
1 

 

 

TotalADS: Automated Software Anomaly Detection 
System  

Syed Shariyar Murtaza1, Abdelwahab Hamou-Lhadj1, Wael Khreich1, Mario Couture2 
1
Software Behaviour Analysis Research Lab, ECE, Concordia University, Montreal, QC, Canada 

{smurtaza, wkhreich, abdelw@ece.concordia.ca}  
2
Systems Protection and Countermeasures, Defence Research and Development Canada, Valcartier, Canada 

mario.couture@drdc-rddc.gc.ca 
 

ABSTRACT 

When a software system starts behaving abnormally during 

normal operations, system administrators resort to the use of logs, 

execution traces, and system scanners (e.g., anti-malwares, 

intrusion detectors, etc.) to diagnose the cause of the anomaly. 

However, the unpredictable context in which the system runs and 

daily emergence of new software threats makes it extremely 

challenging to diagnose anomalies using current tools. Host-based 

anomaly detection techniques can facilitate the diagnosis of 

unknown anomalies but there is no common platform with the 

implementation of such techniques. In this paper, we propose an 

automated anomaly detection framework (TotalADS) that 

automatically trains different anomaly detection techniques on a 

normal trace stream from a software system, raise anomalous 

alarms on suspicious behaviour in streams of trace data, and uses 

visualization to facilitate the analysis of the cause of the 

anomalies.  TotalADS is an extensible Eclipse-based open source 

framework that employs a common trace format to use different 

types of traces, a common interface to adapt to a variety of 

anomaly detection techniques (e.g., HMM, sequence matching, 

etc.). Our case study on a modern Linux server shows that 

TotalADS automatically identifies contemporary attacks on the 

server, shows anomalous paths in system traces, and provides 

forensic insights.   

Keywords 

Anomaly Detection, Trace Analysis, Software Security. 

1. INTRODUCTION 
Despite recent advances in software technologies, the security of 

software systems continues to remain at risk. Everyday new 

vulnerabilities are discovered and their exploits continue to 

threaten software systems. To protect software intrusions, 

anomaly detection systems (ADSs) are designed to detect 

anomalies by measuring deviations from a normal baseline of a 

host that is built in a lab (attack-free) environment using system 

traces. Unlike signature-based intrusion detection techniques, 

which use signature of known malwares, ADSs can detect 

unknown emerging attacks.  

In recent years, there has been a significant increase in the number 

of anomaly detection techniques, which can be used to detect 

anomalies on a host with a lower, acceptable false alarm rate, and 

a high anomaly detection rate (e.g., see KSM [15], Semantic ELM 

[4], and Hidden Markov Models [8]). Host-based anomaly 

detection systems can benefit military systems, 

telecommunication routers, and other safety critical systems 

whose baselines of normal behaviour do not change rapidly. If 

host-based anomaly intrusion detection systems are used 

alongside signature-based intrusion detection methods, then many 

known and unknown anomalies in a system could be easily and 

immediately detected. However, host-based anomaly detection 

techniques are not publicly available; developers will have to 

implement these techniques themselves to use them for anomaly 

detection. Also different developers/administrators may collect 

different types of traces and software logs to diagnose anomalies. 

To our knowledge, there is no tool or framework that allows 

detecting anomalies using different techniques on different types 

of traces and facilitates visual forensic analysis of anomalies. 

In this paper, we overcome this challenge by proposing a novel 

framework for automated host-based anomaly detection, called 

TotalADS. TotalADS is an open source tool developed as a plug-

in for Eclipse. It integrates different anomaly detection 

techniques, different trace readers and a rich set of trace views in 

one common platform. It provides an interface to add new 

anomaly detection techniques, the ability to add new readers for 

different types of trace formats, and the capability to add new 

views to visualize trace contents. TotalADS can also build and 

evaluate models from anomaly detection techniques in real-time 

on live trace streams. Once an anomalous trace is detected, it can 

then be analyzed in detail using TotalADS views, such as, the 

process flow view, the CPU utilization view, etc.  

In short, our contributions are as follows: 

 A novel open source framework to integrate anomaly 

detection techniques and different trace formats, e.g.,  

Common Trace Format [3] , XML and text format. 

