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ELEC 372 LECTURE NOTES, WEEK 9  

Dr. Amir G. Aghdam 

Concordia University 

Parts of these notes are adapted from the materials in the following references: 

• Modern Control Systems by Richard C. Dorf and Robert H. Bishop, Prentice Hall. 

• Feedback Control of Dynamic Systems by Gene F. Franklin, J. David Powell and 

Abbas Emami-Naeini, Prentice Hall. 

• Automatic Control Systems by Farid Golnaraghi and Benjamin C. Kuo, John 

Wiley & Sons, Inc., 2010. 

 

Controller design using the root locus method (cont’d) 

- The lead controller improves the transient response by adding positive phase to 

the open loop transfer function.  

- One can improve the steady-state performance of the system by increasing the 

error constants ( pK , vK , aK ) using a proper controller.  

- Consider a unity feedback control system with a forward-path transfer function 
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-  Consider now a controller 
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- This means that by choosing a sufficiently large ratio 
p

z
, one can increase the 

velocity error constant arbitrarily. In other words, one can improve the steady-

state response by using a controller with a dominant pole. 
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In general, a controller of the form 
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+
=  whose pole and zero are both 

in the LHP with its pole closer to the imaginary axis compared to its zero 

( 0<−<− pz ) is called phase-lag network or phase-lag compensator or simply lag 

controller. 

- Note that the location of the zero and pole of the lag controller must be chosen 

such that the dominant poles of the closed loop system remain unchanged 

(approximately). This means that the zero and pole of the lag controller must be 

close to each other so that the angle contributed by them in the condition on 

angles is negligible.  

- For example, let 1s  and 2s  be the dominant poles of the closed loop system 

corresponding to the following pole zero configuration: 

 

 

 

 

 

 

 

 

 

- Assume now that it is desired to improve the steady-state response of the system 

by using a lag controller as shown in the following figure. 
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- By adding the zero and pole shown in this figure, the angle introduced by the new 

open loop zero and pole pz ϕϕ −  will be negligible, which means that 1s  and 2s  

will still remain on the RL (or CRL) trajectories. In other words, since the new 

open loop zero ( zs −= ) and pole ( ps −= ) are very close, they will cancel out the 

effect of each other in the transient response to a great extent, and hence the 

dominancy of 1s  and 2s  will not be affected by the controller. However, the DC 

gain introduced by the zero and the pole of the controller will improve the steady-

state response by increasing the error constants.  

- In order to have a large 
p

z
 ratio while z  and p  are very close, the zero and pole 

of the lag controller must be located close to the imaginary axis. 

- Note that the main difference between the RL (or CRL) with and without the lag 

controller will be the section between the new open loop zero ( zs −= ) and pole 

( ps −= ) on the real axis. If this section was part of the RL (or CRL) without the 

controller, it will be excluded from the new RL (or CRL) and if it was not part of 

the RL (or CRL), it will be included in the new RL (or CRL). 

- Example 9.1: Design the controller )(sGC  for the following servomotor (which 

was given in Example 8.3) so that the settling time is less than or equal to 2 sec 

and the percentage overshoot of the step response is less than or equal to 5% and 

16≥vK . 

 

 

 

 

 

 )(sGC  

- 

+ 
)2(

1

+ss



 

Lecture Notes Prepared by Amir G. Aghdam 

4

- Solution: From Example 8.3, we know that by using the lead controller 
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be met. With this controller, the velocity error constant will be: 
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In order to increase vK  from 2 to 16, we need a lag controller 
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with 82/16 ==
p

z
. Let us choose 1.0=z  and 0125.0=p . Therefore, the overall 

controller will be: 
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This controller consists of a lead and a lag controller, and is called a lead-lag (or 

lag-lead) controller. The RL with the above controller is as follows: 

 

 

 

The new branch in the RL due to the lag compensator is shown in an extended 

scale in the following figure: 
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With the designed controller, the roots of the characteristic equation will be: 

1047.0,9553.19539.1, 321 −=±−= sjss . 

This means that adding the lag compensator has resulted in a very small change in 

the location of the desired dominant closed loop poles. It has also resulted in a 

new closed loop pole whose effect is insignificant due to the zero of the system 

very close to that. 

- In general, when a lead-lag controller is to be used, it is better to tentatively place 

the dominant poles inside the desired region (not on its boundary) so that in the 

presence of the new closed loop pole (introduced by the lag compensator) the 

system still meets the desired specifications. One may need to use trial and error 

to find the proper controller parameters for a lead-lag compensator. 

- Three-term (PID) controllers: Proportional (P) integral (I) derivative (D) 

controllers are very popular in industry.  

 

 

 

 

 

- The transfer function of this type of controller is: 
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- As it can be seen from the above equation, a PID controller has one pole in the 

origin and two zeros which can be located arbitrarily in the s-plane by adjusting 

the parameters PK , IK , and DK . 

- The integral term acts like a lag compensator (improves the steady-state response) 

and the derivative term acts like a lead compensator (improves the transient 

response). 

- One may use the proportional and integral terms only. In that case, we will have a 

PI controller with the following transfer function: 
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- A PI controller is usually used to improve the steady-state performance of the 

system (like a lag controller). 

- One may use the proportional and derivative terms only. In that case, we will have 

a PD controller with the following transfer function: 
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- A PD controller is usually used to improve the transient performance of the 

system (like a lead controller). 

