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ELEC 372 LECTURE NOTES, WEEK 6  

Dr. Amir G. Aghdam 

Concordia University 

Parts of these notes are adapted from the materials in the following references: 

• Modern Control Systems by Richard C. Dorf and Robert H. Bishop, Prentice Hall. 

• Feedback Control of Dynamic Systems by Gene F. Franklin, J. David Powell and 

Abbas Emami-Naeini, Prentice Hall. 

• Automatic Control Systems by Farid Golnaraghi and Benjamin C. Kuo, John 

Wiley & Sons, Inc., 2010. 

 

Steady-state error in feedback systems 

- Consider the following unity negative feedback control system and assume that 

the overall system is stable (this is the main assumption). 

 

 

 

 

 

 

- In this block diagram: 
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- Assume that all of the poles of 
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+
 are located in the LHP. Using the final 

value theorem, we will have: 
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- It is desired to find the steady-state error due to different reference inputs: 

1. Step input: 
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- pK  is called the “position constant” or “position error constant” or “static 

position error constant” or “step-error constant”. 

- For zero steady-state error due to a step reference input, we must have 

∞=pK  which implies that )(sG  must have at least one integrator. 

- Note that the stability of the closed loop system ensures that the final 

value theorem can be used in this case. 

- A closed loop system with N  integrators in the open loop transfer 

function, i.e., 
)(
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sqs
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N
= , where )(sp  and )(sq  are polynomials in s  

and 0)0( ≠p  and 0)0( ≠q  is called a type N  system (factor out s  from 

the polynomials in the numerator and denominator, if necessary, and 

simplify them as one term in the denominator only). 

- For zero steady-state error due to a step reference input we need at least a 

type 1 system. 

2. Ramp input: 
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- vK  is called the “velocity constant” or “velocity error constant” or “static 

velocity error constant” or “ramp-error constant”. 
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- For zero steady-state error due to a ramp reference input, we must have 

∞=vK  which requires )(sG  to have at least two integrators. 

- For zero steady-state error due to a ramp reference input we need at least a 

type 2 system. 

3. Parabolic input: 
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- aK  is called the “acceleration constant” or “acceleration error constant” or 

“static acceleration error constant” or “parabolic-error constant”. 

- For zero steady-state error due to a parabolic reference input, we must 

have ∞=aK  which requires )(sG  to have at least three integrators. 

- For zero steady-state error due to a parabolic reference input we need at 

least a type 3 system. 

 

- The following table summarizes the results for the steady-state error: 

 

Input 

Type 

A/s A/s2 A/s3 . . . A/si 

0 A/(1+Kp) ∞ ∞ . . . ∞ 

1 0 A/Kv ∞ . . . ∞ 

2 0 0 A/Ka . . . ∞ 

3 0 0 0 . . . ∞ 

. 

. 

. 

. 

. 

. 

. 

. 

. 
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. 
 

. 

. 

. 
i - 2 0 0 0 . . . ∞ 

i - 1 0 0 0 . . . A/Kt 

i 0 0 0 . . . 0 

 

- In other words, to have zero steady-state error for a stable closed loop system with 

a reference input of the form given in the above table, the open loop transfer 
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function )(sG  must have at least as many integrators as the number of input poles 

in the origin. 

- Example 6.1: Consider the following closed loop control system: 

 

 

 

 

 

Design )(sK  such that: 

i) There is no steady state error for the step input. 

ii) The percentage overshoot for the step input is %5.. ≤OP . 

- Solution: Using 
s

K
sK =)(  and choosing the parameter K  such that the closed 

loop system is stable, condition (i) will be satisfied. With this controller, we will 

have: 
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For stability, we must have a positive value for K . 

For condition (ii), on the other hand, we must have 7.0≥ζ . This implies that: 
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- In general, one can use the internal model principle for the steady state analysis of 

a unity feedback control system as follows. 

- Internal model principle: Consider the following unity feedback control system: 
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Assume that the closed loop system is stable. Assume also that )(sR  is a rational 

function of s  and has no poles in the open LHP. Then the steady-state error sse  is 

zero if and only if the poles of )(sG  include all poles of )(sR . 

- For the effect of disturbance in the steady state, one can use the following 

extension of the internal model principle. 

