
1

TotalADS: Automated Software Anomaly Detection
System

Syed Shariyar Murtaza1, Abdelwahab Hamou-Lhadj1, Wael Khreich1, Mario Couture2
1
Software Behaviour Analysis Research Lab, ECE, Concordia University, Montreal, QC, Canada

{smurtaza, wkhreich, abdelw@ece.concordia.ca}
2
Systems Protection and Countermeasures, Defence Research and Development Canada, Valcartier, Canada

mario.couture@drdc-rddc.gc.ca

ABSTRACT

When a software system starts behaving abnormally during

normal operations, system administrators resort to the use of logs,

execution traces, and system scanners (e.g., anti-malwares,

intrusion detectors, etc.) to diagnose the cause of the anomaly.

However, the unpredictable context in which the system runs and

daily emergence of new software threats makes it extremely

challenging to diagnose anomalies using current tools. Host-based

anomaly detection techniques can facilitate the diagnosis of

unknown anomalies but there is no common platform with the

implementation of such techniques. In this paper, we propose an

automated anomaly detection framework (TotalADS) that

automatically trains different anomaly detection techniques on a

normal trace stream from a software system, raise anomalous

alarms on suspicious behaviour in streams of trace data, and uses

visualization to facilitate the analysis of the cause of the

anomalies. TotalADS is an extensible Eclipse-based open source

framework that employs a common trace format to use different

types of traces, a common interface to adapt to a variety of

anomaly detection techniques (e.g., HMM, sequence matching,

etc.). Our case study on a modern Linux server shows that

TotalADS automatically identifies contemporary attacks on the

server, shows anomalous paths in system traces, and provides

forensic insights.

Keywords

Anomaly Detection, Trace Analysis, Software Security.

1. INTRODUCTION
Despite recent advances in software technologies, the security of

software systems continues to remain at risk. Everyday new

vulnerabilities are discovered and their exploits continue to

threaten software systems. To protect software intrusions,

anomaly detection systems (ADSs) are designed to detect

anomalies by measuring deviations from a normal baseline of a

host that is built in a lab (attack-free) environment using system

traces. Unlike signature-based intrusion detection techniques,

which use signature of known malwares, ADSs can detect

unknown emerging attacks.

In recent years, there has been a significant increase in the number

of anomaly detection techniques, which can be used to detect

anomalies on a host with a lower, acceptable false alarm rate, and

a high anomaly detection rate (e.g., see KSM [15], Semantic ELM

[4], and Hidden Markov Models [8]). Host-based anomaly

detection systems can benefit military systems,

telecommunication routers, and other safety critical systems

whose baselines of normal behaviour do not change rapidly. If

host-based anomaly intrusion detection systems are used

alongside signature-based intrusion detection methods, then many

known and unknown anomalies in a system could be easily and

immediately detected. However, host-based anomaly detection

techniques are not publicly available; developers will have to

implement these techniques themselves to use them for anomaly

detection. Also different developers/administrators may collect

different types of traces and software logs to diagnose anomalies.

To our knowledge, there is no tool or framework that allows

detecting anomalies using different techniques on different types

of traces and facilitates visual forensic analysis of anomalies.

In this paper, we overcome this challenge by proposing a novel

framework for automated host-based anomaly detection, called

TotalADS. TotalADS is an open source tool developed as a plug-

in for Eclipse. It integrates different anomaly detection

techniques, different trace readers and a rich set of trace views in

one common platform. It provides an interface to add new

anomaly detection techniques, the ability to add new readers for

different types of trace formats, and the capability to add new

views to visualize trace contents. TotalADS can also build and

evaluate models from anomaly detection techniques in real-time

on live trace streams. Once an anomalous trace is detected, it can

then be analyzed in detail using TotalADS views, such as, the

process flow view, the CPU utilization view, etc.

In short, our contributions are as follows:

 A novel open source framework to integrate anomaly

detection techniques and different trace formats, e.g.,

Common Trace Format [3] , XML and text format.

 Implementation of three host-based anomaly detection

techniques: Sequence Matching [7] [25], Hidden Markov

Model [27] [24] [8], and Kernel State Modeling (KSM) [15],

described later in the paper.