 Implementation of three host-based anomaly detection 

techniques: Sequence Matching [7] [25], Hidden Markov 

Model [27] [24] [8], and Kernel State Modeling (KSM) [15], 

described later in the paper. 

 A novel framework that allows training and testing of 

anomaly detection techniques on trace streams in real-time. 

The remainder of the paper is organized as follows. Section 2 

explains the background and related techniques. Section 3 

describes TotalADS in detail. Section 4 shows a case study on a 

Linux server by using TotalADS and Section 5 concludes the 

paper. 

2. BACKGROUND AND RELATED WORK 

2.1  Host-based ADS 
Anomaly detection systems can be classified into Host-based 

Intrusion Detection Systems (HIDS) or Network-based Intrusion 

Detection Systems (NIDS). NIDS examine network traffic to 

detect anomalies; e.g., the use of Bayesian network on network 

traffic records to detect anomalies [23]. HIDS focus on using 

metrics present on a host to detect anomalies. A type of HIDS uses 



2 

 

different techniques on normal audit records (logs) of a host (e.g., 

CPU usage, process id, user id, etc.). These systems measure an 

anomaly threshold and raise alerts when particular attribute values 

of a new record are above the threshold [27]. Another type of 

HIDS train different techniques on system call traces of normal 

software behaviour. These systems raise alerts when the deviation 

from normal system calls is observed in unknown software 

behaviour (e.g., a trace). Anomaly based HIDS focusing on system 

calls’ deviations are related to our work and are described below. 

Some well-known works in the area of system calls based anomaly 

detection include the use of sequence matching [6] [7], Hidden 

Markov models [25] [24] [27], and neural networks [9][2]. The 

sequence matching and Hidden Markov model techniques work by 

building a model of a system from system call traces during normal 

operations (e.g., in labs) and then detecting anomalous sequences 

in systems operating in fields.  Neural networks based techniques 

mostly take both normal and anomalous system call traces to build 

models of the system that can characterize normal and anomalous 

behaviour. In our earlier work, we transformed system calls into 

states of kernel modules, built a model of the system from benign 

kernel modules based traces, and detected anomalies in unknown 

traces [15]. In this paper, we propose a tool (or an extensible 

framework) in which different anomaly detection techniques can 

be integrated easily.  

2.2 Contemporary Tools 
Contemporary tools can be divided into two main categories: (a) 

tools for machine learning; and (b) tools for trace inspection. 

Tools for machine learning incorporate variety of machine 

learning techniques for experiments on different type of datasets; 

e.g., Weka [26], R [21] and MOA [12]. These tools are mostly 

suitable for experiments on any kind of data; however, data have 

to be transformed into their format. These tools also do not 

support host-based anomaly detection techniques like Sequence 

Matching, Kernel State Modeling. HMM has to be programmed 

too, to be used as a host-based anomaly detection technique. 

TotalADS focuses specifically on analysis of software traces and 

logs to build host-based anomaly detection models. It can also be 

used to collect traces and build models in real time. TotalADS 

also provides the necessary views to inspect traces to facilitate in 

forensic analysis which do not exist in machine learning tools. 

The tools for trace inspection only provide contextual views or 

textual summary to investigate traces. For example, Babletrace 

can be used to convert binary LTTng traces in Linux into a text 

format [10], and later the grep utility can be used to find patterns 

in it. Strace analyzer can provide statistics about a trace in a 

textual format [20]. Similarly, tools for user space trace analysis, 

such as Bugsense [1] and Cittercism [2] provide only summaries 

in the form of charts, trends of a trace. None of these tools 

automatically point out anomalous traces and the origin of 

anomalies.  

In addition to trace viewers, the host-based anomaly detection 

tools like OSSEC [17], Samhain [19], etc. are also related to 

TotalADS. These tools mostly use predefined rules to monitor 

logs, opened ports, integrity of running kernel, etc. In TotalADS, 

there are no predefined rules. TotalADS uses machine learning 

techniques to capture a normal baseline of a system and detect 

anomalies in real-time. For example, the port scanner cannot 

detect an attack that bypasses the authentication mechanism on an 

already opened port by MySQL; however, an anomaly detection 

technique can detect such attack (see case study, Section 4). 

3. TotalADS 
TotalADS provides a framework, based on Eclipse IDE, for 

integrating multiple anomaly detection techniques in a way that 

they can be evaluated on different types of execution traces. 

