorithm looks for all the possible contiguous 
occurrences of S (using Definition 2). For example, If S is 
repeated, then its first redundancy should be the sequence 
CiCi+1... Ci+(i-j)-1. If the algorithm finds redundancies of S 
then it removes them, inserts the virtual call 
SEQUENCE(m) such that m is the number of occurrences 
of S, shifts the nesting levels of the calls of S and finally 
makes sure not to have overlapping by ignoring part of the 
trace that has been already processed (using the variable 
start) – it is important not to forget that, in this step,  we 
are looking for non-nested sequences only. 

To estimate the running time of the algorithm, let us 
consider m1 the total number of all removed occurrences 
of any redundant sequence. Therefore, the number of lines 
that have been removed from the trace according to the 
algorithm is at most dm1 - obviously dm1 < n. The time 
the algorithm takes to look for candidate redundant 
sequences (step 2.2) is bounded by O(d(n-dm1)) since the 
number of lines that are not removed is equal to  n-dm1 
and the largest size of a sequence is d. Step 2.5 makes at 
most dm1 comparisons and step 2.7 takes at most O(dm1) 
to remove the repeated occurrences. Step 2.9 can be 
bounded by O(dm1) since the number of redundant 
sequences is certainly less or equal than the number of 
their occurrences. Step 2.8 and 2.10 can be bounded by 
O(dm1) as well for the same reason. Since, dm1 < n then 

the whole algorithm takes O(dn) time. Since d is normally 
very small compared to n, therefore the algorithm runs in 
linear time. 

1 start = 0; i = 0; 
2 While (i < n) 
2.1 For call  Ci 
2.2 Find j such that: start <= j < i and (i – j) <= d  

and Cj = Ci 
2.3 If j exists then 
2.4 CjCj+1….Ci-1 is a candidate sequence denoted S 
2.5 Find all contiguous redundancies of CjCj+1....Ci-1 
2.6 If there are any 
2.7 Remove them 
2.8 Insert a virtual call before Cj labeled 

SEQUENCE(m) such that m is the number of 
occurrences of S 

2.9 Shift the nesting levels of Cj… Ci-1 
2.10 start = the index of the call that comes after the 

last call of the last redundancy to avoid 
overlapping 

2.11 End if 
2.12 Else 
2.13  i++ 
2.14 End if 
3 End 

Figure 4. Algorithm for detecting non-overlapping 
non-nested contiguous redundancies  

However, this algorithm excludes contiguous 
sequences due to recursion and the sequences presented in 
Figure 5. In fact, one can generalize it to deal with these 
sequences as well. However, the goal of the preprocessing 
step is to reduce the size of the trace to increase of the 
performance of the common subexpression algorithm, so 
we want to keep it as simple as possible and more 
importantly run in linear time. The common 
subexpression algorithm will detect all remaining 
redundancies. 

A 
├─ B 
├─ C 
├─ B 
├─ D 
├─ B 
├─ C 
├─ B 
└─ D 

Figure 5. A sequence that is not detected by the 
algorithm of Figure 4 

Nested sequences may occur usually due to the 
presence of nested loops in the source code. A nested loop 
can appear either in the same procedure or involve two or 
more procedures that call each other. Let k be the largest 
level of nesting. k will normally be very small since loops 
nested more than a few times are impractical for 
programmers. An intuitive algorithm that detects nested 



sequences consists of iterating the algorithm of Figure 4 k 
times as shown in Figure 6 

1 t = 0 
2 While (t < k) 
2.1 Perform the algorithm of Figure 4 
2.2 t++; 
2.3    d++; 
2.4 End while 
3 End 

Figure 6. An algorithm for detecting nested 
sequences 

If we consider k = 2, the example of Figure 7 requires 
two passes of the trace. During the first pass, the 
algorithm detects and removes the sequences EF in both 
subtrees and replaces them by their corresponding virtual 
calls. The second pass detects the sequence 
BCDSequence(2)EF and represents it only once. We 
notice that d (the size of the largest contiguous redundant 
sequence) is incremented by 1 in order to consider the 
virtual calls that are eventually inserted after each 
iteration. The reader can notice that the running time of 
this algorithm is O(kn(d+k)). Since d and k are very small 
compared to n, the running time of the algorithm is then 
reduced to O(n). 

k and d are considered as thresholds and need to be 
determined. One way of determining them is to perform a 
static analysis of the files that are involved in the 
execution trace. Another way is to run the algorithm until 
no more redundant sequences are detected. 