 A novel framework that allows training and testing of

anomaly detection techniques on trace streams in real-time.

The remainder of the paper is organized as follows. Section 2

explains the background and related techniques. Section 3

describes TotalADS in detail. Section 4 shows a case study on a

Linux server by using TotalADS and Section 5 concludes the

paper.

2. BACKGROUND AND RELATED WORK

2.1 Host-based ADS
Anomaly detection systems can be classified into Host-based

Intrusion Detection Systems (HIDS) or Network-based Intrusion

Detection Systems (NIDS). NIDS examine network traffic to

detect anomalies; e.g., the use of Bayesian network on network

traffic records to detect anomalies [23]. HIDS focus on using

metrics present on a host to detect anomalies. A type of HIDS uses

2

different techniques on normal audit records (logs) of a host (e.g.,

CPU usage, process id, user id, etc.). These systems measure an

anomaly threshold and raise alerts when particular attribute values

of a new record are above the threshold [27]. Another type of

HIDS train different techniques on system call traces of normal

software behaviour. These systems raise alerts when the deviation

from normal system calls is observed in unknown software

behaviour (e.g., a trace). Anomaly based HIDS focusing on system

calls’ deviations are related to our work and are described below.

Some well-known works in the area of system calls based anomaly

detection include the use of sequence matching [6] [7], Hidden

Markov models [25] [24] [27], and neural networks [9][2]. The

sequence matching and Hidden Markov model techniques work by

building a model of a system from system call traces during normal

operations (e.g., in labs) and then detecting anomalous sequences

in systems operating in fields. Neural networks based techniques

mostly take both normal and anomalous system call traces to build

models of the system that can characterize normal and anomalous

behaviour. In our earlier work, we transformed system calls into

states of kernel modules, built a model of the system from benign

kernel modules based traces, and detected anomalies in unknown

traces [15]. In this paper, we propose a tool (or an extensible

framework) in which different anomaly detection techniques can

be integrated easily.

2.2 Contemporary Tools
Contemporary tools can be divided into two main categories: (a)

tools for machine learning; and (b) tools for trace inspection.

Tools for machine learning incorporate variety of machine

learning techniques for experiments on different type of datasets;

e.g., Weka [26], R [21] and MOA [12]. These tools are mostly

suitable for experiments on any kind of data; however, data have

to be transformed into their format. These tools also do not

support host-based anomaly detection techniques like Sequence

Matching, Kernel State Modeling. HMM has to be programmed

too, to be used as a host-based anomaly detection technique.

TotalADS focuses specifically on analysis of software traces and

logs to build host-based anomaly detection models. It can also be

used to collect traces and build models in real time. TotalADS

also provides the necessary views to inspect traces to facilitate in

forensic analysis which do not exist in machine learning tools.

The tools for trace inspection only provide contextual views or

textual summary to investigate traces. For example, Babletrace

can be used to convert binary LTTng traces in Linux into a text

format [10], and later the grep utility can be used to find patterns

in it. Strace analyzer can provide statistics about a trace in a

textual format [20]. Similarly, tools for user space trace analysis,

such as Bugsense [1] and Cittercism [2] provide only summaries

in the form of charts, trends of a trace. None of these tools

automatically point out anomalous traces and the origin of

anomalies.

In addition to trace viewers, the host-based anomaly detection

tools like OSSEC [17], Samhain [19], etc. are also related to

TotalADS. These tools mostly use predefined rules to monitor

logs, opened ports, integrity of running kernel, etc. In TotalADS,

there are no predefined rules. TotalADS uses machine learning

techniques to capture a normal baseline of a system and detect

anomalies in real-time. For example, the port scanner cannot

detect an attack that bypasses the authentication mechanism on an

already opened port by MySQL; however, an anomaly detection

technique can detect such attack (see case study, Section 4).

3. TotalADS
TotalADS provides a framework, based on Eclipse IDE, for

integrating multiple anomaly detection techniques in a way that

they can be evaluated on different types of execution traces.

TotalADS is based on Java and its architecture is shown in Figure

1. It consists of four main components: Anomaly Detection

Engine, Trace Management Engine, Trace Inspection Engine, and

a Database Management Engine. In the following sections, we

explain each of these components in detail.

