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Background on Anomaly Detection
Systems (ADS)
» Goal:

* To monitor computer or network activities for signs
of intrusions

» Signature-based Detection (anti-viruses)

» Looks for known patterns
= Detects only known attacks

» Anomaly Detection

= | ooks for deviations from normal behavior
» Detects even unknown attacks (zero day exploits)

—
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What can we monitor?
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A Complex Monitoring Framework
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Existing Work

» Several techniques have been used to model the
normal behavior of a system
= Sliding window technique
= HMM
= Neural networks (two-class)
= Clustering
= Varied length n-gram technique
= Context Free Grammar
= Data fusion
= Computational intelligence
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Incremental Boolean Combination of HMMs
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Advanced Host-Level Surveillance
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TotalADS: An Integrated Anomaly Detection
System

= Eclipse Plug-in
= Open Source

= Based on TraceCompass (A powerful tracing
infrastructure)

= Supports STIDE, HMM, KSM, IBC, and others
= Supports a combination of classifiers
= Supports trace analysis and forensic analysis

= Supports CTF (Common Trace Format),
standardized by the Linux Foundation

_



TotalADS Architecture
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TotalADS Architecture
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TotalADS Architecture
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Why mobile devices?

2 years of mobile malware evolution <=> 20 years of Computer malware evolution
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Total
6/10
2/10
4/10
9/10
6/10
3/10
7/10
2/10
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avast

AVG
BitDefender
ESET
F-Secure
Kaspersky
Lookout
McAfee
Norton v 3/10
Sophos — 0/10
Trend Micro v v — 3/10

ANESNENENENENESNENENFS

v
v
v
v
v
v
v

Table 3.1: Detection rates for Test Case 1 (—* denotes that the sample has been
detected as aggressive adware, not as malware)

RAFAEL FEDLER, JULIAN SCHUTTE, MARCEL KULICKE 04/2013
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avast
AVG
BitDefender

antivirus software is tested for recognizing known malware sampls, our test
setup considers the ability to cope with typical malware distribution channels,
infection routines, and privilege escalation techniques. We found that it is easy
for malware to evade detection by most antivirus apps with only trivial alterations
to their package files.

Trend Micro v - ' - 310

Table 3.1: Detection rates for Test Case 1 (—* denotes that the sample has been
detected as aggressive adware, not as malware)

RAFAEL FEDLER, JULIAN SCHUTTE, MARCEL KULICKE 04/2013



Android Architecture
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DroidTrace: A Ptrace Based Android
Dynamic Analysis System with Forward
Execution Capability (Zheng 2014)

» An approach for exploring the behaviour of apps with dynamic
payloads (reflection, native code, etc.)

» Aimed to detect code injection and manipulation attacks
using repacking and dynamic payload

» Among the analyzed 1260 malware samples, 1083 of them
(86%) were repackaged versions of legitimate apps with
malicious payloads (Zhou 2012)

» indicating repackaging is a favorable vehicle for mobile
malware propagation.

» Even without code obfuscation, it has been found that about 5%

to 13% of apps in third party app markets are the plagiarism of
legitimate applications




DroidTrace: A Ptrace Based Android
Dynamic Analysis System with Forward
Execution Capability (Zheng 2014)
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uncover functions with
dynamic loading

Analyze the behaviour of apps
with dynamic loading

—

Generate Application Control
Flow Graphs for each function
with dynamic loading

U

Execute the apps and
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A Framework for Evaluating Mobile App
Repackaging Algorithms (Huang 2014)

. . Intermediary
|Or|g|n§| . Dalvik Representation| IR code Obfuscated IR2Dex Obfuscated result
classes.dex Bytecode Obfuscator IR code Renackager Dex Files
Preprocessor P g
.| Repackaging

Detection tool

Fig.3. A Framework for evaluating the obfuscation resilience of repackaging detection algo-
rithms

» SandMarks is used to simulate various obfuscation techniques

» Case study on AndroGuard,an Android application repackaging algorithm
shows that the tool is not resilient to control-flow manipulation




Android Malware Detection Using a Multifeature
Collaborative Decision Fusion (Sheen 2014)
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Android Malware Detection Using a Multifeature
Collaborative Decision Fusion (Sheen 2014)
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Android Malware Detection Using a Multifeature
Collaborative Decision Fusion (Sheen 2014)
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DREBIN: Effective and Explainable Detection
of Android Malware in Your Pocket (Arp, 2014)
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CrowDroid: Behavior-Based Malware Detection
System for Android (Burguera 2011)