- Consider the following unity feedback control system: 

 

 

 

 

 

 

Assume that the closed loop system is stable. Assume also that )(sG  has no zeros 

in the RHP or on the ωj  axis, and that )(sD  is a rational function of s  with no 

poles in the open LHP. Then, the effect of the disturbance )(td  on the output 

)(ty  will go to zero as ∞→t , if and only if the poles of )(sK  include all poles 

of )(sD . 

- Note that in the case of reference input, we want the output to approach the input 

as ∞→t  so that the steady-state error goes to zero but in the case of disturbance 

input, we want the output to go to zero as ∞→t  (so that the effect of disturbance 

in the output is vanished with time). 

- Example 6.2: Consider the following control system: 

 

 

 

 

 

 

Design a controller )(sK  such that: 
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i) The steady-state error for the step reference input is zero. 

ii) The effect of the step disturbance input on the output goes to zero as ∞→t . 

iii) The percentage overshoot for a step reference input is 10%. 

- Solution: Conditions (i) and (ii) can be satisfied by using 
s

K
sK =)(  with a 

positive value for K  (note that only for positive values of K  the closed loop 

system will be stable). For this controller, we will have: 

s
sKK

Kss

K

sR

sY

n

nn

78.2
)(78.2

67.1
6.0

11
1

2)(

)(

2

2

===

====

++
=

ω

ζ
ωζω  

- In order to take the history of the error into account (not just the steady state 

error), one can use one of the following performance indices: 
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)(ITSE :error squared by the multiplied  timeof Integral

)(ITAE :error absolute by the multiplied  timeof Integral

)(IAE :error  theof magnitude absolute  theof Integral

)(ISE :error  theof square  theof Integral

 

- T  is a sufficiently large finite number and is usually convenient to choose it as 

the settling time st . 

- ISE and IAE are often used in the optimal control of practical systems. 

 

The stability of linear feedback systems 

- The Routh-Hurwitz (RH) stability criterion: The RH criterion is used to find the 

number of roots of a given polynomial in the RHP (including the ωj  axis). 

- Given a polynomial 01

2

2

1

1 ...)( asasasasasq
n

n

n

n

n

n +++++= −
−

−
− , we form the 

Routh table as follows: 
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- Number of sign changes in the first column of the Routh table is equal to the 

number of the RHP roots of )(sq . 

- Example 6.3: Consider the following polynomial: 

5432)( 234 ++++= sssssq  

Find the number of roots of the equation 0)( =sq  in the RHP. 

- Solution: The Routh table for this polynomial is as follows: 

 

s4 1 3  5  

s3 2  4  0 

s2 
1

2

1432
=

×−×
 5

2

052
=

−×
 

0 

s1 
6

1

2541
−=

×−×
 

0 0 

s0 
5

6

056
=

−

−×−
 

0 0 

 

There are two changes of sign in the first column and so two of the roots are 

located in the RHP. The roots of this polynomial (obtained by using MATLAB) 

are in fact located at 4161.12878.0 j±  and 8579.02878.1 j±− . 

- 

+ 

+ 
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- Note that the RH method only gives the number of RHP roots of a polynomial not 

the exact location of the roots. To check the stability of a system, it is sufficient to 

know if there are any roots in the RHP but for relative stability, it is important to 

know how far the roots of a stable system are from the imaginary axis. The RH 

method does not give such information. 

- Example 6.4: Consider the following second order equation: 

001

2

2 =++ asasa  

Under what conditions are all of the roots of the above equation in the LHP? 

- Solution: The Routh table for this equation is as follows: 

 

s2 
2a  0a  

s1 
1a  0 

s0 
0

1

01 0
a

a

aa
=

−×
 

0 

 

For all of the roots to be in the LHP, 2a , 1a , and 0a  must have the same sign. 

This result can be used for all second order equations. 

- Example 6.5: Consider the following third order equation: 

001

2

2

3 =+++ asasas  

Under what conditions are all of the roots of the above equation in the LHP? 

- Solution: The Routh table for this equation is as follows: 

 

s3 1 1a  

s2 
2a  0a  

s1 

2

012

a

aaa −×
 

0 

s0 
0a  0 
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For all of the roots to be in the LHP, we must have: 

.0

,0

,0
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Special cases: In two special cases, the Routh table terminates prematurely. 

- Special case 1: First element of a row is zero, but the entire row is not zero. In this 

case, we replace the zero in the first column with 0>ε  and continue the table to 

the end. Then, we let 0→ε  and count the change of signs in the first column. 

- Example 6.6: Find the number of RHP roots of the following equation. 

