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User vs. Operational Data

▪ User data describes information 

about users. 

▪ E.g. social media data, user 

preferences, geo-location data, 

images, etc.

▪ Applications include marketing 

campaigns, fraud detection, image 

recognition, etc.
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User vs. Operational Data

▪ Operational (machine) data 

describes information about a 

system (or a machine)

▪ It is collected automatically from 

devices, IT platforms, applications 

with no direct user intervention.

▪ Useful for diagnosing service 

problems, ensuring reliability, 

detecting security threats, 

improving operations, and so on.
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Operational Data for Software-

Intensive Systems

▪ New trends in SW dev. make this 

challenging:

▪ Highly distributed and parallel systems

▪ Micro-service architectures

▪ Virtualisation and containerization 

▪ Device connectivity and IoT

▪ Cyber physical systems

▪ Intelligent and autonomous systems

▪ Agile, DevOps, and  continuous         

delivery processes
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▪ The proper functioning of software-intensive systems 

relies heavily on operational data to diagnose and 

prevent problems.
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▪ The proper functioning of software-intensive systems 

relies heavily on operational data to diagnose and 

prevent problems.

We need better runtime system analysis and fault diagnosis and 

prediction methods that provide full visibility of a system’s internal 

states.



Software Observability

▪ In control theory: 

▪ Observability is “a measure of how well internal 

states of a system can be inferred from knowledge of 

its external outputs” [Wikipedia]

▪ Software Observability:

▪ A set of end-to-end techniques and processes that  

allow us to reason about what a software system 

is doing and why by analyzing its external outputs.
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Monitoring vs Observability

▪ Monitoring: 

▪ Tracks known metrics and raises alerts when thresholds are 

not met  (e.g., 4 golden signals of Google SRE: latency, traffic, 

errors, and saturation)

▪ Answers the question: “how is the system doing?” 

▪ Helps diagnose known problems

▪ Observability: 

▪ Answers the question: “what is the system doing and why?” 

▪ Enables to reason about the system by observing its outputs

▪ Helps diagnose known and unknown problems

7



Building Blocks
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Operational Data

▪ Logs: 

▪ Records of events generated from logging statements inserted 

in the code to track system execution, errors, failures, etc.

▪ Different types of logs: system logs, application logs, event 

logs, etc.

▪ Traces:

▪ Records of events showing execution flow of a service or a 

(distributed) system with causal relationship

▪ Require additional instrumentation mechanisms

▪ Profiling Metrics:

▪ Aggregate measurements over a period of time (e.g., CPU 

usage, number of user requests, etc.)
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Emergence of AI for IT Operations

▪ AIOps is the application of AI to enhance IT operations

▪ An important enabler for digital transformation

▪ Building Blocks:
▪ Data collection and aggregation

▪ Pattern recognition 

▪ Predictive analytics

▪ Visualization

▪ Applications: 
▪ Fault detection and prediction

▪ Root cause analysis

▪ Security

▪ Regulatory compliance

▪ Operational intelligence
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Characteristics of Logs and Traces

▪ Velocity: the data (in some cases) must be processed in 

real time

▪ Volume: mountain ranges of historical data

▪ Variety: captured data can be structured or unstructured 

▪ Veracity: captured data must be cleaned

▪ Value: not all captured data is useful
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Challenges

▪ Standards and Best Practices:

▪ Lack of guidelines and best practices for logging, 

tracing, and profiling

▪ Lack of standards for representing logs, traces, and 

metrics (not the OpenTelemetry initiative)

▪ Data Characteristics

▪ Mainly unstructured data

▪ Size is a problem

▪ Not all data is useful

▪ High velocity
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▪ Analytics and Tools:

▪ Mainly descriptive analytics

▪ Predictive analytics not fully explored

▪ Mainly offline analysis techniques

▪ Lack of usable end-to-end observability tools

▪ Cost and Management Aspects

▪ Cost vs. benefits not well understood 

▪ No clear alignment of observability with other initiatives

▪ Roles and responsibilities are not well defined
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Challenges

There is a need for systematic and engineering 

approaches to software observability that promote best 

practices throughout the entire software development 

lifecycle



Observability By Design

▪ Bringing observability to early stages of the software 

development lifecycle.

▪ Defining a set of observability patterns, best 

practices, and reusable solutions to be used as 

guiding principles for developers.