TotalADS is based on Java and its architecture is shown in Figure 

1. It consists of four main components: Anomaly Detection 

Engine, Trace Management Engine, Trace Inspection Engine, and 

a Database Management Engine. In the following sections, we 

explain each of these components in detail.  

3.1 Trace Management Engine 
Trace Management Engine allows to read different trace formats. 

It has a CTF (binary) trace format reader for the LTTng tracer 

[10], a text file reader using regular expressions and a XML log 

reader. The Common Trace Format (CTF) for traces is a format 

standardized by the Multicore Association in collaboration with 

the Linux community [3]. CTF is actually a compressed format to 

represent a large number of events with their timestamps. Any 

trace, once converted to a CTF format, can be directly used with 

TotalADS without adding any additional readers.  

In Linux-based systems, the LTTng tracer can be used to collect 

both kernel (system call traces) and user space (function call) 

traces [10]. LTTng is a lightweight Linux tracer that stores traces 

in a Common Trace Format (CTF) [3]. LTTng also provides a 

utility to transform any trace into CTF format and TotalADS can 

easily read traces in the CTF format. TotalADS can also read 

traces from other tracers, such as STrace which generates a text 

format of traces [20]. Any kind of text file can be parsed in 

 

Figure 1:  Overview of TotalADS Architecture 
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TotalADS using the regular expression wizard. Similarly, XML 

logs can be parsed automatically by using wizards in TotalADS. 

Trace Management Engine also provides an extensible common 

interface (in Java) to add new trace readers. 

In addition to reading existing traces in the system, the Trace 

Management Engine allows to collect LTTng (kernel) traces from 

a remote system via Secure Shell (SSH) protocol. It then extracts 

the desired events and passes them to the Anomaly Detection 

Engine. The live trace streams can then be used by the Anomaly 

Detection Engine to evaluate different techniques in real-time. 

3.2 Anomaly Detection Engine 
This is the most important component of TotalADS. It integrates 

different host-based anomaly detection techniques by using a 

common interface in Java. Any anomaly detection technique can 

be used with TotalADS to build models from different types of 

traces either offline or through live streaming. A model is the 

representation of traces that a technique develops during training. 

A technique can be used to build many models. Once a model is 

built, it can be validated on another (or same) set of normal traces. 

During validation, the technique may adjust decision thresholds of 

a model to lower its false alarm rate before putting the model into 

testing (production). During the testing phase, a model is used to 

evaluate traces coming from a system in operation to detect 

anomalies in incoming traces. Decision thresholds can also be 

adjusted during testing by a user if suspicious alarm rate by a 

model is required to be decreased or increased. The best model is 

the one which has a low false alarm rate and a high true alarm rate 

on test traces. TotalADS integrate three different anomaly 

detection techniques, namely, Kernel State Modeling (KSM), 

Sequence Matching (SQM) [7] [25] [6], and Hidden Markov 

Model (HMM) [27] [24] [8]. 

KSM focuses on detection of anomalies by transforming system 

calls into states of kernel modules [15]. A system call can be 

classified into eight different states: file system state, kernel state, 

memory management state, networking state, inter process 

communication state, security state, architecture state and (a rare) 

unknown state. KSM then identifies anomalies by comparing the 

probabilities of occurrences of states in normal and anomalous 

traces [15]. 

SQM works by extracting sequences of length ‘n’ from a trace by 

sliding a window one event (e.g., system call) at a time [6] [7] 

[25]. For example, for a trace having system calls “3, 6, 195, 

195”, two sequences “3, 6, 195” and “6, 195, 195” of length 3 can 

be extracted. SQM extracts sequences from normal traces and 

then compares them against the sequences in an unknown trace. If 

a new sequence is found in an unknown trace then it considers it 

as anomalous. The Hamming distance between sequences can be 

used to adjust the decision threshold to reduce false alarms; e.g., a 

sequence “3, 5, 195” is anomalous for above sequences as a 

mismatch occurs only at one position—i.e., a Hamming distance 

of only one. If the minimum Hamming distance matching 

criterion is set to more than one, then it is a normal sequence.  