3.1 Trace Management Engine
Trace Management Engine allows to read different trace formats.

It has a CTF (binary) trace format reader for the LTTng tracer

[10], a text file reader using regular expressions and a XML log

reader. The Common Trace Format (CTF) for traces is a format

standardized by the Multicore Association in collaboration with

the Linux community [3]. CTF is actually a compressed format to

represent a large number of events with their timestamps. Any

trace, once converted to a CTF format, can be directly used with

TotalADS without adding any additional readers.

In Linux-based systems, the LTTng tracer can be used to collect

both kernel (system call traces) and user space (function call)

traces [10]. LTTng is a lightweight Linux tracer that stores traces

in a Common Trace Format (CTF) [3]. LTTng also provides a

utility to transform any trace into CTF format and TotalADS can

easily read traces in the CTF format. TotalADS can also read

traces from other tracers, such as STrace which generates a text

format of traces [20]. Any kind of text file can be parsed in

Figure 1: Overview of TotalADS Architecture

3

TotalADS using the regular expression wizard. Similarly, XML

logs can be parsed automatically by using wizards in TotalADS.

Trace Management Engine also provides an extensible common

interface (in Java) to add new trace readers.

In addition to reading existing traces in the system, the Trace

Management Engine allows to collect LTTng (kernel) traces from

a remote system via Secure Shell (SSH) protocol. It then extracts

the desired events and passes them to the Anomaly Detection

Engine. The live trace streams can then be used by the Anomaly

Detection Engine to evaluate different techniques in real-time.

3.2 Anomaly Detection Engine
This is the most important component of TotalADS. It integrates

different host-based anomaly detection techniques by using a

common interface in Java. Any anomaly detection technique can

be used with TotalADS to build models from different types of

traces either offline or through live streaming. A model is the

representation of traces that a technique develops during training.

A technique can be used to build many models. Once a model is

built, it can be validated on another (or same) set of normal traces.

During validation, the technique may adjust decision thresholds of

a model to lower its false alarm rate before putting the model into

testing (production). During the testing phase, a model is used to

evaluate traces coming from a system in operation to detect

anomalies in incoming traces. Decision thresholds can also be

adjusted during testing by a user if suspicious alarm rate by a

model is required to be decreased or increased. The best model is

the one which has a low false alarm rate and a high true alarm rate

on test traces. TotalADS integrate three different anomaly

detection techniques, namely, Kernel State Modeling (KSM),

Sequence Matching (SQM) [7] [25] [6], and Hidden Markov

Model (HMM) [27] [24] [8].

KSM focuses on detection of anomalies by transforming system

calls into states of kernel modules [15]. A system call can be

classified into eight different states: file system state, kernel state,

memory management state, networking state, inter process

communication state, security state, architecture state and (a rare)

unknown state. KSM then identifies anomalies by comparing the

probabilities of occurrences of states in normal and anomalous

traces [15].

SQM works by extracting sequences of length ‘n’ from a trace by

sliding a window one event (e.g., system call) at a time [6] [7]

[25]. For example, for a trace having system calls “3, 6, 195,

195”, two sequences “3, 6, 195” and “6, 195, 195” of length 3 can

be extracted. SQM extracts sequences from normal traces and

then compares them against the sequences in an unknown trace. If

a new sequence is found in an unknown trace then it considers it

as anomalous. The Hamming distance between sequences can be

used to adjust the decision threshold to reduce false alarms; e.g., a

sequence “3, 5, 195” is anomalous for above sequences as a

mismatch occurs only at one position—i.e., a Hamming distance

of only one. If the minimum Hamming distance matching

criterion is set to more than one, then it is a normal sequence.

