

#### An Industrial Case Study on Predicting and Detecting Faulty Programs Using Machine Learning

#### Wahab Hamou-Lhadj

Université Concordia Montréal, QC, Canada wahab.hamou-lhadj@concordia.ca

> FETCH'20, Montreal, QC, Canada February 12, 2020

#### **Software Development Challenges**

- Increased complexity
- Heavy reliance on people
- Lack of automated tools
- Time to market pressure
- Emerging technologies
- QA trade-offs

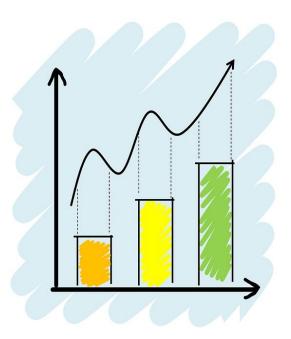




#### **Software Maintenance**

70% of the overall development cost

Up to **50%** of maintenance cost is on fixing bugs


Bugs may have **severe consequences** 

Defects cost the economy billions of \$ annually

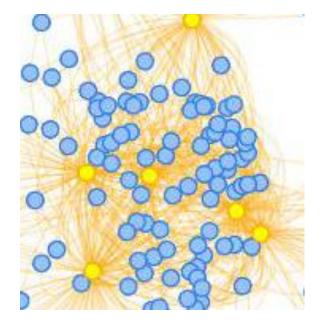


#### **Emergence of Software Analytics**

- Data-driven SW development and maintenance
- Big Data: source code, bug reports, test cases, logs, user feedback, etc.
- Predictive analytics using ML, DL, CI, and PR
- Information visualization of large-scale data






#### Defect Detection/Prediction Research

- Defect Prediction
  - Statistical analysis
  - Call-graph analysis
  - Analysis of code changes
  - Leverage of historical data
- Automated Patch Generation
  - Development of fixing patterns
  - Reuse of human written patches
  - Directed patches towards specific bug types



#### **Problems with existing techniques**

- Offline processing (after the code is built)
- Presence of the entire source code
- Extensive setup and high learning curve
- Lack of clear actions to developers
- High rate of false positives





#### **Our solution: CommitAssistant**

- A prototype tool resulting from an NSERC research project between my research lab at Concordia University and Ubisoft Laforge
- Main Features:
  - Detection of bugs at commit-time, i.e., as programmers write code
  - Supports multiple programming languages
  - No external tools or setup required
  - Leverage of historical bugs and fixes
  - High TRL