Trace Pass 1 Pass 2 

A  A               A 
│  │              │ 
├─ B ├─ B              └─ Sequence (2) 
├─ C ├─ C  ├─ B  
├─ D ├─ D ├─ C  
│    ├─ E │    └─ Sequence (2) └─ D 
│    ├─ F │             ├─ E └─Sequence (2) 
│    ├─ E │             └─ F ├─ E 
│    └─ F ├─ B └─ F 
├─ B ├─ C 
├─ C └─ D 
└─ D       └─ Sequence (2) 
      ├─ E                ├─ E 
      ├─ F                └─ F 
      ├─ E 

               └─ F 

Figure 7. An example of detection and replacement of 
nested sequences  

3.2 Application of the common subexpression 
algorithm 

The next step consists of removing more complex 
redundancies, such as those shown in Figure 5 and the 
non-contiguous redundancies. First, the trace is 

represented in the form of a rooted tree and then the 
common subexpression algorithm is used. 

3.2.1 Tree representation of a trace  

Any trace based on procedure calls can be represented 
by a rooted ordered labeled tree as illustrated in the 
figures used in the previous section. The nodes represent 
the procedure calls. The tree levels are similar to the 
nesting levels. We will need to perform a preorder 
traversal of the tree in order to output the trace with 
respect to the sequence of calls. The depth of the tree 
should be equal to the largest nesting level.  

It is important that the tree be ordered. This means that 
two subtrees are not isomorphic if they have the same 
nodes but their order is different. However, some 
application domains may omit this restriction, resulting in 
greater compression but an inability to reverse the 
compression. This could be useful in program 
comprehension, for example, where it may not always be 
important to know the exact sequence of calls when 
merely trying to understand high-level architecture. In this 
paper, we consider ordered trees only. 

3.2.2 Application of the algorithm 

The main step of the framework is to detect and 
remove all remaining redundancies that may exist in the 
trace, such as those shown in Figure 5 and non-contiguous 
redundancies. One should be very careful not to ignore 
the nesting levels when detecting these sequences. The 
reason is that they can be subject to further analysis in 
order to discover other characteristics of the system (e.g. 
dependencies between the trace components).  

The result of applying the common subexpression 
algorithm is an acyclic graph where all repetitions are 
represented only once. The size of the graph corresponds 
to the number of its nodes.  

3.3 Measuring Compression 
There are different ways of measuring the gain attained 

by a compression process. The easiest way is to compute 
the difference between the size of the original trace and 
the size of the compressed version. In this paper, we use a 
compression ratio that we define as the ratio of the 
compressed trace size to the original trace size. The 
smaller the ratio, the better the result. Generally speaking, 
we are interested in two compression ratios. The first one 
estimates the gain reached after preprocessing the trace – 
removing most of the contiguous redundancies. The 
second compression ratio represents the gain attained 
after applying the common subexpression algorithm. 

More formally, Let n be the size of the original trace. n 
represents the number of calls that exist in the trace. Since 
any trace can be represented by a rooted tree, n also 
represents the number of nodes of the tree representation 



of the original trace. Let n1 represent the size of the trace 
after preprocessing it, which is the number of nodes of the 
tree representation of the trace after removing the 
repetitions caused by loops and recursion. Let n2 be the 
size of the acyclic graph (the number of its nodes). The 
compression ratios we are interested in are r1 and r2 such 
that: 

1. r1 = n1 / n  
2. r2 = n2 / n  

4. Experiment 
4.1 Description 

We experimented with execution traces of two 
software systems. Our main objective is to estimate the 
expected gain attained by compressing them. However, 
we also want to understand how this gain is reached and if 
there is a way to further improve it. 

The first system is a drawing editor under UNIX called 
XFig [13]. The reason we chose XFig is because its 
domain concepts are intuitive and easy to understand. 
This facilitates the design of the software features that will 
be traced. Another reason is that XFig is a small open 
source system and therefore easy to instrument. 

The second system is a large legacy telecommunication 
system provided to us by the company that sponsors our 
research. An interesting thing about this system is that it is 
already instrumented with probes, usually used for testing 
or performance analysis. An internal mechanism allows 
generating all kinds of traces just by turning the probes on 
and executing the scenarios that correspond to the 
software features we wish to trace. We discuss the 
specifics of each system in the next section. 