HMM is a stochastic model for sequential data and hence it is

naturally suitable for modeling temporal order of system call

sequences [18]. The process is determined by a latent Markov

chain having a finite number of states, N, and a set of output

observation probability distributions, B, associated with each

state. Starting from an initial state N0, the process transits from

one state to another according to the matrix of transition

probability distribution, A, and then emits an observation symbol

Ok from a finite alphabet (i.e., M distinct observable events)

according to the output probability distribution, Bj(Ok), of the

current state Nj. HMM is typically parameterized by the initial

state distribution probabilities (Π), output (emission) probabilities

(B), and state transition probabilities (A). Baulm-Welch technique

is used to train the model parameters to fit the sequences of

observations, T, [18]. During the validation phase, HMM adjusts

the decision threshold (log likelihood) of prediction of anomalous

alarms on T sequences from traces. In the testing phase, if the

probability value of any sequence in a trace is below the selected

threshold, then we consider the trace as anomalous otherwise we

consider it as normal. We use Apache Mahout, the scalable

machine learning library to implement HMM [11].

3.3 Trace Inspection Engine
Trace Inspection Engine encompasses a set of views that can be

used to build anomaly detection models, diagnose traces using

models, train and evaluate models on live traces, inspect

individual event details in a trace, understand control flow of

processes, comprehend utilization of CPUs in a trace at different

time, get event statistics in a trace, and visualize occurrences of

events as histogram of frequencies over a time line. Trace

Inspection Engine is based on TMF (Tracing and Monitoring

Framework) [22], a tracing platform developed by Ericsson. TMF

views can be extended too by using a common Java interface.

Due to the lack of space, we have omitted the details of different

views in the trace inspection engine but some of the views are

shown in the case study in Section 4.

3.4 Database Management Engine
Database Management Engine provides an interface to store data

in a NoSQL based database management systems that stores data

in the form of JSON (JavaScript Object Notation). The advantage

of JSON is that models can be serialized directly from their class

representation in memory to a database without any conversion

into a relational schema like structure. Currently, we are using

MongoDB to store models and corresponding information [14].

4. Case Study: Anomaly Detection on a Linux

Server
This section discusses the experiments performed on a Linux

server using TotalADS. In particular, we address the following

two research questions:

(RQ1) Can TotalADS automatically train and test models on

live trace streams?

(RQ2) Can TotalADS automatically diagnose anomaly and

facilitate in diagnosis of the origin of anomaly?

4.1 Dataset
We used an Ubuntu Linux server as a case study. We equipped

the server with Ubuntu Linux 12.04 operating system with

Apache 2.2.17 web server, PHP 5.3.5 server side scripting engine,

TikiWiki 8.1 content management system, FTP server, MySQL

distribution 5.1.56 (version 14.14) database management system

and an SSH server. These versions of the application software

systems were selected because of the well-known vulnerabilities.

MySQL 14.14 has a vulnerability which allows remote attackers

to bypass the authentication mechanism by repeatedly

authenticating the same incorrect password (CVE 2012-2122)1.

TikiWiki 8.1 has a vulnerability allowing remote attacker to

execute any arbitrary PHP code (CVE 2012-0911). PHP 5.3.5

1 CVE represents a Common Vulnerabilities and Exposures (CVE) ID

is a unique identifier assigned to vulnerabilities [16].

4

vulnerability allows the remote attacker to get context sensitive

information from the process’s memory (CVE 2011-1153).

Apache web server has a vulnerability to allow remote attackers to

cause a daemon crash via an empty cookie (CVE 2012-0021).

Similar configuration was also used in a dataset publicly available

on the site of University of New South Wales [5]. To exploit these

vulnerabilities, we used an open source penetration testing tool

Metasploit Framework (MSF) [13]. We also used MSF to

generate brute-force attacks on FTP and SSH servers. We

collected anomalous data by executing attacks using MSF.

 In order to obtain data of normal activities on the Linux server,

we performed several tasks that reflect the normal utilization of

the system. These tasks include MySQL authentication and

manipulation on Tiki database, document processing in Open

Office Writer and Calculator, directory and files manipulation,

installation of additional software such as Vim, web browsing,

web page serving, and MySQL, FTP and SSH authentication and

execution of queries from a remote system.

4.2 The Process
We started the process of trace collection by employing the Live

Monitoring view of TotalADS. The process is divided into the

two modes: Live Training and Testing, and Live Testing only.