HMM is a stochastic model for sequential data and hence it is 

naturally suitable for modeling temporal order of system call 

sequences [18]. The process is determined by a latent Markov 

chain having a finite number of states, N, and a set of output 

observation probability distributions, B, associated with each 

state. Starting from an initial state N0, the process transits from 

one state to another according to the matrix of transition 

probability distribution, A, and then emits an observation symbol 

Ok from a finite alphabet (i.e., M distinct observable events) 

according to the output probability distribution, Bj(Ok), of the 

current state Nj. HMM is typically parameterized by the initial 

state distribution probabilities (Π), output (emission) probabilities 

(B), and state transition probabilities (A). Baulm-Welch technique 

is used to train the model parameters to fit the sequences of 

observations, T, [18].  During the validation phase, HMM adjusts 

the decision threshold (log likelihood) of prediction of anomalous 

alarms on T sequences from traces. In the testing phase, if the 

probability value of any sequence in a trace is below the selected 

threshold, then we consider the trace as anomalous otherwise we 

consider it as normal.  We use Apache Mahout, the scalable 

machine learning library to implement HMM [11]. 

3.3 Trace Inspection Engine 
Trace Inspection Engine encompasses a set of views that can be 

used to build anomaly detection models, diagnose traces using 

models, train and evaluate models on live traces, inspect 

individual event details in a trace, understand control flow of 

processes, comprehend utilization of CPUs in a trace at different 

time, get event statistics in a trace, and visualize occurrences of 

events as histogram of frequencies over a time line. Trace 

Inspection Engine is based on TMF (Tracing and Monitoring 

Framework) [22], a tracing platform developed by Ericsson. TMF 

views can be extended too by using a common Java interface.  

Due to the lack of space, we have omitted the details of different 

views in the trace inspection engine but some of the views are 

shown in the case study in Section 4. 

3.4 Database Management Engine 
Database Management Engine provides an interface to store data 

in a NoSQL based database management systems that stores data 

in the form of JSON (JavaScript Object Notation). The advantage 

of JSON is that models can be serialized directly from their class 

representation in memory to a database without any conversion 

into a relational schema like structure. Currently, we are using 

MongoDB to store models and corresponding information [14].  

4. Case Study: Anomaly Detection on a Linux 

Server 
This section discusses the experiments performed on a Linux 

server using TotalADS. In particular, we address the following 

two research questions: 

(RQ1)  Can TotalADS automatically train and test models on 

live trace streams? 

(RQ2) Can TotalADS automatically diagnose anomaly and 

facilitate in diagnosis of the origin of anomaly? 

4.1 Dataset 
We used an Ubuntu Linux server as a case study. We equipped 

the server with Ubuntu Linux 12.04 operating system with 

Apache 2.2.17 web server, PHP 5.3.5 server side scripting engine, 

TikiWiki 8.1 content management system, FTP server, MySQL 

distribution 5.1.56 (version 14.14) database management system 

and an SSH server. These versions of the application software 

systems were selected because of the well-known vulnerabilities. 

MySQL 14.14 has a vulnerability which allows remote attackers 

to bypass the authentication mechanism by repeatedly 

authenticating the same incorrect password (CVE 2012-2122)1. 

TikiWiki 8.1 has a vulnerability allowing remote attacker to 

execute any arbitrary PHP code (CVE 2012-0911). PHP 5.3.5 

                                                                 

1 CVE represents a Common Vulnerabilities and Exposures (CVE) ID 

is a unique identifier assigned to vulnerabilities [16].  
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vulnerability allows the remote attacker to get context sensitive 

information from the process’s memory (CVE 2011-1153). 

Apache web server has a vulnerability to allow remote attackers to 

cause a daemon crash via an empty cookie (CVE 2012-0021).  

Similar configuration was also used in a dataset publicly available 

on the site of University of New South Wales [5]. To exploit these 

vulnerabilities, we used an open source penetration testing tool 

Metasploit Framework (MSF) [13]. We also used MSF to 

generate brute-force attacks on FTP and SSH servers. We 

collected anomalous data by executing attacks using MSF. 

 In order to obtain data of normal activities on the Linux server, 

we performed several tasks that reflect the normal utilization of 

the system. These tasks include MySQL authentication and 

manipulation on Tiki database, document processing in Open 

Office Writer and Calculator, directory and files manipulation, 

installation of additional software such as Vim, web browsing, 

web page serving, and MySQL, FTP and SSH authentication and 

execution of queries from a remote system. 

