Decentralized Control Systems

- When control theory is applied to a system that consists of geographically separated components, or a system consisting of a large number of input-output stations, it is often desired to have some form of decentralization. At each station, the controller observes only local system outputs and controls only local inputs.

Consider a LTI system with \(\nu \) local control stations given by:

\[
\begin{bmatrix}
\begin{array}{c}
\vdots \\
y_1(t) \\
\vdots \\
y_{\nu}(t)
\end{array}
\end{bmatrix} =
\begin{bmatrix}
\begin{array}{c}
\vdots \\
C_1 \\
\vdots \\
C_{\nu}
\end{array}
\end{bmatrix} x(t) +
\begin{bmatrix}
\begin{array}{c}
\vdots \\
D_{11} & \cdots & D_{1\nu} \\
\vdots & \ddots & \vdots \\
D_{\nu 1} & \cdots & D_{\nu \nu}
\end{array}
\end{bmatrix}
\begin{bmatrix}
\begin{array}{c}
\vdots \\
u_1(t) \\
\vdots \\
u_{\nu}(t)
\end{array}
\end{bmatrix}
\]

(3.1)

where \(x(t) \in \mathbb{R}^n \) is the state vector, \(u_i(t) \in \mathbb{R}^{n_i} \) and \(y_i(t) \in \mathbb{R}^{r_i} \) are the input and output, respectively, of the \(i^{th} \) control station \((i = 1, \ldots, \nu) \). The matrices \(A \in \mathbb{R}^{nxn} \), \(B_i \in \mathbb{R}^{nxn_i} \), \(C_i \in \mathbb{R}^{rxn} \), and \(D_{ij} \in \mathbb{R}^{rxn_j} \) \((i, j = 1, \ldots, \nu) \) are real, constant matrices. The system (3.1) is often written in the following form:

\[
\begin{bmatrix}
\begin{array}{c}
\vdots \\
x(t)
\end{array}
\end{bmatrix} = Ax(t) + \sum_{i=1}^{\nu} B_i u_i(t)
\]

(3.2)

\[
y_i(t) = C_i x(t) + \sum_{j=1}^{\nu} D_{ij} u_j(t), \quad i = 1, \ldots, \nu
\]

- The set of local dynamic LTI feedback controllers for (3.2) are given by:

\[
\begin{align*}
\dot{z}_i(t) &= S_i z_i(t) + R_i y_i(t) \\
u_i(t) &= Q_i z_i(t) + K_i y_i(t) + v_i(t), \quad i = 1, \ldots, \nu
\end{align*}
\]

(3.3)
where $z_i(t) \in \mathbb{R}^{n_i}$ is the state vector of the i^{th} feedback controller, $v_i(t) \in \mathbb{R}^{m_i}$ is the i^{th} local external input. The matrices $S_i \in \mathbb{R}^{n_i \times n_i}$, $R_i \in \mathbb{R}^{n_i \times m_i}$, $Q_i \in \mathbb{R}^{n_i \times n_i}$, and $K_i \in \mathbb{R}^{n_i \times m_i}$ ($i = 1, \ldots, \nu$) are real, constant matrices. The controller (3.3) can be written in the following form:

$$
\dot{z}(t) = S z(t) + R v(t)
$$

$$
u(t) = Q z(t) + K y(t) + v(t)
$$

(3.4)

where S, R, Q, and K are block diagonal matrices as follows:

$$
S := \begin{bmatrix}
S_1 & 0 & \cdots & 0 \\
0 & S_2 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & S_\nu
\end{bmatrix},

R := \begin{bmatrix}
R_1 & 0 & \cdots & 0 \\
0 & R_2 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & R_\nu
\end{bmatrix},

Q := \begin{bmatrix}
Q_1 & 0 & \cdots & 0 \\
0 & Q_2 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & Q_\nu
\end{bmatrix},

K := \begin{bmatrix}
K_1 & 0 & \cdots & 0 \\
0 & K_2 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & K_\nu
\end{bmatrix},

