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User vs. Operational Data

▪ User data describes information 

about users. 

▪ E.g. social media data, user 

preferences, geo-location data, 

images, etc.

▪ Applications include marketing 

campaigns, fraud detection, image 

recognition, etc.
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User vs. Operational Data

▪ Operational (machine) data 

describes information about a 

system (or a machine)

▪ It is collected automatically from 

devices, IT platforms, applications 

with no direct user intervention.

▪ Useful for diagnosing service 

problems, ensuring reliability, 

detecting security threats, 

improving operations, and so on.
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Operational Data for Software-

Intensive Systems

▪ New trends in SW dev. make this 

challenging:

▪ Highly distributed and parallel systems

▪ Micro-service architectures

▪ Virtualisation and containerization 

▪ Device connectivity and IoT

▪ Cyber physical systems

▪ Intelligent and autonomous systems

▪ Agile, DevOps, and  continuous         

delivery processes

4

▪ The proper functioning of software-intensive systems 

relies heavily on operational data to diagnose and 

prevent problems.
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▪ The proper functioning of software-intensive systems 

relies heavily on operational data to diagnose and 

prevent problems.

We need better runtime system analysis and fault diagnosis and 

prediction methods that provide full visibility of a system’s internal 

states.
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Software Observability

▪ In control theory: 

▪ Observability is “a measure of how well internal 

states of a system can be inferred from knowledge of 

its external outputs” [Wikipedia]

▪ Software Observability:

▪ A set of end-to-end techniques and processes that  

allow us to reason about what a software system 

is doing and why by analyzing its external outputs.
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Monitoring vs Observability

▪ Monitoring: 

▪ Tracks known metrics and raises alerts when thresholds are 

not met  (e.g., 4 golden signals of Google SRE: latency, traffic, 

errors, and saturation)

▪ Answers the question: “how is the system doing?” 

▪ Helps diagnose known problems

▪ Observability: 

▪ Answers the question: “what is the system doing and why?” 

▪ Enables to reason about the system by observing its outputs

▪ Helps diagnose known and unknown problems
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Building Blocks
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Operational Data

▪ Logs: 

▪ Records of events generated from logging statements inserted 

in the code to track system execution, errors, failures, etc.

▪ Different types of logs: system logs, application logs, event 

logs, etc.

▪ Traces:

▪ Records of events showing execution flow of a service or a 

(distributed) system with causal relationship

▪ Require additional instrumentation mechanisms

▪ Profiling Metrics:

▪ Aggregate measurements over a period of time (e.g., CPU 

usage, number of user requests, etc.)
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Emergence of AI for IT Operations

▪ AIOps is the application of AI to enhance IT operations

▪ An important enabler for digital transformation

▪ Building Blocks:
▪ Data collection and aggregation

▪ Pattern recognition 

▪ Predictive analytics

▪ Visualization

▪ Applications: 
▪ Fault detection and prediction

▪ Root cause analysis

▪ Security

▪ Regulatory compliance

▪ Operational intelligence
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Beyond Software Systems
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▪ Using machine data analytics to drive 

operational efficiency (a Splunk success 

story)

▪ Dubai airport uses machine data to 

increase airport capacity 

▪ Machine data sources:

▪ Flight schedules, 

▪ Wi-Fi network data

▪ Metal detector data

▪ Baggage system

▪ Sensor data (doors, faucets, etc.)

Source: https://www.splunk.com/en_us/customers/success-stories/dubai-airports.html
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Our Past and Current Projects

▪ Md Shariful Islam, "On the use of Software Tracing and Boolean 

Combination of Ensemble Classifiers to Support Software Reliability and 

Security Tasks," Ph.D. Dissertation, 2021. 

▪ Korosh K. Sabor, "Automatic Bug Triaging Techniques Using Machine 

Learning and Stack Traces," Ph.D. Dissertation, 2020. 

▪ Neda E. Koopaei, "Machine Learning and Deep Learning Based 

Approaches for Detecting Duplicate Bug Reports with Stack Traces," Ph.D. 

Dissertation, 2019. 

▪ Fazilat Hojaji, "Techniques to Compact Model Execution Traces in Model 

Driven Approach," Ph.D. Dissertation, 2019.

▪ Heidar Pirzadeh, "Trace Abstraction Framework and Techniques," Ph.D. 

Dissertation, 2012.

▪ Luay Alawneh, "Techniques to Facilitate the Understanding of Inter-process 

Communication Traces," Ph.D. Dissertation, 2012. 
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http://www.ece.concordia.ca/~abdelw/publications.html
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Software Tracing and Boolean Combination of 

Ensemble Classifiers to Support Software 

Reliability and Security Tasks

• PhD Thesis of Shariful Islam in collaboration with Postdoc 

Wael Khreich

• Contributions:

• WPIBC: A weighted pruning ensemble of homogeneous 

classifiers (HMMs) applied to anomaly detection

• EnHMM: Ensemble HMMs and stack traces to predict the 

reassignment of bug report fields

• MASKED: A MapReduce solution for the Kappa-pruned 

ensemble-based anomaly detection system  
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TotalADS: Total Anomaly Detection 
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S. S. Murtaza, A. Hamou-Lhadj, W. Khreich, M. Couture, "TotalADS: Automated Software Anomaly Detection System," In 
Proc. of the 14th IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM), 201415

https://users.encs.concordia.ca/~abdelw/papers/SCAM14-SCAM.pdf


Automatic Crash/Bug Triaging Techniques 

Using Machine Learning and Stack Traces
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▪ PhD Thesis of 

Korosh

Koochekian

Sabor
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▪ DURFEX: 

Efficient detection 

of duplicate bug 

reports
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▪ Automatic 

prediction of bug 

report severity
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Automatic Crash Triaging Techniques Using 
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▪ Automatic 

prediction of bug 

report faulty 

products 

components
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Characteristics of Logs and Traces

▪ Velocity: the data (in some cases) must be processed in 

real time

▪ Volume: mountain ranges of historical data

▪ Variety: captured data can be structured or unstructured 

▪ Veracity: captured data must be cleaned

▪ Value: not all captured data is useful
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Challenges

▪ Standards and Best Practices:

▪ Lack of guidelines and best practices for logging, 

tracing, and profiling

▪ Lack of standards for representing logs, traces, and 

metrics (not the OpenTelemetry initiative)

▪ Data Characteristics

▪ Mainly unstructured data

▪ Size is a problem

▪ Not all data is useful

▪ High velocity
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▪ Analytics and Tools:

▪ Mainly descriptive analytics

▪ Predictive analytics not fully explored

▪ Mainly offline analysis techniques

▪ Lack of usable end-to-end observability tools

▪ Cost and Management Aspects

▪ Cost vs. benefits not well understood 

▪ No clear alignment of observability with other initiatives

▪ Roles and responsibilities are not well defined

22

Challenges
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Challenges

There is a need for systematic and engineering 

approaches to software observability that promote best 

practices throughout the entire software development 

lifecycle

Prof. Wahab Hamou-Lhadj (wahab.hamou-lhadj@concordia.ca) - EDiS 2022



Observability By Design

▪ Bringing observability to early stages of the software 

development lifecycle.

▪ Defining a set of observability patterns, best 

practices, and reusable solutions to be used as 

guiding principles for developers.

▪ A systematic approach to tracing, logging and 

profiling of software systems that considers different 

phases of the software process.
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Observability-Driven Development (ODD)

▪ Leveraging tools and hands-

on developers to observe system 

state and behavior

▪ Interrogating the system, not just 

setting and measuring thresholds 

and metrics for it
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From Telemetry to OpenTelemetry

▪ Observability is often equated with telemetry

▪ "If you have metrics, logs, and traces, then you have 

Observability"

▪ Observability is the process of deriving value from 

telemetry

▪ Telemetry is important but not sufficient

▪ We also need tools to analyze and visualize the 

telemetry

▪ OpenTelemetry
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Observability By Design and SDLC

▪ Bringing 

observability to 

early stages of the 

software 

development 

lifecycle

▪ Cost of 

observability can 

be assessed during 

project planning
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Observability By Design and SDLC

▪ Observability as a 

non-functional 

requirement

▪ What aspects of 

system functional 

requirements should 

be observable and 

how?
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Observability By Design and SDLC

▪ Support of 

observability at the 

architectural level

▪ Detailed design for 

observability

▪ Observability 

patterns and best 

practices

29

Requirement 
Analysis

Design

Implemen-
tation

Testing

Deployment

Maintenance

OBSERVABILITY

Prof. Wahab Hamou-Lhadj (wahab.hamou-lhadj@concordia.ca) - EDiS 2022



Observability By Design and SDLC

▪ What, where, and 

how to log and/or 

trace?

▪ Use of libraries and 

frameworks

▪ Patterns and best 

practices
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Observability By Design and SDLC

▪ Testing and 

inspection strategies 

for logging/tracing 

code
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Observability By Design and SDLC

▪ Deployment, 

configuration, and 

maintenance 

aspects of 

observability code 

such as updates, 

performance 

analysis, testing, 

persistence, etc.
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A Governance Framework for 

Observability By Design
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Observability Culture

▪ Observability in action!

▪ Before and after a problem

▪ Data-driven decision making

▪ Educate teams

▪ Encourage standard tools/techniques

▪ Log formatting

▪ Metric conventions

▪ Practice, share success stories, and feedback

▪ Measure your progress and observer your 

observability culture!
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Conclusion

▪ Complex systems require sound mechanisms to ensure 

that they operate as intended and to detect/predict 

problems. 

▪ I presented SW system observability as one such 

mechanism.

▪ Observability relies on processing and analyzing 

operational data 

▪ The current practice is ad hoc and to take full advantage 

of operational data, we need to move towards 

systematic approaches for observability.

▪ Observability By Design with its governing framework is 

one possible solution
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Contribution 1: Weighted Pruning Boolean Combination Rules that1.1. enforces the diversities among the combined soft and crisp detectors

1.2. can be used with both pair-wise and iterative Boolean combination techniques

1.4. outperforms BBC2, IBC, and PBC Boolean combination techniques
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