
An Industrial Case Study on Predicting and
Detecting Faulty Programs Using Machine

Learning

Wahab Hamou-Lhadj

Université Concordia
Montréal, QC, Canada

wahab.hamou-lhadj@concordia.ca

FETCH’20, Montreal, QC, Canada
February 12, 2020

Software Development Challenges

 Increased complexity

 Heavy reliance on people

 Lack of automated tools

 Time to market pressure

 Emerging technologies

 QA trade-offs

2

Software Maintenance

3

70% of the overall development cost

Up to 50% of maintenance cost is on fixing bugs

Bugs may have severe consequences

Defects cost the economy billions of $ annually

Emergence of Software Analytics

 Data-driven SW development

and maintenance

 Big Data: source code, bug

reports, test cases, logs, user

feedback, etc.

 Predictive analytics using ML,

DL, CI, and PR

 Information visualization of

large-scale data

4

Defect Detection/Prediction

Research

 Defect Prediction

 Statistical analysis

 Call-graph analysis

 Analysis of code changes

 Leverage of historical data

 Automated Patch Generation

 Development of fixing patterns

 Reuse of human written patches

 Directed patches towards specific bug types

5

Problems with existing techniques

 Offline processing (after the

code is built)

 Presence of the entire

source code

 Extensive setup and high

learning curve

 Lack of clear actions to

developers

 High rate of false positives

6

Our solution: CommitAssistant

7

 A prototype tool resulting from an NSERC

research project between my research lab at

Concordia University and Ubisoft Laforge

 Main Features:

 Detection of bugs at commit-time, i.e., as

programmers write code

 Supports multiple programming languages

 No external tools or setup required

 Leverage of historical bugs and fixes

 High TRL

8

1
Train models of historical defect and healthy

commits and associated code

2Intercept and analyze developers’ commits
before they reach the central code repository

3
Notify developers and propose fixes for risky

commits

CommitAssistant Phases

Step 1: Train models

9

Issue reporting and
code versioning

systems

Feature ExtractionCOMMITASSISTANT

Model Training

Metrics and
code blocks

Training Models

Commits
Issue reports

Code
blocks

Step 1: Train models

10

Issue reporting and
code versioning

systems

Feature ExtractionCOMMITASSISTANT

Model Training

Metrics and
code blocks

Training Models

Commits
Issue reports

Code
blocks

Code Metrics

 Lines added/deleted

 # of modified files

 # of modified subsystems

 # of modified directories

 Distribution of modified code

across each file

 # of developers

 Etc.

Process Metrics

 Experience des developers

 # of commits of a developers

 # of bugs introduced in the past

 Commit time an days

 Etc

Steps 2, 3: Analyze

commits and

propose fixes

11

Developers

Code
Commits

Central Code
Repository

Notify users and
propose Fixes

1 2

3

4

5

Training Models

OK

NOT OK

COMMITASSISTANT

Evaluation

 42 open source projects

 Precision = 90%

 Recall: 37%

 79% of the proposed fixes are accurate

12

Project Clustering

We can improve the detection accuracy if we search
within inter-related projects

13

Evaluation of CommitAssistant at

Ubisoft

 12 Ubisoft AAA games

 10+ millions of LOCs

 Precision = 79%

 Recall = 65%

 67% of the fixes were deemed acceptable

14

Impact

 Commit-Assistant is designed to integrate well with

the workflow of Ubisoft developers

 Clever-Commit (production version of Commit-

Assistant) is widely deployed at Ubisoft

 Ubisoft announced in a press release that Commit-

Assistant can cut the bug fixing time by 20%

 Mozilla announced that it is working with Ubisoft to

use Clever-Commit in the development of Firefox

15

16

Coding
Styles

Quality
Metrics

Bug
Prediction

Prediction of
vulnerabilities

Compliance &
Certification

Other Applications

CommitAssistant as JIT

Monitoring Tool

Analyzing commits provides

real-time view of code quality:

 Num. of introduced bugs

 File metrics

 Subsystem metrics

 Code change density

 Code complexity

 Number of fixes

 Etc.

17

Open Questions

 How can we apply

CommitAssistant to embedded

and critical safety systems?

 What is the relationship between

commit analysis, testing, tracing

and logging, operational

intelligence, etc.?

 Can this technology help with

certification and compliance of

software?

 Is this technology certifiable?

18

Engineering Complex

Preponderant Software Systems

Toulouse, France

October 16-17, 2019

Conclusion

 Machine learning and AI are needed to reduce

overhead of bug fixing

 CommitAssistant:

 reuses existing knowledge and AI to improve new code

 improves quality by providing early feedback to

developers

 assists developers on how to fix risky commits

 works well on Ubisoft systems

19

