UNIVERSITE

Q/fConcordla Brock

UNIVERSITY UnIVEFSItY

Observability-Driven Software Engineering

Wahab Hamou-Lhadj Naser Ezzati-Jivan
Concordia University Brock University
Montréal, QC, Canada St. Catharines, ON, Canada

Keynote Presentation

5th International Conference on Wireless, Intelligent, and Distributed
Environment for Communication (WIDECOM)

Windsor, ON, Canada
= October 12, 2022

User vs. Operational Data

= User data describes information
about users.

= E.g. social media data, user
preferences, geo-location data,
Images, etc.

= Applications include marketing
campaigns, fraud detection, image
recognition, etc.

User vs. Operational Data

= Operational (machine) data
describes information about a
system (or a machine)

» |tis collected automatically from
devices, IT platforms, applications
with no direct user intervention.

= Useful for diagnosing service
problems, ensuring reliability,
detecting security threats,
Improving operations, and so on.

—

Operational Data for Software-
Intensive Systems

* The proper functioning of software-intensive systems
relies heavily on operational data to diagnose and
prevent problems.

* New trends in SW dev. make this
challenging:
= Highly distributed and parallel systems
= Micro-service architectures
» Virtualisation and containerization
= Device connectivity and loT
= Cyber physical systems
= [ntelligent and autonomous systems

= Agile, DevOps, and continuous
delivery processes

e —

Operational Data for Software-
Intensive Systems

* The proper functioning of software-intensive systems
relies heavily on operational data to diagnose and
prevent problems.

1 We need better runtime system analysis and fault diagnosis and
prediction methods that provide full visibility of a system’s internal
states.

IVIIVIV Jwl VIV Uil viliIltvuuuil vw

» Virtualisation and containerization

= Device connectivity and loT

= Cyber physical systems

= [ntelligent and autonomous systems

= Agile, DevOps, and continuous
delivery processes

—

Software Observability

= |n control theory:

= Observability is “a measure of how well internal
states of a system can be inferred from knowledge of
its external outputs” [Wikipedia]

= Software Observability:

= A set of end-to-end techniques and processes that
allow us to reason about what a software system
is doing and why by analyzing its external outputs.

Monitoring vs Observability

= Monitoring:
= Tracks known metrics and raises alerts when thresholds are

not met (e.g., 4 golden signals of Google SRE: latency, traffic,
errors, and saturation)

= Answers the question: “how is the system doing?”
» Helps diagnose known problems

= Observability:
= Answers the question: “what is the system doing and why?”
= Enables to reason about the system by observing its outputs
= Helps diagnose known and unknown problems

——

A
4 vk

N
Data
Collection

Building Blocks

J

Execution
Profile

.

—)[Analytics J

Offline and/or real-time analytics

8 TS

2
—
N

oy core e [V 11584] e e e s

Operational Data

= Logs:

= Records of events generated from logging statements inserted
in the code to track system execution, errors, failures, etc.

= Different types of logs: system logs, application logs, event
logs, etc.

= Traces:

= Records of events showing execution flow of a service or a
(distributed) system with causal relationship

= Require additional instrumentation mechanisms

* Profiling Metrics:

= Aggregate measurements over a period of time (e.g., CPU
usage, number of user requests, etc.)

P —

Emergence of Al for IT Operations

= AlOps is the application of Al to enhance IT operations
= An important enabler for digital transformation

Building Blocks:
= Data collection and aggregation
= Pattern recognition
= Predictive analytics
= Visualization

. Appllcatlons

Fault detection and prediction
Root cause analysis

Security

Regulatory compliance
Operational intelligence

M ——

Characteristics of Logs and Traces

* Velocity: the data (in some cases) must be processed in
real time

* Volume: mountain ranges of historical data
= Variety: captured data can be structured or unstructured
= Veracity: captured data must be cleaned

= Value: not all captured data is useful

Challenges

= Standards and Best Practices:

= Lack of guidelines and best practices for logging,
tracing, and profiling

» | ack of standards for representing logs, traces, and
metrics (not the OpenTelemetry initiative)

= Data Characteristics
= Mainly unstructured data
= Size is a problem
= Not all data is useful
= High velocity

T ——

Challenges

= Analytics and Tools:
= Mainly descriptive analytics
* Predictive analytics not fully explored
= Mainly offline analysis techniques
= Lack of usable end-to-end observability tools

= Cost and Management Aspects
= Cost vs. benefits not well understood
= No clear alignment of observability with other initiatives
* Roles and responsibilities are not well defined

T —

Challenges

= Analytics and Tools:

There is a need for systematic and engineering
approaches to software observability that promote best
practices throughout the entire software development
lifecycle

o osLdnu WidildyfCITICIIlL ASPCCLS
= Cost vs. benefits not well understood
= No clear alignment of observability with other initiatives
* Roles and responsibilities are not well defined

T —

Observability By Design

* Bringing observability to early stages of the software
development lifecycle.

» Defining a set of observability patterns, best
practices, and reusable solutions to be used as
guiding principles for developers.

= A systematic approach to tracing, logging and
profiling of software systems that considers different

phases of the software process.

b—f

Observability-Driven Development (ODD)

» | everaging tools and hands- o w
on developers to observe system
State and behaVior ‘ plan l | deslign | ‘ develop ‘ ‘ test ‘ \ deploy \ |operate|

» |nterrogating the system, not just
setting and measuring thresholds
and metrics for it

Write ! Define
Test Outcome

Test Driven ‘ Observability Driven
Development Development

Pass
Refactor Test

Observability-Driven Development (ODD)

e)

¢ Determining what to
observe based on Quality
of Service and KPIs to be
met
« |dentifying where to
observe and designing in
such a way to make
_ instrumentation easy

* Standardization of the
instrumentation

* Adding sufficient context
for getting better insight

¢ Implementing at

framework level

-

e Following ‘Observability as
Code’ practice to enforce
observability as part of
Continuous Deployment
process.

* Observing for unusual
behaviour at an early stage
through automation J

* Proactive monitoring and
querying

* Feedback loop from the
observations to
development team

-

b——'—"

From Telemetry to OpenTelemetry

= Observability is often equated with telemetry

= "If you have metrics, logs, and traces, then you have
Observability"

» Observability, is the process of deriving value from
telemetry
= Telemetry is important but not sufficient

= We also need tools to analyze and visualize the
telemetry

= OpenTelemetry

u—/

Instrumentation

= Definition

= Example

» Challenges
= |Level of details
= |ots of noises
» Cost (overhead)

Instrumentation (Logging)

= Limited context of request

1 1. #include <stdio.h>
. . H 23
O rI g I n : 3. int main(void)
. 4.4
: ® Add 5. printf(“Hello, world'\n™);
i instrumentation . pipe0;
1 7. returnQ;

= Can be specificto a ;

certain machine/group. - 7
= Failure due to other L”/HJ

dependency | i

= Causal information [Appender J "l storcae
m iSSi n g - : Instrumented Code
* Finding/locating logs
for analysis 5 e e

IS cumbersome.

= NOT an automatic
pProcess.

e ——

Instrumentation needs context

= Naive logging is
unstructured data.

= Prohibitive in
gathering all information H H
(costly).

= Time expensive to
reconstruct
a request/transaction. Unstructured

= Sometimes even Logs
Impossible!

e —

Logging + Context = Tracing

* OpenTelemetry

standardizes this @ @ %
transformation.
= Context allows for causal Context
relationship Logs T
H ontext race
construction. =N e J
= Scattered events can be 4 Spanip
mapped to distributed o |
deS o T /v pairs
no . e
trace 2
= Unique identifier for each | races ;
trace allows fast trace n
IOOku pS_ Converting logs to traces