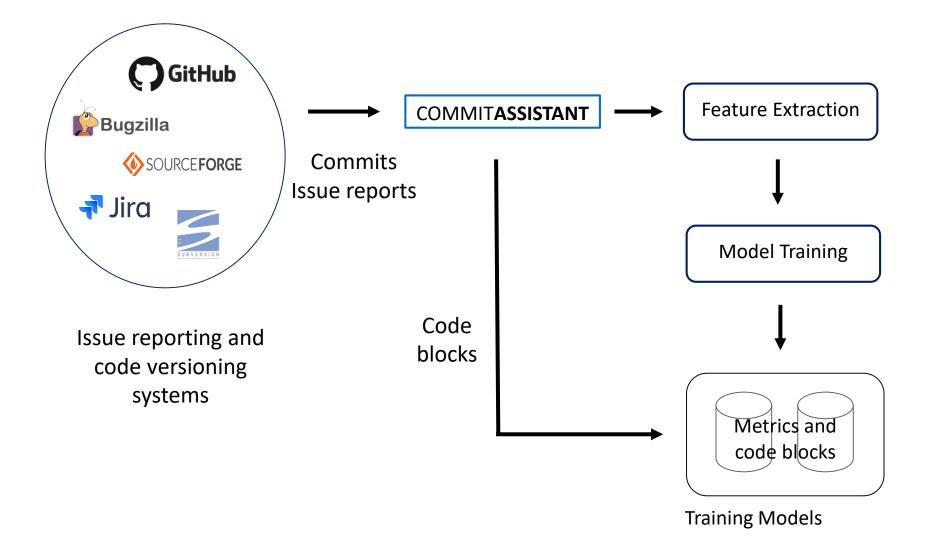
#### **CommitAssistant Phases**



Train models of historical defect and healthy commits and associated code

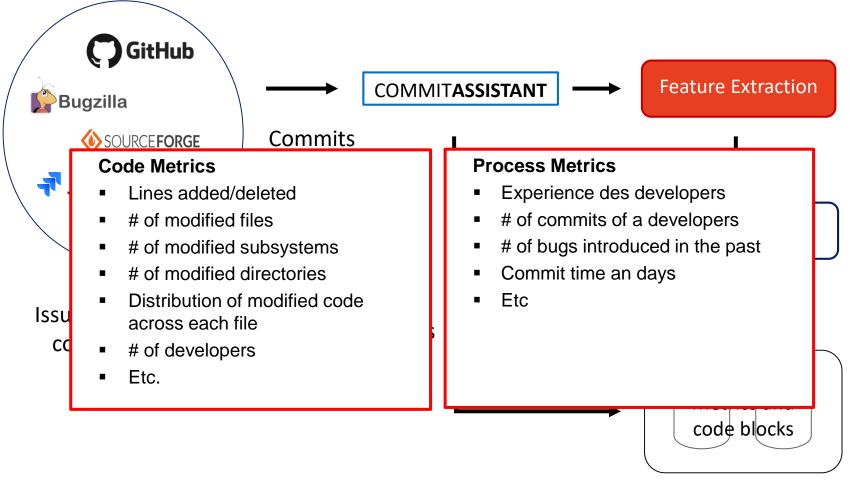
**Intercept and analyze** developers' commits before they reach the central code repository