- Since the derivative term sKD  in a PID controller amplifies high-frequency noise, 

usually a combination of a differentiator and a low-pass filter is used instead of a 

derivative term as follows: 

s

s
KD

τ+1
. 

- In practice, usually the following structure is used to build the PID controller: 
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- Note that the PID controller is not stable (because of the pole in the origin). This 

can cause the saturation problem if the loop is opened for any reason. By moving 

the pole from the origin to the LHP, this problem can be fixed and the resultant 

controller will be a lag controller, in fact. 

- Example 9.2: Design the controller )(sGC  for the following system so that the 

steady-state error due to a step reference input is zero and the percentage 

overshoot of the step response is less than or equal to 10%. 

 

 

 

 

- Solution: First, we will choose an integrator 
s

K
sG I

C =)(  to meet the steady-state 

specification. With this controller, the RL will be as follows: 
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In order to have a 10% overshoot for the step response, we must have 6.0=ζ  (or 

equivalently o53=θ ). From the figure, it can be seen that this damping ratio can 

be achieved by choosing 13.0=IK . For this controller, we will meet the desired 

specifications. The resultant closed loop poles will be: 

-2.0792,0.28420.2104, 321 =±−= sjss  

and the settling time will be 19
2104.0

4
≅=st sec.  

Assume now that we want to reduce the settling time to 
3

16
=st sec. Therefore, we 

must have 75.0
4

==
s

n
t

ζω  and this condition cannot be satisfied by using an 

integrator only. In order to meet the desired percentage overshoot and settling 

time, we can choose the following dominant poles for the closed loop system: 

jss ±−= 0.75, 21  

From the following figure it can be seen that the algebraic summation of the 

angles of the vectors from the open loop poles to the desired point is: 

oooo 26938104127 −=−−−  

 

 

 

 

 

 

 

This means that we need a zero in the open loop transfer function to add o89  

positive phase in order to meet the condition on angles at jss ±−= 0.75, 21 . This 

can be met by placing a zero at 0.75−=s . Now, from the condition on magnitude 

we can find the corresponding controller gain as follows: 
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Therefore, the overall controller will be a PI controller as follows: 
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s
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One should check in the end to see if the closed loop poles 1s , 2s  are dominant 

poles. If they are not, then the controller parameters must be obtained through 

trial and error. 

 

Frequency domain representation 

- We use frequency domain representation for stability analysis and control system 

design. 

- There are different ways to represent the frequency response of a system )( ωjG : 

1. The imaginary part versus the real part (Nyquist plot). 

2. Magnitude versus frequency and phase versus frequency (Bode plot). 

3. Magnitude versus phase (Nichols chart). 

 

Nyquist plot 

- The Nyquist plot is a map from the imaginary axis in the s-plane to the )( ωjG -

plane. In other words, the Nyquist plot gives the imaginary part of )( ωjG  versus 

the real part of )( ωjG  for different values of ),( +∞−∞∈ω . 

- Example 9.3: Sketch the Nyquist plot of the transfer function 
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It turns out that for this example the Nyquist plot is a circle of radius 0.5 centered 

at )0,5.0( . In other words, it can be verified that: 

{ }( ) { }( )
4

1
)(Im5.0)(Re

22
=+− ωω jGjG . 

- We know that the frequency response of any real system has the property 

)()( ωω jGjG ∗=− , which means that the real part of the frequency response is 

always an even function of ω  and the imaginary part is an odd function of ω . 

This implies that the Nyquist plot for +∞<<∞− ω  is symmetrical with respect 

to the real axis. In other words, one can find the plot for +∞<≤ ω0  and find the 

mirror image of the resulted trajectory with respect to the real axis. From this 

property, it can be concluded that for Example 9.3 we will have: 
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- In practice, the exact shape of the Nyquist plot is usually of no importance. We 

will see that for stability analysis only the shape of the Nyquist plot around the 

point 1−=s  (critical point) is very important. 

- Example 9.4: Sketch the Nyquist plot of the transfer function 
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where K  and τ  are positive constants. 
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One can easily verify that for 1<<ω  where 
o

90)( −∞∠→ωjG , the real part of 

the frequency response is equal to: 
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However, as pointed out before, the exact distance of the Nyquist plot from the 

imaginary axis when ∞→)( ωjG  is not important. 

 

 

 

- Useful tips to draw the Nyquist plot: 

1. Calculate )( ωjG  for 1<<ω  and 1>>ω . 

2. Find the intersection with the real and imaginary axes. 

3. Sometimes you need to find the plot at some auxiliary points. 

4. The plot for 0<ω  is the mirror image of that for 0>ω . 

 

- Example 9.5: Sketch the Nyquist plot for a system with the transfer function 
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- Solution: We have 
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Bode plot 

-  The Bode plot consists of two plots: the magnitude of the frequency response in 

dB ( )(log20 10 ωjG ) versus frequency in rad/sec and the phase of the frequency 

response (in degrees or radians) versus frequency in rad/sec. The frequency scale 
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in both graphs is logarithmic ( ω10log ). We will use the notation log  instead of 

10log  to denote the logarithm to the base 10.  

- We will find the Bode plot of some basic transfer functions. Any transfer function 

can be considered as a combination of these basic functions and the corresponding 

Bode plots can be obtained very easily. 