In the Live Training and Testing mode, we first initialized a

model of KSM, a model of SQM, and a model of HMM in

TotalADS. Each technique takes different initialization

parameters. We selected the kernel version of Ubuntu 12.04 for

KSM, and window length of 6 for SQM. For HMM, we selected

10 states, 200 observable events, and 10 iterations of the Baum-

Welch technique. Second, we performed live training and testing

over SSH on our Linux server. The idea is to only use the system

normally without any attacks. We built the normal models of the

system using live streaming. During this live training and testing,

TotalADS first tests a new trace against an existing model in a

system, shows its results, and the trains the model on the same

trace. We performed different normal activities on the Linux

server, as described in Section 4.1, during this phase.

In the second mode, live testing, we started trace collection on the

Linux server by only selecting the live testing option in

TotalADS. We used the server normally, started Metasploit [13]

on another system and attacked the Linux server. The idea is to

simulate both normal and abnormal behaviour of the system. We

used different attacks one by one to exploit vulnerabilities in the

applications running on the Linux server. If an attack is detected

by a technique, the trace of the attack is further investigated in the

trace analysis views.

4.3 Results

4.3.1 Automatic Training and Testing on Live Trace

Streams
The results for Live Training and Testing phase are shown in

Figure 2. TotalADs started by testing the new traces on the

models of the KSM technique, the HMM technique, and the SQM

technique. If a trace is found as anomalous then TotalADS plots it

as anomaly (one) on a chart. It then trains three models on the new

trace. Figure 2a shows the complete view of TotalADS; whereas,

Figure 2b and Figure 2c only show the zoomed-in view of the

chart in Live training and testing mode.

Initially, each of the three models of the three different techniques

predicted every incoming trace as an anomaly. TotalADS at this

point shows higher false alarm rate because the models built for

techniques did not have sufficient (or rather zero) information to

predict anomalies (Figure 2a). The three series in the chart

represent three different models. When there is only one line

visible on the chart then it means that three models predict the

same results. All initial traces are shown as anomalies on the chart

in Figure 2a, except at 8th and 11th minute.

When time passed, regular binary signals started to appear on the

chart, showing that several newer traces have started to be

detected as normal traces (Figure 2b). At this point, we also

slightly increased the decision thresholds of the models. In

machine learning, decision thresholds are usually adjusted during

a validation of a model before testing. The decision threshold for

SQM, HMM, and KSM were Hamming distance, alpha, and

probability values, respectively. This process of training kept on

continuing until we reached a point in time where all the new

upcoming traces started to appear as normal. This is shown in

Figure 2c. We stopped live training and testing mode at this point.

Figure 2 Live Training and Testing in TotalADS

5

These results show that TotalADS can be used to train and test

anomaly detection techniques on live traces (streams of traces)

from a real system with minimal human intervention. This

answers the first research question (RQ1).

4.3.2 Automatically Detect Anomaly and Inspect the

Origin of Anomaly
In the Live Testing mode, we used the server in a normal manner

and also exploited its vulnerabilities using Metasploit [13]. The

results are shown in Figure 4. In the case of Figure 4, the attack

executed was an attempt to illegally bypass MySQL

authentication mechanism with a wrong password. Also note that

the normal operations include the legal remote authentication on

MySQL. Initially, see Figure 4, when the server was used

normally the predictions of anomalous alarms remain zero from

all three models but as the remote hacker (Metasploit) tried to

penetrate the system, the models raised anomalies in a span of 3

(between 9 and 11) minutes. The models did not raise anomalies

on exactly the same traces but the anomalies were raised on the

traces collected in a close proximity.

For example, the SQM technique showed 1 out of 10 traces as

anomalous and the anomalous sequence in the trace contained 4

(66%) occurrences of the “sys_recvfrom” system call in a

sequence of total of 6 system calls. The anomalous sequence was

“sys_rt_sigtimedwait, sys_recvfrom, sys_recvfrom,

sys_recvrfrom, sys_poll, sysrecvfrom”. The “sys_recvfrom”

system call is used to receive a message from a socket. This seems

suspicious enough to explore it further. We therefore loaded this

trace into the trace inspection views. The trace inspection views

are shown in Figure 3. The three trace inspection views shown in

Figure 3are Control Flow view, Events view, and Resource View.