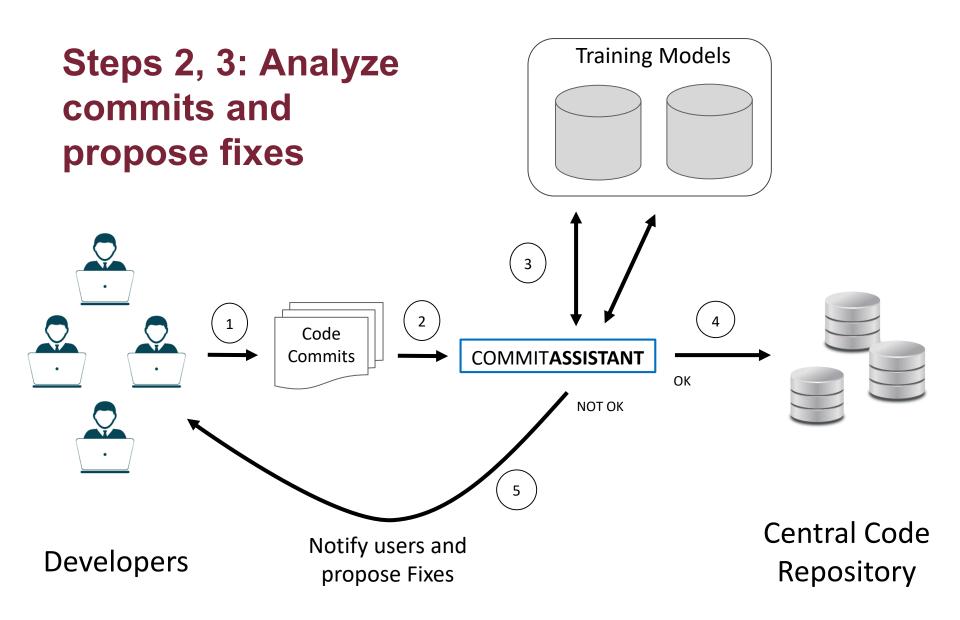

Notify developers and propose fixes for risky commits




## **Step 1: Train models**

9






## **Step 1: Train models**

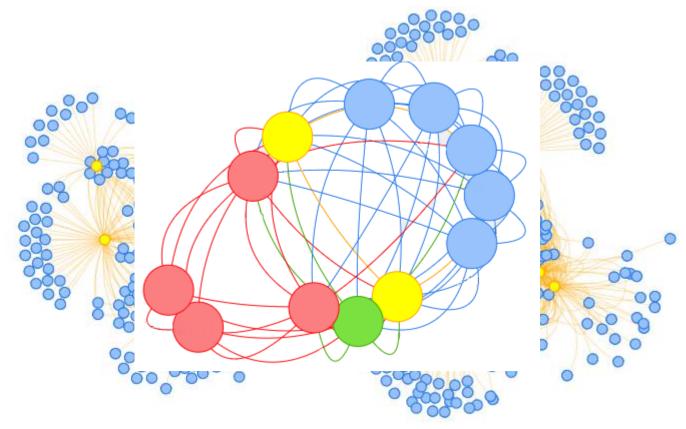


**Training Models** 





Concordia


TABLE 3: BIANCA results in terms of organization, project name, a short description, number of class, number of commits, number of defect introducing commits, number of risky commit detected, precision (%), recall (%), F<sub>1</sub>-measure (%), the average similarity of first 3 and 5 proposed fixes with the actual fix and the average time difference between detected and original.