= End result = structured
data

T —

Logging + Context = Tracing

* OpenTelemetry

standardizes this @ @ %
transformation.
= Context allows for causal Context
relationship Logs T
H ontext race
construction. =N e J
= Scattered events can be 4 Spanip
mapped to distributed o |
deS o T /v pairs
no . e
trace 2
= Unique identifier for each | races ;
trace allows fast trace n
IOOku pS_ Converting logs to traces

= End result = structured
data

T —

Logs to Events

= Every span has an event

= Every event has a name/message + timestamp +
optionally if log has structered data (k/v pairs), add to

span
= Switching from Logs to Traces:
= Context (what)
= Resources (where)
* Logs (events attached to traces)

Example Event

= HTTP event
» GET something/somewhere

= Attributes: (unique to the event + generic to the
event, but very important for locating this event- static
resources), dynamic context: values change from req
to req (duration, starttime, error or not, app specific
attributes, account id or project id)

TRACING -> GRAPH ->
CAUSALITY

= Needs more contextualization:
= More attributes
= Trace-id: identifies transaction
= Span-id: identifies operation
= Parent span-id: causality

= Operation name: compare across different runs of the
same operation

Trace Analysis

= Not trying to look at individual transactions
= Correlation across many runs of the same transaction

= |dentify that correlation to find the causation (root
cause) of the problem.

OpenTelemetry

= Vendor-neutral telemetry

R
]

Telemetry

1=

= |nstrumentation

Backend

N~

» Changes to the application (source code or configuration)
= "With great instrumentation comes great observability."

= Data pipeline
* Visualization & Analytics

e ——

Client-Server Java Spring Boot
Configuration (https://spring.io/)

——————————

Figure: Microservice Spring Boot Distributed Configuration

Log Providers In Spring

* Nodes serves different
endpoints.

« Each endpoint has a logging
facility provided by Spring.

« Endpoint activation is

internally tracked by the

Logstash

Elasticsearch

~

J

\

i i Generic Log
Spring engine. o e
* Log providers enables live
swap in/out. Figure: Log Mechanism Provider within Node

M

OpenTracing Concept in Spring

« Each unique service can be
instrumented.

* OpenTracing APl is an
interface that Spring Boot
provides (Spring Boot
Actuator).

« Exposes various metrics
(Health, Events,

Prometheus, HeapDump)

T —

Code

Instrumentation
Service N

Opentracing API

.
Tracer (Jaeger)

-

J

Figure: Trace Mechanism within Service

System Trace Lifecycle (Spans)

@ N

Name Span A \

Start/Finish

« Each Span context is unique

storage facility defined from

[72]
iy V43
=

timestamps !
developer’s point of view. cey/val 1ogs
pors T e

* High cardinality of data (e.g \ J

user_id) ~
« Context can be augmented

. " . . Context
with additional information. - trace_id: trace_id_1
= span_id: span_id_1

. Spans can be analyzed - Baggage_items: { user_id: 123}

during fault diagnosis _ -

without OVGrWhelming trace Figure: Custom Span Context Configuration

size.

e —

Metric Analysis & Visualization

2 584811 31447 $3.402k [N

= Grafana =

= Prometheus 551 M

= Kibana

https://grafana.com/

Target Serve
e
(eoo) Y (o
o/

Prometheus Grafana
PPPPPP heus 1&
de_exporte °!

https://prometheus.io/docs/visualization/grafana/

d>E>BE> =

S

https://www.elastic.co/guide/en/kibana

Observability Culture

= Observability in action!

= Before and after a problem,
= Data-driven decision making
= Educate team

» Encourage standard tools/techniques
» Log formatting
= Metric conventions
» Practice, share success stories, and feedback

= Measure your progress and observer your
observability culture!

u——/

Contact Information

Wahab Hamou-Lhadj, PhD, ing.
Concordia University

¥ Concordia

wahab.hamou-lhadj@concordia.ca
http://www.ece.concordia.ca/~abdelw

Naser Ezzati-Jivan, PhD
Brock University

nezzatijivan@brocku.ca BrOCk

University

http://www.cosc.brocku.ca/~nezzatijivan/