4.2 The Process 
We started the process of trace collection by employing the Live 

Monitoring view of TotalADS.  The process is divided into the 

two modes: Live Training and Testing, and Live Testing only.  

In the Live Training and Testing mode, we first initialized a 

model of KSM, a model of SQM, and a model of HMM in 

TotalADS. Each technique takes different initialization 

parameters. We selected the kernel version of Ubuntu 12.04 for 

KSM, and window length of 6 for SQM. For HMM, we selected 

10 states, 200 observable events, and 10 iterations of the Baum-

Welch technique.  Second, we performed live training and testing 

over SSH on our Linux server. The idea is to only use the system 

normally without any attacks. We built the normal models of the 

system using live streaming. During this live training and testing, 

TotalADS first tests a new trace against an existing model in a 

system, shows its results, and the trains the model on the same 

trace. We performed different normal activities on the Linux 

server, as described in Section 4.1, during this phase.  

In the second mode, live testing, we started trace collection on the 

Linux server by only selecting the live testing option in 

TotalADS. We used the server normally, started Metasploit [13] 

on another system and attacked the Linux server. The idea is to 

simulate both normal and abnormal behaviour of the system. We 

used different attacks one by one to exploit vulnerabilities in the 

applications running on the Linux server. If an attack is detected 

by a technique, the trace of the attack is further investigated in the 

trace analysis views.  

4.3 Results 

4.3.1 Automatic Training and Testing on Live Trace 

Streams 
The results for Live Training and Testing phase are shown in 

Figure 2. TotalADs started by testing the new traces on the 

models of the KSM technique, the HMM technique, and the SQM 

technique. If a trace is found as anomalous then TotalADS plots it 

as anomaly (one) on a chart. It then trains three models on the new 

trace. Figure 2a shows the complete view of TotalADS; whereas, 

Figure 2b and Figure 2c only show the zoomed-in view of the 

chart in Live training and  testing mode.  

Initially, each of the three models of the three different techniques 

predicted every incoming trace as an anomaly. TotalADS  at this 

point shows higher false alarm rate because the models built for 

techniques did not have sufficient (or rather zero) information to 

predict anomalies (Figure 2a). The three series in the chart 

represent three different models. When there is only one line 

visible on the chart then it means that three models predict the 

same results. All initial traces are shown as anomalies on the chart 

in Figure 2a, except at 8th and 11th minute.  

When time passed, regular binary signals started to appear on the 

chart, showing that several newer traces have started to be 

detected as normal traces (Figure 2b). At this point, we also 

slightly increased the decision thresholds of the models. In 

machine learning, decision thresholds are usually adjusted during 

a validation of a model before testing. The decision threshold for 

SQM, HMM, and KSM were Hamming distance, alpha, and 

probability values, respectively. This process of training kept on 

continuing until we reached a point in time where all the new 

upcoming traces started to appear as normal. This is shown in 

Figure 2c. We stopped live training and testing mode at this point.   

 

Figure 2  Live Training and Testing in TotalADS 
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These results show that TotalADS can be used to train and test 

anomaly detection techniques on live traces (streams of traces) 

from a real system with minimal human intervention. This 

answers the first research question (RQ1). 

4.3.2 Automatically Detect Anomaly and Inspect the 

Origin of Anomaly  
In the Live Testing mode, we used the server in a normal manner 

and also exploited its vulnerabilities using Metasploit [13]. The 

results are shown in Figure 4. In the case of Figure 4, the attack 

executed was an attempt to illegally bypass MySQL 

authentication mechanism with a wrong password. Also note that 

the normal operations include the legal remote authentication on 

MySQL. Initially, see Figure 4, when the server was used 

normally the predictions of anomalous alarms remain zero from 

all three models but as the remote hacker (Metasploit) tried to 

penetrate the system, the models raised anomalies in a span of 3 

(between 9 and 11) minutes. The models did not raise anomalies 

on exactly the same traces but the anomalies were raised on the 

traces collected in a close proximity. 

