
Observability-Driven Software Engineering

Wahab Hamou-Lhadj
Concordia University

Montréal, QC, Canada

Naser Ezzati-Jivan
Brock University

St. Catharines, ON, Canada

Keynote Presentation

5th International Conference on Wireless, Intelligent, and Distributed
Environment for Communication (WIDECOM)

Windsor, ON, Canada
October 12, 2022

User vs. Operational Data

▪ User data describes information

about users.

▪ E.g. social media data, user

preferences, geo-location data,

images, etc.

▪ Applications include marketing

campaigns, fraud detection, image

recognition, etc.

2

User vs. Operational Data

▪ Operational (machine) data

describes information about a

system (or a machine)

▪ It is collected automatically from

devices, IT platforms, applications

with no direct user intervention.

▪ Useful for diagnosing service

problems, ensuring reliability,

detecting security threats,

improving operations, and so on.

3

Operational Data for Software-

Intensive Systems

▪ New trends in SW dev. make this

challenging:

▪ Highly distributed and parallel systems

▪ Micro-service architectures

▪ Virtualisation and containerization

▪ Device connectivity and IoT

▪ Cyber physical systems

▪ Intelligent and autonomous systems

▪ Agile, DevOps, and continuous

delivery processes

4

▪ The proper functioning of software-intensive systems

relies heavily on operational data to diagnose and

prevent problems.

Operational Data for Software-

Intensive Systems

▪ New trends in SW dev. make this

challenging:

▪ Highly distributed and parallel systems

▪ Micro-service architectures

▪ Virtualisation and containerization

▪ Device connectivity and IoT

▪ Cyber physical systems

▪ Intelligent and autonomous systems

▪ Agile, DevOps, and continuous

delivery processes

5

▪ The proper functioning of software-intensive systems

relies heavily on operational data to diagnose and

prevent problems.

We need better runtime system analysis and fault diagnosis and

prediction methods that provide full visibility of a system’s internal

states.

Software Observability

▪ In control theory:

▪ Observability is “a measure of how well internal

states of a system can be inferred from knowledge of

its external outputs” [Wikipedia]

▪ Software Observability:

▪ A set of end-to-end techniques and processes that

allow us to reason about what a software system

is doing and why by analyzing its external outputs.

6

Monitoring vs Observability

▪ Monitoring:

▪ Tracks known metrics and raises alerts when thresholds are

not met (e.g., 4 golden signals of Google SRE: latency, traffic,

errors, and saturation)

▪ Answers the question: “how is the system doing?”

▪ Helps diagnose known problems

▪ Observability:

▪ Answers the question: “what is the system doing and why?”

▪ Enables to reason about the system by observing its outputs

▪ Helps diagnose known and unknown problems

7

Building Blocks

8

Data

Collection
Execution

Profile
Analytics

Offline and/or real-time analytics

Distributed and

Complex System

in Operation

Operational Data

▪ Logs:

▪ Records of events generated from logging statements inserted

in the code to track system execution, errors, failures, etc.

▪ Different types of logs: system logs, application logs, event

logs, etc.

▪ Traces:

▪ Records of events showing execution flow of a service or a

(distributed) system with causal relationship

▪ Require additional instrumentation mechanisms

▪ Profiling Metrics:

▪ Aggregate measurements over a period of time (e.g., CPU

usage, number of user requests, etc.)

9

Emergence of AI for IT Operations

▪ AIOps is the application of AI to enhance IT operations

▪ An important enabler for digital transformation

▪ Building Blocks:
▪ Data collection and aggregation

▪ Pattern recognition

▪ Predictive analytics

▪ Visualization

▪ Applications:
▪ Fault detection and prediction

▪ Root cause analysis

▪ Security

▪ Regulatory compliance

▪ Operational intelligence

10

Characteristics of Logs and Traces

▪ Velocity: the data (in some cases) must be processed in

real time

▪ Volume: mountain ranges of historical data

▪ Variety: captured data can be structured or unstructured

▪ Veracity: captured data must be cleaned

▪ Value: not all captured data is useful

11

Challenges

▪ Standards and Best Practices:

▪ Lack of guidelines and best practices for logging,

tracing, and profiling

▪ Lack of standards for representing logs, traces, and

metrics (not the OpenTelemetry initiative)

▪ Data Characteristics

▪ Mainly unstructured data

▪ Size is a problem

▪ Not all data is useful

▪ High velocity

12

▪ Analytics and Tools:

▪ Mainly descriptive analytics

▪ Predictive analytics not fully explored

▪ Mainly offline analysis techniques

▪ Lack of usable end-to-end observability tools

▪ Cost and Management Aspects

▪ Cost vs. benefits not well understood

▪ No clear alignment of observability with other initiatives

▪ Roles and responsibilities are not well defined

13

Challenges

▪ Analytics and Tools:

▪ Mainly descriptive analytics

▪ Predictive analytics not fully explored

▪ Mainly offline analysis techniques

▪ Lack of usable end-to-end observability tools

▪ Cost and Management Aspects

▪ Cost vs. benefits not well understood

▪ No clear alignment of observability with other initiatives

▪ Roles and responsibilities are not well defined

14

Challenges

There is a need for systematic and engineering

approaches to software observability that promote best

practices throughout the entire software development

lifecycle

Observability By Design

▪ Bringing observability to early stages of the software

development lifecycle.

