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ELEC 372 LECTURE NOTES, WEEK 5 

Dr. Amir G. Aghdam 

Concordia University 

Parts of these notes are adapted from the materials in the following references: 

• Modern Control Systems by Richard C. Dorf and Robert H. Bishop, Prentice Hall. 

• Feedback Control of Dynamic Systems by Gene F. Franklin, J. David Powell and 

Abbas Emami-Naeini, Prentice Hall. 

• Automatic Control Systems by Farid Golnaraghi and Benjamin C. Kuo, John 

Wiley & Sons, Inc., 2010. 

 

- Many of the control design objectives are in fact related to the unit step response 

of the control system. 

- The important parameters of the unit step response for an underdamped second-

order system are shown in the following figure. 

ymax 
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- Maximum overshoot ( pM ): Let )(ty  be the unit step response, with maxy  

representing the maximum value of )(ty  and ssy  representing the steady-state 

value of )(ty . The maximum overshoot of )(ty  is defined as: 

ssp yyM −= max  

- Maximum overshoot is often represented as a percentage of the final value of the 

step response, that is:  

Percentage overshoot (P.O.) %100×=
ss

p

y

M
 

Percentage overshoot is equal to: 

21
100..

ζ

πζ

−

−

= eOP  

- Peak time ( pt ): The time required for the step response to reach its maximum 

value maxy . Peak time is equal to: 

d

pt
ω

π
=  

- Settling time ( st ): The time required for the step response to decrease and stay 

within a specified percentage of its final value. A frequently used figure is 2%, 

which results in the following approximate value for the settling time: 

n

st
ζω

4
≅  

- Delay time ( dt ): The delay time dt  is defined as the time required for the step 

response to reach 50 percent of its final value. 

n

dt
ω

ζ7.01+
≅  

- Rise time ( rt ): The rise time rt  is defined as the time required for the step 

response to rise from 10 to 90 percent of its final value. An approximate value for 

the rise time is given by (R. C. Dorf and R. H. Bishop, Modern Control Systems, 

12th Edition, Prentice Hall, 2011): 
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n

rt
ω

ζ 60.016.2 +
≅  

- Steady-state error: The steady-state error ( sse ) is the error between the output and 

reference input when the steady state is reached. For the unit step response: 

ssss ye −= 1  

- Maximum overshoot, peak time, settling time, delay time, and rise time give a 

direct measure of the transient characteristic of a second-order underdamped 

control system in terms of the unit step response.  

- Steady-state error gives a direct measure of the steady-state characteristics of a 

second-order underdamped control system. 

- One can define the DC gain of a second-order stable system in a way similar to 

the first-order system as )0(H . 

- The DC gain of the standard second-order system 
22

2

2
)(

nn

n

ss
sH

ωζω

ω

++
=  with 

0>ζ  (stable system) is equal to 1. 

- The steady-state error of a second-order system due to a constant reference input 

is equal to zero if and only if its DC gain is unity. 

- The most frequently used values for ζ  in control systems are 0.5, 0.6 and 0.7 

whose corresponding percentage overshoots are: 

 

ζ  P.O. 

0.7 5% 

0.6 10% 

0.5 15% 

 

- One can use the Laplace transform techniques to find the unit ramp response of a 

second-order system. The asymptote of the unit ramp response of the second-

order system 
22

2

2
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n

ss
sH

ωζω

ω

++
=  is equal to: 
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n

ss tty
ω

ζ2
)( −=  

This means that the steady-state error for the unit ramp signal is 0
2

≠=
n

sse
ω

ζ
. 

Decreasing ζ  reduces sse  but makes the response more oscillatory. This is a 

typical trade-off in the design of control systems (small steady-state error versus 

more stability margin). 

- Example 5.1: Find the desired pole location for an underdamped second-order 

system in order to meet the following specifications: 

%10..sec,1 ≤≤ OPts  

- Solution: Using the equations given for st  and ..OP , we will have: 

41
4

sec1 ≥≤≤ n

n

st ξω
ξω

 

o53cos6.010100%10.. 11 2

≤=≥≤≤ −−

−

ζθζζ

πζ

eOP  

The desired location of the poles is shown in the following figure. 

 

 

 

 

 

 

 

 

- Example 5.2: Consider the following servomotor system:  
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Find the value of K  such that %5.. =OP . 