| Organization                                                                                                                                                    | Project Name                                                      | Short Description                                                                                                                             | NoC                                           | #Commits                                              | Bug<br>Introducing<br>Commit                  | Detected                            | Precision                                           | Recall                                              | Fi                                                 | Top 5<br>Fixes<br>Similarity              | Top 3<br>Fixes<br>Similarit                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------|-----------------------------------------------|-------------------------------------|-----------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------|
|                                                                                                                                                                 | druid                                                             | Database connection pool                                                                                                                      | 3,309                                         | 4,775                                                 | 1,260                                         | 787                                 | 88.44                                               | 62.46                                               | 73.21                                              | 39.97                                     | 46.69                                                                                  |
| libaba                                                                                                                                                          | dubbo                                                             | RPC framework                                                                                                                                 | 1,715                                         | 1,836                                                 | 119                                           | 61                                  | 96.72                                               | 51.26                                               | 67.01                                              | 60.01                                     | 57.14                                                                                  |
|                                                                                                                                                                 | fastjson                                                          | JSON parser/generator                                                                                                                         | 2,002                                         | 1,749                                                 | 516                                           | 373                                 | 95.71                                               | 72.29                                               | 82.37                                              | 18.19                                     | 15.23                                                                                  |
|                                                                                                                                                                 |                                                                   |                                                                                                                                               |                                               |                                                       |                                               |                                     |                                                     |                                                     |                                                    |                                           | 48                                                                                     |
| ра                                                                                                                                                              |                                                                   |                                                                                                                                               |                                               |                                                       |                                               |                                     |                                                     |                                                     |                                                    |                                           | 68                                                                                     |
|                                                                                                                                                                 | _                                                                 |                                                                                                                                               |                                               |                                                       |                                               |                                     |                                                     |                                                     |                                                    |                                           | 10                                                                                     |
| 🔤 Eval                                                                                                                                                          | uatior                                                            | r                                                                                                                                             |                                               |                                                       |                                               |                                     |                                                     |                                                     |                                                    |                                           | 52<br>56<br>82<br>04                                                                   |
| N LVAI                                                                                                                                                          | uation                                                            |                                                                                                                                               |                                               |                                                       |                                               |                                     |                                                     |                                                     |                                                    |                                           | 00                                                                                     |
|                                                                                                                                                                 |                                                                   |                                                                                                                                               |                                               |                                                       |                                               |                                     |                                                     |                                                     |                                                    |                                           | 52                                                                                     |
| lij<br>(ci                                                                                                                                                      |                                                                   |                                                                                                                                               |                                               |                                                       |                                               |                                     |                                                     |                                                     |                                                    |                                           | 04                                                                                     |
| ci                                                                                                                                                              |                                                                   |                                                                                                                                               |                                               |                                                       |                                               |                                     |                                                     |                                                     |                                                    |                                           | 13                                                                                     |
| ice                                                                                                                                                             |                                                                   |                                                                                                                                               |                                               |                                                       |                                               |                                     |                                                     |                                                     |                                                    |                                           | 12                                                                                     |
|                                                                                                                                                                 | - 40 -                                                            |                                                                                                                                               |                                               | •                                                     | • -                                           |                                     |                                                     |                                                     |                                                    |                                           | 50                                                                                     |
| 00                                                                                                                                                              | • 42 C                                                            | pen sourc                                                                                                                                     | e pr                                          | olec                                                  | τς                                            |                                     |                                                     |                                                     |                                                    |                                           | 70                                                                                     |