(3.5)

and $z(t)$, $y(t)$, $u(t)$, and $v(t)$ are given by:

$$
z(t) := \begin{bmatrix}
z_1(t) \\
\vdots \\
z_\nu(t)
\end{bmatrix},

y(t) := \begin{bmatrix}
y_1(t) \\
\vdots \\
y_\nu(t)
\end{bmatrix},

u(t) := \begin{bmatrix}
u_1(t) \\
\vdots \\
u_\nu(t)
\end{bmatrix},

v(t) := \begin{bmatrix}
v_1(t) \\
\vdots \\
v_\nu(t)
\end{bmatrix}.

$$

- Note that in the s-domain, the controller (3.4) will have the following form:

$$
\begin{bmatrix}
U_1(s) \\
\vdots \\
U_\nu(s)
\end{bmatrix} = \begin{bmatrix}
G_{c1}(s) & 0 & Y_1(s) \\
0 & \ddots & \vdots \\
0 & G_{c\nu} & Y_\nu(s)
\end{bmatrix} + V(s)
$$

- Using the augmented state vector $\begin{bmatrix} x(t) \\ z(t) \end{bmatrix}$, one can write the equations for the closed-loop system as follows:

$$
\begin{bmatrix}
\dot{x}(t) \\
\dot{z}(t)
\end{bmatrix} = \begin{bmatrix}
A & 0 \\
0 & \bar{A}
\end{bmatrix} \begin{bmatrix} x(t) \\ z(t) \end{bmatrix} + \begin{bmatrix}
B & 0 \\
0 & \bar{B}
\end{bmatrix} v(t)
$$

$$
y(t) = \begin{bmatrix}
\bar{C}
\end{bmatrix} \begin{bmatrix} x(t) \\ z(t) \end{bmatrix} + \begin{bmatrix}
\bar{D}
\end{bmatrix} v(t)
$$

(3.6)

For a strictly proper system ($D = 0$), the matrices \bar{A}, \bar{B}, and \bar{C} are given by:

$$
\bar{A} := \begin{bmatrix}
A + BKC & BQ \\
RC & S
\end{bmatrix},

\bar{B} := \begin{bmatrix}
B \\
0
\end{bmatrix},

\bar{C} := \begin{bmatrix}
C & 0
\end{bmatrix},

\bar{D} := 0.
$$
where:

\[
B := \begin{bmatrix} B_1 & \cdots & B_v \end{bmatrix}, \quad C := \begin{bmatrix} C_1 \\ \vdots \\ C_v \end{bmatrix}.
\]

(3.7)

- Note that the equations for a centralized controller are also similar to (3.4). However, for a decentralized controller, the matrices \(S, R, Q, \) and \(K \) are block diagonal as given by (3.5) whereas in the centralized case there is no such restriction in the structure of these matrices.

- **Decentralized fixed modes (DFM)** [9], [10]: Consider the \(m \)-input, \(r \)-output system (3.1), where \(m = \sum_{i=1}^{v} m_i \), \(r = \sum_{i=1}^{v} r_i \), and assume that the decentralized flow constraint \(K \) is defined as follows:

\[
K := \{ K \in \mathbb{R}^{m \times r} \mid K = \begin{bmatrix} K_1 & 0 \\ \vdots \\ 0 & K_v \end{bmatrix}, \quad K_i \in \mathbb{R}^{m_i, r_i}, \quad i = 1, \ldots, v, \quad \det(I - DK) \neq 0 \}\)

(3.8)

Then \(\lambda \in \mathcal{G} \) is a decentralized fixed mode (DFM) of (3.1) with respect to \(K \), if:

\[
\lambda \in \bigcap_{K \in \mathcal{K}} \text{sp}(A + BK(I - DK)^{-1}C),
\]

(3.9)

where \(\text{sp}(A + BK(I - DK)^{-1}C) \) denotes the set of eigenvalues of \((A + BK(I - DK)^{-1}C) \). In other words, \(\lambda \in \mathcal{G} \) is a DFM of (3.1) with respect to \(K \), if:

\[
\text{rank}(A - \lambda I + BK(I - DK)^{-1}C) < n, \quad \forall K \in \mathcal{K}
\]

- For strictly proper systems, equation (3.9) can be simplified as:

\[
\lambda \in \bigcap_{K \in \mathcal{K}} \text{sp}(A + BKC).
\]

(3.10)

- This is, in fact, equivalent to the following:

\[
\lambda \in \bigcap_{K, \in \mathbb{R}^{m_i \times r_i}} \text{sp}(A + \sum_{i=1}^{v} B_i K_i C_i).
\]

(3.11)

- (3.10) and (3.11) can be used to find the DFM of a system numerically.

