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ELEC 372 LECTURE NOTES, WEEK 3 

Dr. Amir G. Aghdam 

Concordia University 

Parts of these notes are adapted from the materials in the following references: 

• Modern Control Systems by Richard C. Dorf and Robert H. Bishop, Prentice Hall. 

• Feedback Control of Dynamic Systems by Gene F. Franklin, J. David Powell and 

Abbas Emami-Naeini, Prentice Hall. 

• Automatic Control Systems by Farid Golnaraghi and Benjamin C. Kuo, John 

Wiley & Sons, Inc., 2010. 

 

Components of systems  

1. Electrical circuits: The elements of LTI electrical circuits are: 

- Resistor: 
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- Capacitor:  
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- Example 3.1: Find the transfer function 
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sV
sH =  of the following circuit: 

 

 

 

 

 

- Solution: Using KVL and KCL we will have: 
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The impulse response of the system )(th  is the inverse Laplace transform of 

RLsLCRs
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- Note that any input and output of a LTI RLC circuit are related through a linear 

constant-coefficient differential equation. 

2. Mechanical systems: The elements of LTI translational and rotational mechanical 

systems are: 

- Viscous friction (damper) 
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- Spring 

 

 

 

 

 

 

 

 

 

 

- Mass 
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- Example 3.2: Find the transfer function 
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sH =  of the following system: 

 

 

 

 

 

 

 

 

 

- Solution: Using Newton’s law we will have: 
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- Example 3.3: Find the differential equations for the following mechanical system 

and also the transfer function from f  to 1x . 

 

 

 

 

- Solution: We have: 
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- It is to be noted that in the previous example it is assumed that there is no friction 

between the masses and the ground. In the presence of friction, the diagram will 

be as follows: 

 

 

 

 

 

 

- Gear train: A gear train is a mechanical device that transmits energy from one part 

of the system to another. Consider the following gear train with the teeth numbers 

1N  and 2N : 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

- A gear train in mechanical systems is similar to a transformer in electrical 

systems, as follows: 
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- In practice, a load is attached to each gear as follows: 

 

 

 

 

 

 

 

 

 

- Assuming that the gear train has no backlash or dead zone, and that the inertia and 

friction between the coupled gear teeth are negligible (ideal gear train), we have: 
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By replacing (3.4) in (3.3), we will have: 
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This implies that one can reflect inertia, friction, and spring from one side of a 

gear train to the other. The above equation indicates that by reflecting gear 

parameters and variables from gear 2 (with 2N  teeth) to gear 1 (with 1N  teeth), 

the overall system can be replaced by a single mechanical system with the 

following equivalent parameters: 
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- Analogy of electrical circuits and mechanical systems: Using the following 

analogous variables: 

 Across variables: velocity )(tv  (or angular velocity )(tω  in rotational 

motion) and voltage )(tv , 

 Through variables: force )(tf  (or torque )(tT  in rotational motion) and 

current )(ti , 

one can find an electrical analogous model for any mechanical systems (under 

some conditions). Newton’s laws for the mechanical systems and Kirchhoff’s 

laws for the electrical system lead to analogous equations. A resistor in an 

electrical systems acts similar to a damper in a mechanical system. An inductor in 

an electrical system acts similar to a spring in a mechanical system, and a 

capacitor in an electrical system acts similar to a mass in a mechanical system. In 

addition, a transformer in an electrical system acts similar to a gear train in a 

mechanical system. 

• Sensors: A sensor in a control system is a device that measures the output signal. 
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- A potentiometer is an electromechanical transducer that converts mechanical 

displacement into electrical signal. 

 

 

 

 

 

 

 

 

 

 

- A tachometer is an electromechanical device that generates a voltage proportional 

to the magnitude of the angular velocity of the shaft. 

 

 

 

 

 

 

 

 

- Potentiometers and tachometers are often used in control systems to measure 

position and angular velocity. 

• Actuators: An actuator in a control system is a device that provides the motive 

power to the process. 

- DC motors: DC motors are low-power rotational actuators. There are two 

different types of DC motors. In DC motors with brushes, the commutation is 

done mechanically while brushless DC motors employ electrical commutation of 

the armature current. Brushless DC motors are usually used when a low moment 
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of inertia is needed. 

 

 

 

- The following figure depicts a linear DC motor: 

 

 

- We have: 
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where mT  is the torque generated by the motor, and ai  is the armature current. φ  

is the magnetic flux or air-gap flux generated by the field (in Webers), and is 

approximately proportional to the field current (by neglecting saturation and 

hysteresis effects), i.e.: 
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- On the other hand, when the conductor moves in the magnetic field, a back 

electromotive force is generated across its terminals. The corresponding voltage is 

proportional to the shaft velocity and tends to oppose the current flow. The back 

emf is given by: 
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where mω  is the angular velocity of the shaft.  

- One can conclude from (3.5) that a DC motor can be controlled in two different 

ways: by using a fixed field current fi  and changing the armature current ai , or 

by using a fixed armature current ai  and changing the field current fi . 

1. Armature-controlled DC motor: Assume )(ti f  is constant. This will result in a 

constant magnetic field and the motor will be controlled through the armature 

current. 

- The cause-and-effect equations for the motor circuit: 
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- On the other hand, since the field current is constant, we will have: 
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It can be shown that bm KK = . 

- The load torque for rotating inertia is written as: 
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- The block diagram of the armature-controlled DC motor is as follows: 
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- This block diagram shows that the armature-controlled DC motor has a built-in 

feedback loop caused by the back emf. 

- In the presence of disturbance torque, the block diagram of the armature-

controlled DC motor will be as follows: 
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- Assuming that there is no disturbance torque, and that 0≅aL , the transfer 
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- Similarly, the transfer function of the armature-controlled DC motor from ae  to 

mω  (under the above assumptions) is: 
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- Armature-controlled DC motors are very popular in control system applications. 

 

2. Field current controlled DC motor: Assume now that )(tia  is constant. Using 

the set of equations derived for the armature-controlled DC motor in a similar 

way, the transfer function of the field current controlled motor can be obtained. 

- The block diagram for the field current controlled DC motor is given below: 
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- where '

mK  can be obtained from (3.5) and is equal to afm iKKK 1

' := . Note that in 

the field current controlled motor there is no internal feedback in the system. So, 

the armature-controlled motor is more popular in control systems.  

- DC motors are used in speed control and position control systems. 
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