ELEC 372

Supplementary Problem Set \#3

Not to be handed in
These problems form the foundation of Quiz \#3
Amir G. Aghdam

1. A chemical process is designed to follow a desired path described by

$$
r(t)=\left(5-t+0.5 t^{2}\right) u_{1}(t)
$$

where $r(t)$ is the reference input and $u_{1}(t)$ is the unit step function. Consider a unity feedback system

Compute the steady-state error $(E(s)=R(s)-Y(s))$ when the open loop transfer function is

$$
G(s)=\frac{10(s+1)}{s^{2}(s+5)}
$$

2. Consider the block diagram a submersible vehicle

Find the steady-state tracking error to a unit step.
3. Consider the unity feedback controls system

where

$$
G(s)=\frac{K}{s(s+a)}
$$

The design specifications are:
(a) Peak time $T_{p} \leq 1$.
(b) Percent overshoot P.O. $\leq 10 \%$.

Find acceptable ranges of values for K and a.
4. Consider the machine-tool control system

where

$$
G(s)=\frac{10}{s+10}
$$

(a) Find the steady-state value of the output to a unit step disturbance $d(t)=u_{1}(t)$.
(b) Using a 2% criterion, compute the settling time t_{s} to a unit step disturbance.
5. A plant with open-loop transfer function

$$
G(s)=\frac{1}{(1+s)(1+0.5 s)}
$$

is controlled by a proportional controller K, as shown in the block diagram below:

Find the value of K that yields a steady-state error equal to 0.01 to a unit step input.
6. Consider a satellite control system to maintain the altitude orientation.

(a) Find a second-order approximation of the open-loop system in the forward path.
(b) Using the second-order approximation, estimate gain K so that percent overshoot is less than 15%.
7. Consider the following block diagram:

(a) Find the steady-state value of the output to a unit step disturbance $d(t)=u_{1}(t)$.
(b) Find the steady-state error when $r(t)=(1+t) u_{1}(t)$, and noting that $e=r-y$, conclude the steady-state value of the output when $r(t)=(1+t) u_{1}(t)$.
(c) Find the steady-state value of the output when the disturbance is $d(t)=u_{1}(t)$ AND the reference is $r(t)=(1+t) u_{1}(t)$.