- Solution: The transfer function of the closed-loop system is given by: 

Kss

K

s

s

r 108.17.7

108.1

)(

)(
2 ++

=
ϕ

ϕ
 

We have: 

7.72

108.1

=

=

n

n K

ζω

ω
 

On the other hand, for %5.. =OP  we must have 7.0=ζ . This means that: 

3.275.5
7.02

7.7
==

×
= Knω  

- In the above example, we only had one degree of freedom K  which affects ζ  

and nω  but damping factor nζω  is fixed and cannot be changed by K . Since the 

settling time depends on nζω , this implies that the settling time cannot be reduced 

by using a constant controller with position feedback, and is always equal to 

04.1
2/7.7

4
= . 

- In the next example, we will see how adding a velocity feedback can improve the 

performance of the position control system. 

- Example 5.3: Consider the following servomotor system with position and 

velocity feedback:  
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Find the values of K  and gK  such that %5.. =OP  and sec5.0=st . 

- Solution: The transfer function of the closed-loop system is given by: 

KsKKs

K

s

s

gr 108.1)108.17.7(

108.1

)(

)(
2 +++

=
ϕ

ϕ
 

Therefore: 

0635.0
9.117

49.7
9.117108.1

43.115.0
7.0

44
7.0%5..

49.75.0
554.085.3
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Dominant poles and model reduction 

- Any LTI system with rational transfer function can be modelled as a combination 

of first-order and second-order systems (in series or in parallel). 

- If a real pole is by far closer to the imaginary axis and no zero is around it, then 

the response is similar to the response of a first-order system having only that 

pole. 

- Similarly, if a pair of complex poles are by far closer to the imaginary axis and no 

zeros are around them, then the response is similar to the response of a second-

order system having only those poles. 

- In general, the poles near the imaginary axis of the s-plane relative to the other 

poles of the system are labelled the dominant poles of the system because they 

dominate the transient response.  

- The relative dominance of the complex poles, in a third-order system with a pair 

of complex conjugate poles, is determined by the ratio of the real pole to the real 

part of the complex poles. For example if the poles are located at 31 −=s , and 

25.0, 32 jss ±−= , the relative dominance of the complex poles is given by the 

ratio 6
5.0

3
=

−

−
. 
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- One can use the concept of dominant poles to find a lower-order approximation 

for a transfer function, by considering only the poles with a dominance factor of 

about 5 or higher and neglecting the other ones. 

- Example 5.4: Consider the following second-order system: 

14

1
)(

2 ++
=

ss
sH  

Find a first-order approximation for this system. 

- Solution: For this system we have 1,2 == nωζ , and the poles of the transfer 

function are located at: 

73.3,27.0 21 −=−= ss  

Partial fraction expansion for )(sH  is given by: 

73.3

289.0

27.0

289.0
)(

+
−

+
=

ss
sH . 

The unit step response of the system will be: 

 

To approximate )(sH  with a first-order model, we neglect the second term in 

(5.1) which represents fast response in (5.2). In other words, the system will be 

approximated using the dominant pole: 

27.0

289.0
)()( 1

+
=≅

s
sHsH . 

The step response of the first-order approximating system )(1 sH  is given by: 

27.0

289.0

0,
27.0

289.0

27.0

289.0
)(

,1

27.0

1

=

≥−= −

ss

t

y

tety

 

The steady-state output of the approximating system (
27.0

289.0
) is different from 

that of the original system (unity). This is due to the fact that the DC gain of the 

approximating system is different from the original system.  

1) gain  (DC 1 )(lim

0 , 077.1077.01) (
27 .0 73 .3 

==
∞ →

=

≥−+= −− 

t y 
t 

y 

te e ty 

ss

t t

(5.1) 

(5.2) 
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To adjust the DC gain, we can use the following approximation: 

27.0

27.0
)()( 2

+
=≅

s
sHsH . 

The corresponding step response is: 

0,1)( 27.0

2 ≥−= − tety t  

Step responses for )(sH , )(1 sH  and )(2 sH  are given in the following figure. 

 

 

- Example 5.5: Consider the following third-order system: 

)100)(4)(3(

)9.2(200
)(

+++

+
=

sss

s
sH . 

Find a lower order approximation for this system. 

- Solution: The DC gain of the system is equal to 4833.0
10043

9.2200
=

××

×
 and the 

pole-zero configuration is given in the following figure: 
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Since the pole at 100−=s  is very far from the imaginary axis compared to the 

other poles and also there is a zero close to the pole at 3−=s , the dominant pole 

of this system is 4−=s . This can also be verified by using the partial fraction 

expansion as follows: 

100

0855.2

4

2917.2

3

262.0
)(

+
−

+
+

+
−=

sss
sH  

Note that the residue of the pole 3−=s  is very small, which is due to the zero 

close to that pole. So the first-order approximating model can be obtained by 

using the second term in the partial fraction expansion and adjusting the 

corresponding DC gain as follows: 

4

9332.1
)(

+
≅

s
sH  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

  