In the Events view, we searched for the event “recvfrom” and

found all the occurrences of “sys_recvfrom” emphasized more

than other events by the Events view. The detailed attributes, in

this case arguments of the system call, are also shown in the

Events view. When we clicked on that “sys_recvfrom” at the time

stamp “02:09:23.588.581 765”, the Control Flow view got

synchronized and immediately showed the process corresponding

to the timestamp and the event. The yellowish green bar

represents the wait-blocked state of the process, brown bar

represents the CPU-wait, the green bar represents the user mode,

and the blue bar represents the system call mode of a process.

When a mouse is hovered over the bar, the details are also show

as a tool tip (see Figure 3). In this case, this is a process “unity-2d-

shell” running at CPU 0 (see resource view) and it switched few

times from user mode to system call mode in a short span of time.

These few system calls are “sys_recvfrom” system calls occurring

consecutively as shown in the Events view. The Unity-2d-shell2

process is a component of Unity Desktop in Ubuntu that provides

a shell interface to the system and “sys_recvfrom” is a system call

that provides a common entry point for hackers to open a socket.

Thus, this shows that a malicious hacker was trying to login into

the system at this point of time.

Figure 4: Detection of the attempt of an attack to bypass

authentication mechanism in MySQL

In a similar manner to the sequence matching technique, the

model of KSM also showed an anomalous alarm with the 42%

system calls for file subsystem, 28% system calls of Kernel

subsystem, 23% system calls of networking subsystem, 5%

system calls of memory management subsystem, and the 2%

system calls for the remaining subsystems. The HMM model did

not point out a suspicious trace. HMM is a complicated but

powerful algorithm and sometimes it converges to local minimum

2 https://wiki.ubuntu.com/Unity2D;

Figure 3: Inspection of the attack to bypass authentication mechanism in MySQL

6

rather than global minimum. It therefore requires additional

tuning. However, SQM and KSM both pointed out the suspicious

activity and it can be ascertained the trace was anomalous.

In addition to the attack on MySQL, we also executed other

exploits on TikiWiki, Apache and brute-force attacks on SSH and

FTP. The brute-force attacks remained unsuccessful; however, the

attempts of the attacks were detected as suspicious. In summary,

all the attacks were detected correctly and the false alarm rate

remained less than 10%.

Thus, TotalADS can automatically detect the anomaly and

facilitates in locating the origin of anomaly descriptively and

visually. Such automated descriptive and visual analysis for

software traces does not exist in the contemporary tools. This also

answers our research question (Q2).

5. CONCLUSION
In this paper, we presented TotalADS, a new framework for

integrating various anomaly detection techniques. The framework

is built as a plug-in for Eclipse. It can be easily extended to

support new techniques. TotalADS also allows the analysis,

visualization, and diagnosis of traces for forensic purposes.

TotalADS is built on the top of TMF, which is a powerful tracing

framework that supports standard trace formats such as CTF.

During the development of the tool, we have experienced that

extending open source technologies is harder than closed source

technologies, due to the lack of documentation and tutorials.

However, open source technologies have provisions for creativity

that anyone can leverage, which is lacking in closed source

technologies. TotalADS is currently evolving: additions of new

techniques, creation of new interfaces, or improvements in

existing ones are likely to occur.

We are currently working with DRDC (Defence R&D Canada) to

conduct field experiments to test its usability in real environment.

The tool is under review by Eclipse developer community and it

will soon be available in Eclipse Market Place. Initial information

about the tool is available on this link:

www.ece.concordia.ca/~abdelw/sba/totalads/.

6. REFERENCES
[1] BugSense. [Online]. https://www.bugsense.com/

[2] Cittercism. [Online]. http://www.crittercism.com/

[3] Common Trace Format (CTF). [Online].

http://www.efficios.com/ctf

[4] G. Creech and J. Hu, "A Semantic Approach to Host-based

Intrusion Detection Systems Using Contiguous and

Discontiguous System Call Patterns," IEEE Transactions on

Computers, vol. PP, no. 99, pp. 1-1, 2013.

[5] G. Creech and J. Hu, "Generation of a new IDS test dataset:

Time to retire the KDD collection," in In Wireless

Communications and Networking Conference, 2013, pp.

4487-4492.