In order to attain our objective, we collect different 
kinds of data for a deeper analysis. There are three 
different types of data we think are important to our 
experiment. We categorize them according to the 
following criteria: 

- Size criteria 
- Design criteria 
- Performance criteria 

Size criteria: In this category, we want to estimate the 
gain in terms of size obtained by applying the trace 
compression framework shown in the previous section. 
Typical results would be: 

1. The initial size of the trace n 
2. The size of the trace after preprocessing it n1 
3. The compression ratio r1 such that r1 = n1 / n 
4. The size of the trace after using the common 

subexpression algorithm n2. 
5. The compression ratio r2 such that  r2 = n2 / n 

Design criteria: The aim is to understand how the trace 
components can influence the compression result. We are 
interested in the following data: 

1. The number of procedures involved in a specific 
trace. It is important to distinguish between a 
procedure and a procedure call. The same procedure 
can be called several times  

2. Similarly, we are interested in the number of files 

There are many other data that can help understand the 
behavior of the trace components and therefore suggest a 
better compression technique. For example, if a particular 
procedure call appears everywhere in the trace, chances 
are that the corresponding procedure is a utility 
procedure. Such a procedure may not be of great interest 
for program comprehension as shown in [12] and might 
be ignored. However, this paper focuses on compression 
without loss of information only.  

Performance criteria: The running time of the common 
subexpression algorithm is linear if the degrees of the tree 
are small and bounded by a certain constant. However, the 
degrees of an execution trace can vary considerably even 
though the trace has been preprocessed. In order to assess 
the performance of the algorithm, we present and compare 
two graphs that show the variation of the degrees of the 
tree according to depth before and after the preprocessing 
step.  

4.2 Experiment Design 
The first step of our experiment is to design the 

scenarios that need to be traced. An easy way of doing 
this is to take different software features of each system 
and generate the corresponding execution traces. 
However, to increase the accuracy of our experiment, the 
software features should cover different parts of the 
system. 

XFig: 

XFig is a drawing system under UNIX [13]. XFig uses a 
menu to allow the users to manipulate objects 
interactively. We instrumented XFig semi-automatically 
by adding print statements at the entry and return points of 
each procedure. We considered software features that are 
related to the ability to draw and edit different shapes. We 
chose to compress the execution traces of the following 
software features: 

1. Draw a circle  
2. Draw a regular polygon  
3. Draw a polyline  
4. Draw text  
5. Delete an object  
6. Rotate an object  



7. Move an object  
8. Copy an object 

The Telecommunication System: 

The telecommunication system, we experimented with, 
is a large legacy system. Generating the system’s traces 
needs a very good understanding of how the scenarios are 
executed. We asked the software engineers to provide us 
with the software features they are interested to 
investigate and the way to execute them. Among the 
execution traces we gathered, we present an analysis of 
five of them.   

Due to the concurrent nature of the system, a trace file 
shows all the processes being executed at the same time. 
Therefore, there is a need to split the trace file into many 
other files that we call process files. For each trace file, 
we will have as many process files as processes in the 
trace. The compact form of the original trace is the 
accumulation of compacting all its process files. 

An issue that needs to be addressed when a real-time 
legacy system is used is the fact that the trace may be 
incomplete, that is, it may not contain some of the 
procedure calls that actually occurred. This is reflected as 
an inconsistency in the trace with respect to the nesting 
levels. There are many reasons that may cause such 
inconsistencies, e.g. a bug in the trace generation 
application, real-time interference, and so on.  

One solution to this problem is to complete the trace 
by filling up the gaps with virtual procedure calls. In this 
case, we say that the trace contains errors and it becomes 
necessary to estimate the error ratio, which is the number 
of missing calls to the size of the original trace. We 
represent the error ratio as:  

e = g / (g+n)  

Such that g is the number of gaps (missing procedure 
calls) and n the size of the trace. 

4.3 Results 
In this section, we summarize the results of applying 

the trace compression framework to the scenarios of XFig 
and the telecommunication system. 