|                                                                                                                                                                 | •                                                                 |                                                                                                                                               | - 6.                                          |                                                       |                                               |                                     |                                                     |                                                     |                                                    |                                           | 50                                                                                     |
| 00                                                                                                                                                              |                                                                   |                                                                                                                                               |                                               |                                                       |                                               |                                     |                                                     |                                                     |                                                    |                                           | 59<br>53<br>97<br>93<br>48                                                             |
|                                                                                                                                                                 | _                                                                 |                                                                                                                                               |                                               |                                                       |                                               |                                     |                                                     |                                                     |                                                    |                                           | 97                                                                                     |
| rac                                                                                                                                                             | I Dro <i>i</i>                                                    | cision = $90^{\circ}$                                                                                                                         | %                                             |                                                       |                                               |                                     |                                                     |                                                     |                                                    |                                           | 93                                                                                     |
| nk                                                                                                                                                              |                                                                   | -50                                                                                                                                           | /0                                            |                                                       |                                               |                                     |                                                     |                                                     |                                                    |                                           | 18                                                                                     |
| v                                                                                                                                                               |                                                                   |                                                                                                                                               |                                               |                                                       |                                               |                                     |                                                     |                                                     |                                                    |                                           | 59                                                                                     |
| 60                                                                                                                                                              |                                                                   |                                                                                                                                               |                                               |                                                       |                                               |                                     |                                                     |                                                     |                                                    |                                           | 31                                                                                     |
| ett                                                                                                                                                             |                                                                   | all: 37%                                                                                                                                      |                                               |                                                       |                                               |                                     |                                                     |                                                     |                                                    |                                           | 57                                                                                     |
| pe                                                                                                                                                              | - nec                                                             | dii. 3770                                                                                                                                     |                                               |                                                       |                                               |                                     |                                                     |                                                     |                                                    |                                           | 56                                                                                     |
| De                                                                                                                                                              |                                                                   |                                                                                                                                               |                                               |                                                       |                                               |                                     |                                                     |                                                     |                                                    |                                           | 90                                                                                     |
|                                                                                                                                                                 |                                                                   |                                                                                                                                               |                                               |                                                       |                                               |                                     |                                                     |                                                     |                                                    |                                           | 57<br>56<br>90<br>36                                                                   |
| rfi .                                                                                                                                                           |                                                                   |                                                                                                                                               |                                               |                                                       |                                               |                                     |                                                     |                                                     |                                                    |                                           | 00                                                                                     |
| rfji<br>rie                                                                                                                                                     | - 700/                                                            |                                                                                                                                               |                                               |                                                       | $\mathbf{IV} \mathbf{OC}$ 7                   | Iro 7                               | rrur                                                | ате                                                 |                                                    |                                           | 0.0                                                                                    |
| rie<br>rv                                                                                                                                                       | • 79%                                                             | 6 of the pro                                                                                                                                  | 000                                           | sear                                                  | ixes d                                        | II C a                              | LLUI                                                |                                                     |                                                    |                                           | 00                                                                                     |