▪ A systematic approach to tracing, logging and 

profiling of software systems that considers different 

phases of the software process.
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Observability-Driven Development (ODD)

▪ Leveraging tools and hands-

on developers to observe system 

state and behavior

▪ Interrogating the system, not just 

setting and measuring thresholds 

and metrics for it
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Observability-Driven Development (ODD)
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From Telemetry to OpenTelemetry

▪ Observability is often equated with telemetry

▪ "If you have metrics, logs, and traces, then you have 

Observability"

▪ Observability, is the process of deriving value from 

telemetry

▪ Telemetry is important but not sufficient

▪ We also need tools to analyze and visualize the 

telemetry

▪ OpenTelemetry
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Instrumentation

▪ Definition

▪ Example

▪ Challenges

▪ Level of details

▪ Lots of noises

▪ Cost (overhead)
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Instrumentation (Logging)

▪ Limited context of request 

origin.

▪ Can be specific to a 

certain machine/group.

▪ Failure due to other 

dependency

▪ Causal information 

missing.

▪ Finding/locating logs 

for analysis 

is cumbersome.

▪ NOT an automatic 

process.
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Instrumentation needs context

▪ Naïve logging is 

unstructured data.

▪ Prohibitive in 

gathering all information 

(costly).

▪ Time expensive to 

reconstruct 

a request/transaction.

▪ Sometimes even 

impossible!
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Logging + Context = Tracing

▪ OpenTelemetry

standardizes this 

transformation.

▪ Context allows for causal 

relationship 

construction.

▪ Scattered events can be 

mapped to distributed 

nodes.

▪ Unique identifier for each 

trace allows fast 

lookups.

▪ End result = structured 

data.
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Logs to Events

▪ Every span has an event

▪ Every event has a name/message + timestamp + 

optionally if log has structered data (k/v pairs), add to 

span

▪ Switching from Logs to Traces:

▪ Context (what)

▪ Resources (where)

▪ Logs (events attached to traces)
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Example Event

▪ HTTP event

▪ GET something/somewhere

▪ Attributes: (unique to the event + generic to the 

event, but very important for locating this event- static 

resources), dynamic context: values change from req 

to req (duration, starttime, error or not, app specific 

attributes, account id or project id)
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TRACING -> GRAPH -> 

CAUSALITY

▪ Needs more contextualization:

▪ More attributes

▪ Trace-id: identifies transaction

▪ Span-id: identifies operation

▪ Parent span-id: causality

▪ Operation name: compare across different runs of the 

same operation
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Trace Analysis

▪ Not trying to look at individual transactions

▪ Correlation across many runs of the same transaction

▪ Identify that correlation to find the causation (root 

cause) of the problem.
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OpenTelemetry
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▪ Vendor-neutral telemetry

▪ Instrumentation

▪ Changes to the application (source code or configuration)

▪ "With great instrumentation comes great observability."

▪ Data pipeline

▪ Visualization & Analytics



Client-Server Java Spring Boot 

Configuration (https://spring.io/)
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Figure: Microservice Spring Boot Distributed Configuration



Log Providers in Spring
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• Nodes serves different 

endpoints.

• Each endpoint has a logging 

facility provided by Spring.

• Endpoint activation is 

internally tracked by the 

Spring engine.

• Log providers enables live 

swap in/out. Figure: Log Mechanism Provider within Node



OpenTracing Concept in Spring

31

• Each unique service can be 

instrumented.

• OpenTracing API is an 

interface that Spring Boot 

provides (Spring Boot 

Actuator).

• Exposes various metrics 

(Health, Events, 

Prometheus, HeapDump) Figure: Trace Mechanism within Service



System Trace Lifecycle (Spans)
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• Each Span context is unique 

storage facility defined from 

developer’s point of view.

• High cardinality of data (e.g

user_id)

• Context can be augmented 

with additional information.

• Spans can be analyzed 

during fault diagnosis 

without overwhelming trace 

size.

Figure: Custom Span Context Configuration



Metric Analysis & Visualization

▪ Grafana

▪ Prometheus

▪ Kibana
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https://grafana.com/

https://prometheus.io/docs/visualization/grafana/

https://www.elastic.co/guide/en/kibana



Observability Culture

▪ Observability in action!

▪ Before and after a problem,

▪ Data-driven decision making

▪ Educate team

▪ Encourage standard tools/techniques

▪ Log formatting

▪ Metric conventions

▪ Practice, share success stories, and feedback

▪ Measure your progress and observer your 

observability culture!
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Contribution 1: Weighted Pruning Boolean Combination Rules that1.1. enforces the diversities among the combined soft and crisp detectors

1.2. can be used with both pair-wise and iterative Boolean combination techniques

1.4. outperforms BBC2, IBC, and PBC Boolean combination techniques
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