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Background on Anomaly Detection 

Systems (ADS)

➢ Goal: 

▪ To monitor computer or network activities for signs 

of intrusions

➢ Signature-based Detection (anti-viruses)          

▪ Looks for known patterns 

▪ Detects only known attacks

➢ Anomaly Detection       

▪ Looks for deviations from normal behavior   

▪ Detects even unknown attacks (zero day exploits)
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What can we monitor?
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A Complex Monitoring Framework
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Existing Work

➢ Several techniques have been used to model the 

normal behavior of a system

▪ Sliding window technique

▪ HMM 

▪ Neural networks (two-class)

▪ Clustering

▪ Varied length n-gram technique

▪ Context Free Grammar

▪ Data fusion

▪ Computational intelligence
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Example: Sliding Approach (STIDE)
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Incremental Boolean Combination of HMMs
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Advanced Host-Level Surveillance
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Advanced Host-Level Surveillance
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TotalADS: An Integrated Anomaly Detection 

System
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▪ Eclipse Plug-in 

▪ Open Source

▪ Based on TraceCompass (A powerful tracing 

infrastructure)

▪ Supports STIDE, HMM, KSM, IBC, and others

▪ Supports a combination of classifiers

▪ Supports trace analysis and forensic analysis

▪ Supports CTF (Common Trace Format), 

standardized by the Linux Foundation



TotalADS Architecture
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TotalADS Architecture
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mobile devices?



17

Why mobile devices?
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Why mobile devices?

What about anti-viruses?
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Tools Family of attacks
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Android Architecture
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nikhilsalunkedev. 2014." What is Android?". En ligne. 

<https://nikhilsalunkedev.wordpress.com/2014/03/21/what-is-android/>. Consulté le 12 mai 2014. 
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➢ An approach for exploring the behaviour of apps with dynamic 

payloads (reflection, native code, etc.)

➢ Aimed to detect code injection and manipulation attacks 

using repacking and dynamic payload

➢ Among the analyzed 1260 malware samples, 1083 of them 

(86%) were repackaged versions of legitimate apps with 

malicious payloads (Zhou 2012)

➢ indicating repackaging is a favorable vehicle for mobile 

malware propagation. 

➢ Even without code obfuscation, it has been found that about 5% 

to 13% of apps in third party app markets are the plagiarism of 

legitimate applications

DroidTrace: A Ptrace Based Android 

Dynamic Analysis System with Forward 

Execution Capability  (Zheng 2014)



DroidTrace: A Ptrace Based Android 

Dynamic Analysis System with Forward 

Execution Capability  (Zheng 2014)
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Reverse engineer .dex files to 

uncover functions with 

dynamic loading

Generate Application Control 

Flow Graphs for each function 

with dynamic loading

Execute the apps and 

generate Strace syscall traces 

with selected syscalls

Analyze the behaviour of apps 

with dynamic loading
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A Framework for Evaluating Mobile App 

Repackaging Algorithms (Huang 2014)

➢ SandMarks is used to simulate various obfuscation techniques

➢ Case study on AndroGuard,an Android application repackaging algorithm 

shows that the tool is not resilient to control-flow manipulation



Android Malware Detection Using a Multifeature

Collaborative Decision Fusion (Sheen 2014)
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Most frequently accessed permissions Most frequently accessed API calls
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Android Malware Detection Using a Multifeature

Collaborative Decision Fusion (Sheen 2014)
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The Genome dataset: 

1073 malicious files

903 clean apps

Android Malware Detection Using a Multifeature

Collaborative Decision Fusion (Sheen 2014)



DREBIN: Effective and Explainable Detection 

of Android Malware in Your Pocket (Arp, 2014)
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CrowDroid: Behavior-Based Malware Detection 

System for Android (Burguera 2011)
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Analysis of Deviations in Application 

Network Behavior (Shabtai 2015)
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Burguera, Iker, Urko Zurutuza et Simin Nadjm-Tehrani. 2011. « Crowdroid: behavior- based malware detection system for Android ». In Proceedings of the 

1st ACM workshop on Security and privacy in smartphones and mobile devices. (Chicago, Illinois, USA), p. 15-26. 2046619: ACM.
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Main Challenges

• Data collection

• False alarms

• Adaptability
Effectiveness

• Storage

• CPU

• Battery Usage
Efficiency

• Deployment

• Capacity

• Configuration

• Administration

Feasibility
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Effectiveness: Data Collection

➢ Static analysis:

▪ Obfuscation and dynamic libraries are (and will 

remain) a serious problem

➢ Dynamic analysis: 

▪ Tracing overhead

▪ Trace volume

▪ Trace format

▪ Trace types

▪ Availability of tracing tools



Effectiveness: False alarms

➢ High false alarms reduce confidence and could 

lead to deactivation of the ADS

➢ Causes:

▪ Unrepresentative normal data for training and 

attack data for validation and testing 

▪ Inappropriate model or feature selection

▪ Poor optimization of models parameters

▪ Over fitting (leads to poor generalization)

▪ Inadequate assumptions such as static 

environments

36



Kernel State Modeling (KSM)

➢KSM is an anomaly detection technique

▪ Transforms system calls into kernel modules, 

called states

▪ Detect anomalies at the level of interaction of 

kernel states

▪ Reduces data space used in training and testing

▪ Favors efficiency while keeping accuracy
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Transforming System Calls into States 

of Kernel Modules

State Module in Linux Source Code # of System Calls

AC Architecture 10

FS File System 131

IPC Inter Process Communication 7

KL Kernel 127

MM Memory Management 21

NT Networking 2

SC Security 3

UN Unknown 37

[Source]: http://syscalls.kernelgork.com
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KSM and Density Plots

Density

Plot
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Anomaly Detection

Normal Anomalous
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Results of KSM on ADFA Linux Dataset
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Dataset: 4000 traces



KSM Execution Time

Size of All 

Traces 

KSM Stide HMM

Login 26.2KB 4.46 sec 0.03 sec 56.43 min

PS 29.6KB 5.14 sec 0.11 sec 46.24 min

Xlock 47.4MB 1.51 min 12.3 min 13.37 hr

Stide 36.2MB 5.85 min 8.53 min 2.3 day

Firefox 270.6MB 9.35 min 4.17 hr 4.03 day
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Effectiveness: Adaptability

➢ ADSs are often designed using limited data 

▪ collection and analysis of representative data from 

each process (different versions, OS, etc.) is costly

43



Effectiveness: Adaptability

➢Dynamic environment

▪ Changes in normal process behaviour due, for 

instance, to application update

Internal model of 

normal behavior 

diverges with respect 

to the underlying data
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Efficiency of Anomaly Detectors on 

Mobile Devices



Experimenting with Known ADS Models
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CPU and Memory Usage
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Feasibility

➢ On-device vs. remote detection

➢ Dynamic configuration (tracing, algorithm 

selection, thresholds)

➢ Combining multiple data sources

➢ Combining multiple heterogeneous detectors

➢ Human in the loop

➢ Governance of app markets



Thank You
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