| fji<br>ie<br>rv<br>es                                                                                                                                           | <b>79%</b>                                                        | 6 of the pro                                                                                                                                  | opos                                          | sear                                                  | ixes d                                        |                                     | ccui                                                |                                                     |                                                    |                                           | 00<br>54                                                                               |
| fj<br>rv<br>es<br>b                                                                                                                                             | <b>79%</b>                                                        | of the pro                                                                                                                                    | opos                                          | sear                                                  | ixes d                                        | iie a                               | ccui                                                |                                                     |                                                    |                                           | 50<br>50<br>54<br>55                                                                   |
|                                                                                                                                                                 | <b>79%</b>                                                        | 5 of the pro                                                                                                                                  | opos                                          | sear                                                  | IXES d                                        | iie a                               | ccui                                                |                                                     |                                                    |                                           | 50<br>54<br>55                                                                         |
| a                                                                                                                                                               | • 79%                                                             | 5 of the pro                                                                                                                                  | opos                                          | sear                                                  | ixes d                                        | ii e a                              | ccui                                                | ate                                                 |                                                    |                                           | 00<br>54<br>55<br>49                                                                   |
| m                                                                                                                                                               | • 79%                                                             | 5 of the pro                                                                                                                                  | opos                                          | sear                                                  | ixes d                                        |                                     | ccui                                                | ate                                                 |                                                    |                                           | 00<br>54<br>55<br>49                                                                   |
| m                                                                                                                                                               | ■ 79%                                                             | 5 of the pro                                                                                                                                  | opos                                          | sear                                                  | ixes d                                        | 11 C a                              | ccui                                                |                                                     |                                                    |                                           | 00<br>54<br>55<br>49<br>16<br>97                                                       |
| m                                                                                                                                                               |                                                                   | •                                                                                                                                             | •                                             |                                                       |                                               |                                     |                                                     |                                                     |                                                    | 20.00                                     | 00<br>54<br>55<br>49<br>16<br>97<br>20                                                 |
| n                                                                                                                                                               | okhttp                                                            | HTTP+HTTP/2 client                                                                                                                            | 344                                           | 2,649                                                 | 592                                           | 474                                 | 93.04                                               | 80.07                                               | 86.07                                              | 29.09                                     | 00<br>54<br>55<br>19<br>16<br>97<br>20<br>24.91                                        |
| om<br>ni                                                                                                                                                        | okhttp<br>okio                                                    | HTTP+HTTP/2 client<br>I/O API for Java                                                                                                        | 344<br>90                                     | 2,649<br>433                                          | 592<br>40                                     | 474<br>24                           | 93.04<br>100.00                                     | 80.07<br>60.00                                      | 86.07<br>75.00                                     | 31.51                                     | 00<br>54<br>55<br>19<br>16<br>97<br>20<br>24.91<br>35.50                               |
| n                                                                                                                                                               | okhttp<br>okio<br>otto                                            | HTTP+HTTP/2 client<br>I/O API for Java<br>Guava-based event bus                                                                               | 344<br>90<br>84                               | 2,649<br>433<br>201                                   | 592<br>40<br>15                               | 474<br>24<br>15                     | 93.04<br>100.00<br>93.33                            | 80.07<br>60.00<br>100.00                            | 86.07<br>75.00<br>96.55                            | 31.51<br>54.11                            | 00<br>54<br>55<br>19<br>16<br>97<br>20<br>24.91<br>35.50<br>49.94                      |
| on<br>ni<br>uare                                                                                                                                                | okhttp<br>okio<br>otto<br>ætrofit                                 | HTTP+HTTP/2 client<br>I/O API for Java<br>Guava-based event bus<br>Type-safe HTTP client                                                      | 344<br>90<br>84<br>202                        | 2,649<br>433<br>201<br>1,349                          | 592<br>40<br>15<br>151                        | 474<br>24<br>15<br>111              | 93.04<br>100.00<br>93.33<br>99.10                   | 80.07<br>60.00<br>100.00<br>73.51                   | 86.07<br>75.00<br>96.55<br>84.41                   | 31.51<br>54.11<br>49.88                   | 00<br>54<br>55<br>19<br>16<br>97<br>20<br>24.91<br>35.50<br>49.94<br>45.46             |
| om<br>ril<br>uare<br>ephaneNicolas                                                                                                                              | okhttp<br>okio<br>otto<br>retrofit<br>robospice                   | HTTP+HTTP/2 client<br>I/O API for Java<br>Guava-based event bus<br>Type-safe HTTP client<br>Android library                                   | 344<br>90<br>84<br>202<br>461                 | 2,649<br>433<br>201<br>1,349<br>865                   | 592<br>40<br>15<br>151<br>113                 | 474<br>24<br>15<br>111<br>39        | 93.04<br>100.00<br>93.33<br>99.10<br>87.18          | 80.07<br>60.00<br>100.00<br>73.51<br>34.51          | 86.07<br>75.00<br>96.55<br>84.41<br>49.45          | 31.51<br>54.11<br>49.88<br>60.90          | 00<br>54<br>55<br>16<br>97<br>20<br>24.91<br>35.50<br>49.94<br>45.46<br>65.04          |
| om<br>ril<br>uare<br>ephaneNicolas<br>hinkAure lius                                                                                                             | okhttp<br>okio<br>otto<br>retrofit<br>robospice<br>titan          | HTTP+HTTP/2 client<br>I/O API for Java<br>Guava-based event bus<br>Type-safe HTTP client<br>Android library<br>Graph Database                 | 344<br>90<br>84<br>202<br>461<br>2,015        | 2,649<br>433<br>201<br>1,349<br>865<br>4,434          | 592<br>40<br>15<br>151<br>113<br>1,634        | 474<br>24<br>15<br>111<br>39<br>527 | 93.04<br>100.00<br>93.33<br>99.10<br>87.18<br>90.13 | 80.07<br>60.00<br>100.00<br>73.51<br>34.51<br>32.25 | 86.07<br>75.00<br>96.55<br>84.41<br>49.45<br>47.51 | 31.51<br>54.11<br>49.88<br>60.90<br>48.64 | 00<br>54<br>55<br>16<br>97<br>20<br>24.91<br>35.50<br>49.94<br>45.46<br>65.04<br>50.59 |
| om<br>ril<br>juare<br>ephaneNicolas<br>hinkAurelius<br>etorthio                                                                                                 | okhttp<br>okio<br>otto<br>retrofit<br>robospice<br>titan<br>jedis | HTTP+HTTP/2 client<br>I/O API for Java<br>Guava-based event bus<br>Type-safe HTTP client<br>Android library<br>Graph Database<br>Redis client | 344<br>90<br>84<br>202<br>461<br>2,015<br>203 | 2,649<br>433<br>201<br>1,349<br>865<br>4,434<br>1,370 | 592<br>40<br>15<br>151<br>113<br>1,634<br>295 | 474<br>24<br>15<br>111<br>39        | 93.04<br>100.00<br>93.33<br>99.10<br>87.18          | 80.07<br>60.00<br>100.00<br>73.51<br>34.51          | 86.07<br>75.00<br>96.55<br>84.41<br>49.45          | 31.51<br>54.11<br>49.88<br>60.90          | 00<br>54<br>55<br>16<br>97<br>20<br>24.91<br>35.50<br>49.94<br>45.46<br>65.04          |
| rac<br>nk<br>yy<br>bd<br>ett<br>pe<br>pe<br>pe<br>rfj<br>rie<br>es<br>om<br>crit<br>quare<br>quare<br>ephaneNicolas<br>hinkAurelius<br>etorthio<br>ahoo<br>king | okhttp<br>okio<br>otto<br>retrofit<br>robospice<br>titan          | HTTP+HTTP/2 client<br>I/O API for Java<br>Guava-based event bus<br>Type-safe HTTP client<br>Android library<br>Graph Database                 | 344<br>90<br>84<br>202<br>461<br>2,015        | 2,649<br>433<br>201<br>1,349<br>865<br>4,434          | 592<br>40<br>15<br>151<br>113<br>1,634        | 474<br>24<br>15<br>111<br>39<br>527 | 93.04<br>100.00<br>93.33<br>99.10<br>87.18<br>90.13 | 80.07<br>60.00<br>100.00<br>73.51<br>34.51<br>32.25 | 86.07<br>75.00<br>96.55<br>84.41<br>49.45<br>47.51 | 31.51<br>54.11<br>49.88<br>60.90<br>48.64 | 00<br>54<br>55<br>16<br>97<br>20<br>24.91<br>35.50<br>49.94<br>45.46<br>65.04<br>50.59 |