Android Community
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Analysis of Deviations in Application
Network Behavior (Shabtai 2015)
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Author Approach Detection Platform Description
Method
Schmidt et HIDS, Anomaly Android Analyzes the security on Android smartphones from Limme-kernel view.
al.(2008)[35] NIDS Detection s Uses Network traffic, Kernel system calls, File system logs and Event
detection modules to detect anomalies in the system.
Schmidt et HIDS Signature- Android Performs static analysis on the executables to extract function calls in
al.(2009)[32] Based 05 Android OS using the command readelf. Funetion calls are compared
Detection with malware executables for classification.
Blifjsing et HIDS Signature- Android0S Uses an Android Application Sandbox to perform Static and Dynamic
al.(2010)[3] Based analysis on Android applications. Static analyvsis scans Android source
Detection code to detect Malware patterns. Dynamic analysis executes and
monitors Android applications in a totally secure environment.
Enck et HIDS NIDS Anomaly Android TaintDroid is a real time monitoring system for Android OS5, TaintDroid
al.(20107[15] Detection o5 monitors Android applications and alerts the user whenever a sensitive
data of the user is compromised. Uses “taint tracking” analysis to
monitor privacy sensitive information.
Portolakidis HIDS NIDS Anomaly Android A remote security server in the cloud performs the Malware detection
et Detection s analy=is. Virtual environments will be used to analyze Android mobile
al. (2010029 phone replicas.
Shabtai ot HIDS Anomaly Android Intrusion detection for mobile devices using the knowledge-hased,
al.(20107[37) Detection s temporal abstraction method (KBTA) methodology. Detects suspicious
temporal patterns and to issues an alert if an intrusion is found. These
patterns are compatible with a set of predefined classes of malware as
defined by a security expert.
Shabtal et HIDS Anomaly Android Host-based malware detection syvstem that continuously monitors
al.(2011)[38] Detection 05 smartphone features and events and applies machine learning to classify

Burguera, lker, Urko Zurutuza et Simin Nadjm-Tehrani. 2011. « Crowdroid: behavior- based malware d
1st ACM workshop on Security and privacy in smartphones and mobile devices. (Chj i

the collected data as normal (benign) or abnormal (malicious) based on

a already known malware and behavior.




Main Challenges

e Data collection
False alarms
« Adaptability

Effectiveness

« Storage
Efficiency - CPU
- Battery Usage

* Deployment
» Capacity

» Configuration
Administration

Feasibility




Effectiveness: Data Collection

» Static analysis:

» Obfuscation and dynamic libraries are (and will
remain) a serious problem

» Dynamic analysis:
* Tracing overhead
= Trace volume
* Trace format
= Trace types

Availability of tracing tools




Effectiveness: False alarms

» High false alarms reduce confidence and could
lead to deactivation of the ADS

» Causes:

» Unrepresentative normal data for training and
attack data for validation and testing

* |nappropriate model or feature selection
= Poor optimization of models parameters
= Over fitting (leads to poor generalization)

» |nadequate assumptions such as static
environments

—




Kernel State Modeling (KSM)

» KSM is an anomaly detection technique

* Transforms system calls into kernel modules,
called states

= Detect anomalies at the level of interaction of
kernel states

» Reduces data space used in training and testing

» Favors efficiency while keeping accuracy

_



Transforming System Calls into States
of Kernel Modules

State Module in Linux Source Code # of System Calls
AC Architecture 10
FS File System 131
IPC Inter Process Communication 7
KL Kernel 127
MM Memory Management 21
NT Networking 2
SC Security 3

UN Unknown 37

[Source]: http://syscalls.kernelgork.com




KSM and Density Plots
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Results of KSM on ADFA Linux Dataset

—-H Dataset: 4000 traces
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Login
PS

Xlock
Stide
Firefox

KSM Execution Time

Size of All

Traces

26.2KB
29.6KB

47.4MB
36.2MB
270.6MB

KSM

4 .46 sec
5.14 sec

1.51 min
5.85 min
9.35 min

Stide

0.03 sec
0.11 sec

12.3 min
8.53 min
417 hr

HMM

56.43 min
46.24 min

13.37 hr
2.3 day
4.03 day




Effectiveness: Adaptability

» ADSs are often designed using limited data

= collection and analysis of representative data from
each process (different versions, OS, etc.) is costly

Normal Behavior Rare Events
(false alarms)

Modeled
Behavior




Effectiveness: Adaptability

» Dynamic environment

» Changes in normal process behaviour due, for
Instance, to application update

Old Normal False negatives New Normal
Behavior Behavior

False alarms
Internal model of X

normal behavior
diverges with respect
to the underlying data ," Modeled
' Behavior



Efficiency of Anomaly Detectors on
Mobile Devices

Security Usability

Detection rate Battery life

FP/FN rate CPU usage

Real-time Memory

detection consumption
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Experimenting with Known ADS Models
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(Anomaly)= (Br($81)) = (Z,,(S82 or FS) + 3) = (Z,(552) + 3) .

o
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Feasibility

A\

On-device vs. remote detection

A\

Dynamic configuration (tracing, algorithm
selection, thresholds)

Combining multiple data sources
Combining multiple heterogeneous detectors
Human in the loop

vV V V VY

Governance of app markets

_



Thank You

Wahab Hamou-Lhadj, PhD, ing.

Software Behaviour Analysis (SBA) Research Lab
Concordia University
Montreal, QC, Canada

www.ece.concordia.ca/~abdelw/sba
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