▪ Defining a set of observability patterns, best

practices, and reusable solutions to be used as

guiding principles for developers.

▪ A systematic approach to tracing, logging and

profiling of software systems that considers different

phases of the software process.

15

Observability-Driven Development (ODD)

▪ Leveraging tools and hands-

on developers to observe system

state and behavior

▪ Interrogating the system, not just

setting and measuring thresholds

and metrics for it

16

Observability-Driven Development (ODD)

17

From Telemetry to OpenTelemetry

▪ Observability is often equated with telemetry

▪ "If you have metrics, logs, and traces, then you have

Observability"

▪ Observability, is the process of deriving value from

telemetry

▪ Telemetry is important but not sufficient

▪ We also need tools to analyze and visualize the

telemetry

▪ OpenTelemetry

18

Instrumentation

▪ Definition

▪ Example

▪ Challenges

▪ Level of details

▪ Lots of noises

▪ Cost (overhead)

19

Instrumentation (Logging)

▪ Limited context of request

origin.

▪ Can be specific to a

certain machine/group.

▪ Failure due to other

dependency

▪ Causal information

missing.

▪ Finding/locating logs

for analysis

is cumbersome.

▪ NOT an automatic

process.

20

Instrumentation needs context

▪ Naïve logging is

unstructured data.

▪ Prohibitive in

gathering all information

(costly).

▪ Time expensive to

reconstruct

a request/transaction.

▪ Sometimes even

impossible!

21

Logging + Context = Tracing

▪ OpenTelemetry

standardizes this

transformation.

▪ Context allows for causal

relationship

construction.

▪ Scattered events can be

mapped to distributed

nodes.

▪ Unique identifier for each

trace allows fast

lookups.

▪ End result = structured

data.
22

Logging + Context = Tracing

▪ OpenTelemetry

standardizes this

transformation.

▪ Context allows for causal

relationship

construction.

▪ Scattered events can be

mapped to distributed

nodes.

▪ Unique identifier for each

trace allows fast

lookups.

▪ End result = structured

data.
23

Logs to Events

▪ Every span has an event

▪ Every event has a name/message + timestamp +

optionally if log has structered data (k/v pairs), add to

span

▪ Switching from Logs to Traces:

▪ Context (what)

▪ Resources (where)

▪ Logs (events attached to traces)

24

Example Event

▪ HTTP event

▪ GET something/somewhere

▪ Attributes: (unique to the event + generic to the

event, but very important for locating this event- static

resources), dynamic context: values change from req

to req (duration, starttime, error or not, app specific

attributes, account id or project id)

25

TRACING -> GRAPH ->

CAUSALITY

▪ Needs more contextualization:

▪ More attributes

▪ Trace-id: identifies transaction

▪ Span-id: identifies operation

▪ Parent span-id: causality

▪ Operation name: compare across different runs of the

same operation

26

Trace Analysis

▪ Not trying to look at individual transactions

▪ Correlation across many runs of the same transaction

▪ Identify that correlation to find the causation (root

cause) of the problem.

27

OpenTelemetry

28

▪ Vendor-neutral telemetry

▪ Instrumentation

▪ Changes to the application (source code or configuration)

▪ "With great instrumentation comes great observability."

▪ Data pipeline

▪ Visualization & Analytics

Client-Server Java Spring Boot

Configuration (https://spring.io/)

29

Figure: Microservice Spring Boot Distributed Configuration

Log Providers in Spring

30

• Nodes serves different

endpoints.

• Each endpoint has a logging

facility provided by Spring.

• Endpoint activation is

internally tracked by the

Spring engine.

• Log providers enables live

swap in/out. Figure: Log Mechanism Provider within Node

OpenTracing Concept in Spring

31

• Each unique service can be

instrumented.

• OpenTracing API is an

interface that Spring Boot

provides (Spring Boot

Actuator).

• Exposes various metrics

(Health, Events,

Prometheus, HeapDump) Figure: Trace Mechanism within Service

System Trace Lifecycle (Spans)

32

• Each Span context is unique

storage facility defined from

developer’s point of view.

• High cardinality of data (e.g

user_id)

• Context can be augmented

with additional information.

• Spans can be analyzed

during fault diagnosis

without overwhelming trace

size.

Figure: Custom Span Context Configuration

Metric Analysis & Visualization

▪ Grafana

▪ Prometheus

▪ Kibana

33

https://grafana.com/

https://prometheus.io/docs/visualization/grafana/

https://www.elastic.co/guide/en/kibana

Observability Culture

▪ Observability in action!

▪ Before and after a problem,

▪ Data-driven decision making

▪ Educate team

▪ Encourage standard tools/techniques

▪ Log formatting

▪ Metric conventions

▪ Practice, share success stories, and feedback

▪ Measure your progress and observer your

observability culture!

34

35

Contribution 1: Weighted Pruning Boolean Combination Rules that1.1. enforces the diversities among the combined soft and crisp detectors

1.2. can be used with both pair-wise and iterative Boolean combination techniques

1.4. outperforms BBC2, IBC, and PBC Boolean combination techniques

Wahab Hamou-Lhadj, PhD, ing.

Concordia University

wahab.hamou-lhadj@concordia.ca

http://www.ece.concordia.ca/~abdelw

Naser Ezzati-Jivan , PhD
Brock University

nezzatijivan@brocku.ca

http://www.cosc.brocku.ca/~nezzatijivan/

Contact Information