[6] S. Forrest, S.A. Hofmeyr, A. Somayaji, and T.A. Longstaff,

"A sense of self for Unix processes," in Proc. of the 1996

IEEE Symp. on Security and Privacy, Washington, DC,

USA, May 1996, pp. 120-128.

[7] S. A. Hofmeyr, S. Forrest, and and A. Somayaji, "Intrusion

detection using sequences of system calls," J. Comput.

Security, vol. 6, no. 3, pp. 151-180, Aug. 1998.

[8] W. Khreich, E. Granger, A. Miri, and R. Sabourin, "Iterative

Boolean combination of classifiers in the ROC space: An

application to anomaly detection with HMMs, Pattern

Recognition," Pattern Recognition, vol. 43, no. 8, pp. 2732-

2752, Aug. 2010.

[9] P. Lichodzijewski, A. Nur Zincir-Heywood, and M.

Heywood, "Host-based intrusion detection using self-

organizing maps," in Proceedings of the 2002 Intl. Conf. on

Neural Networks, Honolulu, USA, 2002, pp. 1714-1719.

[10] LTTng. [Online]. http://lttng.org/

[11] Mahout. [Online]. https://mahout.apache.org/

[12] Massive Online Analysis (MOA). [Online].

http://moa.cms.waikato.ac.nz/

[13] Metasploit Pentration Testing Software. [Online].

http://www.metasploit.com

[14] MonogDB: A NoSQL Database. [Online].

https://www.mongodb.org/

[15] S.S. Murtaza, W. Khreich, A. Hamou-Lhadj, and M.

Couture, "A Host-based Anomaly Detection Approach by

Representing System Calls as States of Kernel Modules," in

24th Intl. Symposium on Software Reliability Engineering,

Pasadena, 2013.

[16] National Vulnerability Database (NVD). [Online].

http://nvd.nist.gov

[17] Ossec: Host-based Intrusion Detection System. [Online].

http://www.ossec.net/

[18] L.R Rabiner, "A Tutorial on Hidden Markov Models and

Selected Applications in Speech Recognition," Proc. of

IEEE, vol. 77, no. 2, pp. 257-286, Feb 1989.

[19] Samhain. [Online]. http://www.la-samhna.de/samhain/

[20] Strace. [Online].

http://sourceforge.net/projects/straceanalyzer/

[21] R Development Core Team, "R: A Language and

Environment for Statistical Computing," R Foundation for

Statistical Computing, 2011.

[22] TMF: Tracing and Monitroing Framework. [Online].

http://www.eclipse.org/linuxtools/projectPages/lttng/

[23] A. Valdes and K. Skinner, "Adaptive, Model-Based

Monitoring for Cyber Attack Detection," in Proc. of 3rd Intl.

Workshop on Recent Advances in Intrusion Detection, LNCS,

France, Oct. 2000, pp. 80-92.

[24] W. Wang, X. H. Guan, and X. L. Zhang, "Modeling program

behaviors by hidden Markov models for intrusion detection,"

in Proc. of Intl. Conf. on Machine Learning and Cybernetics,

Shanghai, China, Aug. 2004, pp. 2830-2835.

[25] C. Warrender, S. Forrest, and B. Pearlmutter, "Detecting

intrusions using system calls: alternative data models," in

Proc. of 1999 IEEE Symposium on Security and Privacy,

Oakland, USA, May 1999, pp. 133-145.

[26] I. H. Witten and E. Frank, Data Mining: Practical Machine

Learning Tools and Techniques. USA: Morgan Kaufmann

Publisher, 2005.

[27] D. Y. Yeung and Y. Ding., "Host-based intrusion detection

using dynamic and static behavioral models," Pattern

Recognition, vol. 36, no. 1, pp. 229-243, Jan. 2003.

https://www.bugsense.com/
http://www.crittercism.com/
http://www.efficios.com/ctf
http://lttng.org/
https://mahout.apache.org/
http://moa.cms.waikato.ac.nz/
http://www.metasploit.com/
https://www.mongodb.org/
http://nvd.nist.gov/
http://www.ossec.net/
http://www.la-samhna.de/samhain/
http://sourceforge.net/projects/straceanalyzer/
http://www.eclipse.org/linuxtools/projectPages/lttng/