For example, the SQM technique showed 1 out of 10 traces as 

anomalous and the anomalous sequence in the trace contained 4 

(66%) occurrences of the “sys_recvfrom” system call in a 

sequence of total of 6 system calls. The anomalous sequence was 

“sys_rt_sigtimedwait, sys_recvfrom, sys_recvfrom, 

sys_recvrfrom, sys_poll, sysrecvfrom”. The “sys_recvfrom” 

system call is used to receive a message from a socket. This seems 

suspicious enough to explore it further. We therefore loaded this 

trace into the trace inspection views. The trace inspection views 

are shown in Figure 3. The three trace inspection views shown in 

Figure 3are Control Flow view, Events view, and Resource View. 

In the Events view, we searched for the event “recvfrom” and 

found all the occurrences of “sys_recvfrom” emphasized more 

than other events by the Events view. The detailed attributes, in 

this case arguments of the system call, are also shown in the 

Events view. When we clicked on that “sys_recvfrom” at the time 

stamp “02:09:23.588.581 765”, the Control Flow view got 

synchronized and immediately showed the process corresponding 

to the timestamp and the event. The yellowish green bar 

represents the wait-blocked state of the process, brown bar 

represents the CPU-wait, the green bar represents the user mode, 

and the blue bar represents the system call mode of a process. 

When a mouse is hovered over the bar, the details are also show 

as a tool tip (see Figure 3). In this case, this is a process “unity-2d-

shell” running at CPU 0 (see resource view) and it switched few 

times from user mode to system call mode in a short span of time. 

These few system calls are “sys_recvfrom” system calls occurring 

consecutively as shown in the Events view. The Unity-2d-shell2 

process is a component of Unity Desktop in Ubuntu that provides 

a shell interface to the system and “sys_recvfrom” is a system call 

that provides a common entry point for hackers to open a socket. 

Thus, this shows that a malicious hacker was trying to login into 

the system at this point of time. 

 

Figure 4: Detection of the attempt of an attack to bypass 

authentication mechanism in MySQL 

In a similar manner to the sequence matching technique, the 

model of KSM also showed an anomalous alarm with the 42% 

system calls for file subsystem, 28% system calls of Kernel 

subsystem, 23% system calls of networking subsystem, 5% 

system calls of memory management subsystem, and the 2% 

system calls for the remaining subsystems. The HMM model did 

not point out a suspicious trace. HMM is a complicated but 

powerful algorithm and sometimes it converges to local minimum 

                                                                 

2 https://wiki.ubuntu.com/Unity2D;  

 

Figure 3: Inspection of the attack to bypass authentication mechanism in MySQL 
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rather than global minimum. It therefore requires additional 

tuning. However, SQM and KSM both pointed out the suspicious 

activity and it can be ascertained the trace was anomalous. 

In addition to the attack on MySQL, we also executed other 

exploits on TikiWiki, Apache and brute-force attacks on SSH and 

FTP. The brute-force attacks remained unsuccessful; however, the 

attempts of the attacks were detected as suspicious. In summary, 

all the attacks were detected correctly and the false alarm rate 

remained less than 10%. 

Thus, TotalADS can automatically detect the anomaly and 

facilitates in locating the origin of anomaly descriptively and 

visually. Such automated descriptive and visual analysis for 

software traces does not exist in the contemporary tools. This also 

answers our research question (Q2). 

5. CONCLUSION 
In this paper, we presented TotalADS, a new framework for 

integrating various anomaly detection techniques. The framework 

is built as a plug-in for Eclipse. It can be easily extended to 

support new techniques. TotalADS also allows the analysis, 

visualization, and diagnosis of traces for forensic purposes. 

TotalADS is built on the top of TMF, which is a powerful tracing 

framework that supports standard trace formats such as CTF.  

During the development of the tool, we have experienced that 

extending open source technologies is harder than closed source 

technologies, due to the lack of documentation and tutorials. 

However, open source technologies have provisions for creativity 

that anyone can leverage, which is lacking in closed source 

technologies. TotalADS is currently evolving: additions of new 

techniques, creation of new interfaces, or improvements in 

existing ones are likely to occur. 

We are currently working with DRDC (Defence R&D Canada) to 

conduct field experiments to test its usability in real environment. 

The tool is under review by Eclipse developer community and it 

will soon be available in Eclipse Market Place. Initial information 

about the tool is available on this link: 

www.ece.concordia.ca/~abdelw/sba/totalads/. 
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