0322 234 =++++ ssss  

Find the number of roots of the equation 0)( =sq  in the RHP. 

- Solution: The Routh table for this equation is as follows: 

 

s4 1 2  3  

s3 1 2  0  

s2 0  ε  3  0  

s1 

ε

ε 32 −
 

0  0  

s0 3  0  0  

 

For += 0ε  the first column of the Routh table will be as follows: 

 

1 

1 

+0  

∞−  

3  
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Since there are two sign changes in the first column for += 0ε , the equation has 

two roots in the RHP. The roots of this equation (obtained by using MATLAB) 

are in fact located at 902.09057.0 j±−  and 2928.14057.0 j± . 

- Special case 1 always results in at least one root in the RHP. 

- Another approach for special case 1: Roots of 

0)( 01
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nn
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do not change half planes. In other words, 0)(1 =sq  and 0)(2 =sq  have the same 

number of RHP roots. To verify this claim, define: 
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Since the real part of s  and sx /1=  have the same sign, the number of RHP roots 

of 0)(1 =sq  and 0)(2 =sq  are the same. 

- Special case 2: The entire row is zero. In this case, we identify an auxiliary 

equation from the coefficients of the row right above the zero row and proceed by 

differentiating this equation. 

- Example 6.7: Consider the following equation: 

047884 2345 =+++++ sssss  

Use the RH method to find the number of RHP roots of this equation. 

- Solution: The Routh table for this equation is as follows: 
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s5 1 8  7  

s4 4  8  4  

s3 6  6  0  

s2 4   4  0  

s1 0  8  0  0  

s0 4  0  0  

 

Note that to proceed with the table, we replace the zero row with the coefficients 

of s
ds

sdA
8

)(
= . Since there is no change of sign in the first column, there are no 

roots in the RHP. 

- Roots of the auxiliary equation 0)( =sA  are always the roots of the original 

polynomial. For instance, in Example 6.7, js ±=  are the roots of the auxiliary 

equation and also the roots of the original equation. Therefore, although this 

equation does not have any RHP roots, it does have roots on the imaginary axis. 

- Roots of 0)( =sA  are always symmetrical with respect to the origin. For example 

they can have one of the following forms: 

 

 

 

 

 

 

- For the case when the roots of the auxiliary equation are located at 0ωj±  (no 

repeated roots), and all other roots are located in the LHP, the output of the 

corresponding system due to a zero input (and nonzero initial conditions) will 

have undamped sinusoidal oscillations with the frequency 0ω , as t  increases. 

44)( :neq' Aux. 2 += ssA  

s
ds

sdA
8
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0σ−  
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Im{s} 

0 
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s-plane 

00 ωσ j−−  

00 ωσ j+−  

Im{s} 

Re{s} 
0 

s-plane 

00 ωσ j+  

00 ωσ j−  

Im{s} 

0ωj−  

0ωj  

0 
Re{s} 

s-plane 
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- Since the roots of a polynomial can be easily obtained by using a computer, the 

Routh-Hurwitz criterion is more useful in finding the dependency of the RHP 

poles to the parameters of the equation. 

- Example 6.8: Consider the following closed-loop system: 

 

 

 

 

Design the controller )(sGC  such that the steady-state error due to a step input is 

zero. 

- Solution: In order to meet the given design specifications, we must have a stable 

closed-loop system with at least one integrator in the forward-path transfer 

function. So, we will choose 
s

K
sGC =)(  and will try to set the value of K  such 

that the roots of the characteristic equation are all in the LHP. The characteristic 

equation of the closed-loop system using the above controller is: 

01011 23 =+++ Ksss . 

The Routh table will be as follows: 

 

s3 1 10  

s2 11 K  

s1 

11

110 K−
 

0 

s0 K  0 

 

So, as we had seen before, the condition for the stability of the closed-loop system 

is: 

11000110,0 <<>−> KKK . 

For 110=K , we will have the second special case and the corresponding 

auxiliary equation will be 0102 =+s . Therefore the closed-loop system will have 

 )(sGC  

- 

+ )(tr  )(ty  
)10)(1(

1

++ ss



 

Lecture Notes Prepared by Amir G. Aghdam 

13

two roots at 10j±  and the other root (which can be obtained by dividing the 

original equation by the auxiliary equation) will be at 11−=s . This implies that 

for 110=K , the system will oscillate with the frequency rad/sec10=ω . 

 