XFig: 

Table 1 shows the size and design criteria results of 
compressing XFig’s traces. The compression ratio 
reached after removing the contiguous redundancies is 
almost the same for all the traces except for trace 2 
(drawing a regular polygon). A regular polygon is a 
polygon whose sides have all the same length, and whose 
angles are all the same. By default, XFig draws a regular 
polygon with 5 sides. We think that the presence of so 
many contiguous redundancies (r1 = 7.13%) is due to the 
fact that XFig repeats the same pattern to manipulate the 5 

sides and angles at the same time. Trace 4 (drawing text) 
has the smallest number of contiguous redundancies (r1  = 
41.92%). We think that this is due to the nature of this 
feature, which tends to be different from manipulating 
shapes. 

The next step of the framework shows interesting 
results. The compression ratios after removing all 
redundancies lies between 2.46% (trace 2) and 9.92% 
(trace 1). The results seem homogeneous except for trace 
2 that we think is due to the same reasons mentioned 
above. 

Table 1. Size and design criteria of compressing 
XFig’s traces 

Trace n n1 r1 (%) n2 r2(%) # Proced. # Files 
1 2198 623 28.34 218 9.92 167 30 

2 9076 647 7.13 223 2.46 174 31 

3 5140 889 17.30 236 4.59 178 30 

4 2710 1136 41.92 248 9.15 190 28 

5 3077 700 22.75 236 7.67 190 33 

6 6215 869 13.98 261 4.20 197 31 

7 3381 839 24.82 253 7.48 187 33 

8 4336 830 19.14 267 6.16 190 33 

We think that one of the major factors that contributed 
in getting such results is the number of procedures 
involved in the traces. For example, the software feature 
represented by trace 1 uses 167 procedures to generate 
2198 calls.  This represents 7.59% only. Therefore, there 
must be many redundancies all along the trace. Another 
reason can be associated with the nature of the system 
itself.  It is very common, in the case of a drawing system, 
to have repeated patterns to manage the layout, the 
coordinates, the zoom and so on. This could explain why 
the compression ratios are so low. 

The performance criteria consist of analyzing how the 
degrees of the tree representation of the trace vary 
according to depth. The reason we are interested in this is 
to evaluate the performance of the common subexpression 
algorithm (see section 2). For this purpose, we present 
two graphs using 3 traces of XFig (we cannot show all the 
results here because of space limitations).  

The first graph shows the variation before the 
preprocessing step see Figure 8a and the second graph 
shows the variation after the preprocessing step (see 
Figure 8b). In Figure 8b, we notice that the degrees of the 
tree decrease continuously, which makes the performance 
of the subexpression algorithm depends essentially on the 
size of the trace.  

Another observation related to the graph illustrated in 
Figure8b derives from the fact that, after the 
preprocessing step, the 3 curves look similar even though 



the scenarios are different. In fact, one can do a very 
useful analysis of the structure of XFig and its complexity 
just by analyzing its traces. For example, according to the 
graph, it is evident that XFig uses similar patterns to draw 
a polyline or text, or to move an object. The analysis of 
XFig’s structure is then reduced to discovering these 
patterns.  

The Telecommunication System: 

Table 2a shows the size criteria results of compressing 
the telecommunication system’s traces. The table 2b 
shows the design criteria. Before presenting the 
compression ratios, we notice that table 2a contains two 
additional columns to represent the number of missing 
procedure calls g and the error ratio e presented in section 
4.2. Even though, the error ratio is very small, one needs 
to do a deeper analysis to understand its impact on the 
resulting compression. We leave this point as future work.  

The compression ratio attained after removing the 
contiguous redundancies is almost the same for all the 
traces and lies between 82.43% and 90.91% which is very 
high compared to XFig’s traces. We think that this is due 
to the complex nature of this system and to the presence 
of missing calls that we had to replace with distinct virtual 
calls. The next step of the framework shows a 
compression ratio that lies between 14.04% to 31.86%, 

which is still a good result given that this compression is 
reversible.   

Table 2a. Size criteria (n represents the sum of the 
initial size of the trace and g) 

 Trace n g e (%) n1 r1 (%) n2 r2 (%) 
1 17465 589 3.37 14396 82.43 2452 14.04 

2 11095 313 2.82 9715 87.56 3308 29.82 

3 10175 381 3.74 8654 85.05 2361 23.20 

4 3621 121 3.34 3226 89.09 649 17.92 

5 3609 109 3.02 3281 90.91 1150 31.86 

 
Table 2b. Design criteria of compressing the 

telecommunication system’s traces. 