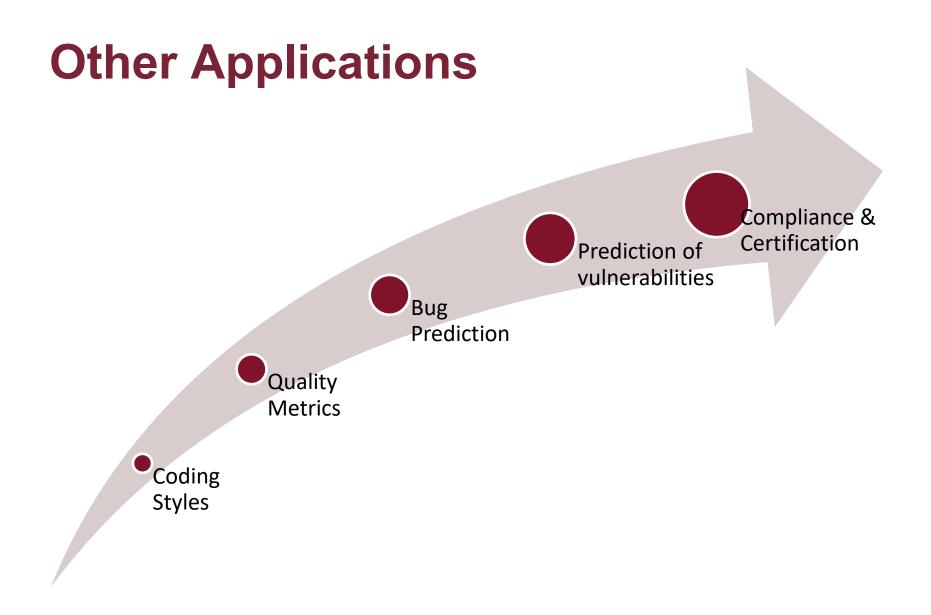
#### **Project Clustering**

## We can improve the detection accuracy if we search within inter-related projects





# Evaluation of CommitAssistant at Ubisoft


- 12 Ubisoft AAA games
- 10+ millions of LOCs
- Precision = 79%
- Recall = 65%
- 67% of the fixes were deemed acceptable



#### Impact

- Commit-Assistant is designed to integrate well with the workflow of Ubisoft developers
- Clever-Commit (production version of Commit-Assistant) is widely deployed at Ubisoft
- Ubisoft announced in a press release that Commit-Assistant can cut the bug fixing time by 20%
- Mozilla announced that it is working with Ubisoft to use Clever-Commit in the development of Firefox







### CommitAssistant as JIT Monitoring Tool

Analyzing commits provides real-time view of code quality:

- Num. of introduced bugs
- File metrics
- Subsystem metrics
- Code change density
- Code complexity
- Number of fixes
- Etc.





#### **Open Questions**

- How can we apply CommitAssistant to embedded and critical safety systems?
- What is the relationship between commit analysis, testing, tracing and logging, operational intelligence, etc.?
- Can this technology help with certification and compliance of software?
- Is this technology certifiable?



Engineering Complex Preponderant Software Systems Toulouse, France October 16-17, 2019



#### Conclusion

- Machine learning and AI are needed to reduce overhead of bug fixing
- CommitAssistant:
  - reuses existing knowledge and AI to improve new code
  - improves quality by providing early feedback to developers
  - assists developers on how to fix risky commits
  - works well on Ubisoft systems

#### CONCORDIA.CA