Concordia University

ELEC372 Fundamentals of Control Systems Supplementary Problem Set 1 (Not to be handed in)

The problems form the foundation of Quiz 1

Amir G. Aghdam

In these problems $u(t)$ denotes the unit step function.

1. The positioning system of a printer can be modeled as

$$
Y(s)=\frac{10(s+50)}{s^{2}+60 s+500} R(s)
$$

where the input $R(s)$ represents the desired position and $Y(s)$ is the output position. If the input is a unit step, calculate the final value of the output.
2. Consider a system with the closed-loop transfer function

$$
\frac{Y(s)}{R(s)}=\frac{20(s+4)}{s^{2}+8 s+15}
$$

with input $R(s)$ and output $Y(s)$. When all initial conditions are zero and the input is a unit impulse, calculate the output $y(t)$.
3. Consider a system with transfer function

$$
H(s)=\frac{20}{s^{2}+10 s+25}
$$

Calculate the system step response.
4. Consider the differential equation

$$
\frac{d^{2} y(t)}{d t^{2}}+3 \frac{d y(t)}{d t}+2 y(t)=2 \frac{d u(t)}{d t}-5 u(t)
$$

Solve the equation when $u(t)$ is a unit step and $y(0)=-3$ and $\left.\frac{d y(t)}{d t}\right|_{t=0}=4$.
5. Find the response $y(t)$ of a system with transfer function

$$
H(s)=\frac{s+2}{s(s+1)}
$$

to an input $x(t)=e^{-t} u(t)$.
6. Find the response $y(t)$ of a system with impulse response

$$
h(t)=\left(e^{-t}+e^{-2 t}\right) u(t)
$$

to an input $x(t)=5 u(t)$.
7. Consider four LTI systems A, B, C, and D. The following information is known about each system.
(a) System A is described by a transfer function $H_{A}(s)=10000$.
(b) System B produces an output $y(t)=u(t)$ to an input $u(t)=e^{-t} u(t)$.
(c) System C has an impulse response $h(t)=t^{10} e^{-0.1 t} u(t)$.

Discuss BIBO stability of each system.