Trace # Procedures # Files 
1 802 189 
2 828 184 
3 876 190 
4 657 160 

5 668 164 

We notice that the number of procedures and files 
involved are considerably higher compared to XFig’s 
traces. This could explain why the compression ratios are 
also higher. In addition to that, we think that the presence 
of errors can be a significant factor as well. In fact, one 
can come up with a very interesting complexity metric 
based on the concepts presented here. The 
telecommunication system is obviously more complex 
than XFig and this is clearly shown in analyzing its traces. 

The graph presented in Figure 9a shows the variation 
of the degrees according to the depths of the rooted trees 
corresponding to three processes of trace 2 before 
preprocessing them. We cannot present all the results here 
but most of the graphs look similar to the graph presented 
in this figure. Figure 9b shows how the degrees decrease 
after the preprocessing step, which will result in an 
increase in the performance of the common subexpression 
algorithm.  

 Obviously, there is a gain in terms of execution time 
in having the preprocessing step. However, one needs to 
experiment with more software systems to assess this 
gain. From the comprehension perspective, we think that 
removing contiguous redundancies will help software 
engineers to better understand the traces. 

4.4 Discussion 
We showed that procedure-call traces could be 

considerably compressed in a way that preserves the 
ability for humans to understand them. The experiment’s 
results have exceeded our expectations with the 

Figure 8a. Variation of the degrees of the tree 
according to depth before the preprocessing step 

Figure 8b. Variation of the degrees of the tree 
according to depth after the preprocessing step 
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satisfactory compression ratios that we got for both 
systems. However, we need to do more experiments to see 
how all this could be useful to software engineers.  

We saw that one of the major factors that make this 
compression possible is the number of procedures 
involved in the trace. We notice that the higher this 
number, the higher the compression ratio (hence the lower 
the reduction in trace size). This is easy to explain since 
the trace is composed of invocations of these procedures. 
Therefore, if the trace is very large and the number of 
procedures it invokes is small then there must be many 
redundancies. 

One possible improvement to the techniques showed 
above is to look for procedures that are not of a great 
interest to software engineers and remove them before the 
compression process. Such procedures can be referred to 
as utility procedures. However, the resulting compressed 
trace will not be reversible. 

Another interesting finding is the idea that compressing 
a trace allows the software engineer to focus on useful 
information that it conveys. We believe that this is very 
helpful to understand the trace’s structure and the system 
in general. 

Finally, we notice that the preprocessing stage was 
very useful to reduce the trace size and therefore increase 
of the performance of the common subexpression 
algorithm.  

5. Conclusions and future directions 
The results shown in this paper can help build better 

tools based on execution traces in general and procedure-
call traces in particular. We showed that an execution 
trace can be reduced to a very small size if the repeated 
patterns are removed and represented only once. The 
same principles can apply to other kinds of traces as well. 
In fact, trace compression is not concerned with reducing 
the size of the trace only but removing what is not 
necessary in order to focus on the useful information that 
is conveyed. We also showed that the result of the 
compression can be subject to a deeper analysis to 
understand the complexity of the software feature that is 
represented. We intend to conduct more experiments with 
this framework to see how helpful it is to software 
engineers.  

Future directions should focus on lossy compression, 
that is, the original trace is not totally reconstructed from 
the compressed version. This can help to further reduce 
the trace by getting rid of what is not useful to software 
engineers. Types of information eliminated can include 
the number of repetitions, the order of calls, and some 
lower-level utility procedures. There are many criteria that 
help determine which procedures are useful to retain and 
which ones can be considered utilities. For example, the 
number of occurrences of the procedure in the trace, its 
execution time and so on. 

In this paper, we considered ordered trees only, that is, 
the sequence ABC is different from the sequence ACB. It 
is very common that this gives the same result and it is 
just an omission from the developer to keep track of the 
order. It would be interesting to explore when this order is 
important and when it is not and suggest lossy 
compression based on that. 

Finally, the non-contiguous redundancies that are 
detected using the common subexpression algorithm can 
be subject to further analysis to understand other 
proprieties of the system such as the relationships between 
its components. The common subexpression algorithm 
can be used to extract them efficiently. 
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Figure 9a. Variation of the degrees of the tree 
according to depth before the preprocessing step 

Figure 9b. Variation of the degrees of the tree 
according to depth after the preprocessing step 
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