- Note that the set of CFMs of (3.1) is a subset of the set of DFMs of (3.1).
- **Invariance of DFM [11]:** Consider the system (3.1) with the decentralized dynamic controller (3.4). A mode \(\lambda \in \text{sp}(A) \) is a DFM of system (3.1) iff for all LTI controllers of the form (3.4), \(\lambda \) is an eigenvalue of the closed-loop system matrix of (3.6).

- The following numerical algorithm can be used to determine DFM of (3.1):
 1) Find the eigenvalues of \(A \).
 2) Select an arbitrary block diagonal feedback gain matrix \(K \in \mathbf{K} \) such that the matrix \((I - DK) \) is nonsingular. This can be accomplished by use of a pseudorandom number generator (numerically it is better to properly scale the gain matrix \(K \) such that \(\left\| A \right\| \approx \left\| BK(I - DK)^{-1}C \right\| \)).
 3) Find the eigenvalues of the matrix \(A_c := A + BK(I - DK)^{-1}C \).
 4) For almost all \(K \in \mathbf{K} \), the set of DFMs with respect to \(\mathbf{K} \) is equal to the intersection set \(\text{sp}(A) \cap \text{sp}(A_c) \).

- **Theorem 3.1 [9], [10]:** Consider the system \((C, A, B, D) \) given by (3.1), with \(B \) and \(C \) defined in (3.7). Let \(\mathbf{K} \) be the set of block diagonal matrices defined in (3.8). Then a necessary and sufficient condition for the existence of a decentralized LTI controller given by (3.4) such that the closed-loop system is asymptotically stable is that the system has no DFM in the closed right-half complex plane.

- **Example 3.1:** Consider the system (3.1) with \(\nu = 2 \) and the following parameters:

\[
A = \begin{bmatrix}
-1 & 0 & -3 \\
0 & \alpha & 0 \\
0 & 0 & -3
\end{bmatrix},
B_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix},
B_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix},
C_1 = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix},
C_2 = \begin{bmatrix} -1.1 & 0 & 0.1 \end{bmatrix},
D = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.
\]

It can be easily seen that this system is controllable and observable and so, it has no CFMs. However, we have:
\[
A + B \begin{bmatrix} K_1 & 0 \\ 0 & K_2 \end{bmatrix} C = \begin{bmatrix} -1 & K_1 & -3 \\ -1.1K_2 & \alpha & 0.1K_2 \\ -1.1K_2 & K_1 & -3 + 0.1K_2 \end{bmatrix}
\]

One can verify that for \(\alpha = 0.1 \) this system has a DFM at \(\lambda = 0.1 \) with respect to the diagonal information flow \[
\begin{bmatrix} \times & 0 \\ 0 & \times \end{bmatrix}.
\]

- The following analytical methods can be used to determine DFM of (3.1):

- **Theorem 3.2** [10]: Consider the system given by (3.1). Then \(\lambda \in \text{sp}(A) \) is a decentralized fixed mode of (3.1) with respect to \(K \) iff any one of the following conditions hold:

 1) \[
 \text{rank} \begin{bmatrix} A - \lambda I \\ C_1 \\ \vdots \\ C_v \end{bmatrix} < n
 \]

 2) \[
 \text{rank} \begin{bmatrix} A - \lambda I & B_1 & \cdots & B_v \end{bmatrix} < n
 \]

 3) \[
 \text{rank} \begin{bmatrix} A - \lambda I & B_{i_k} \\ C_{i_k} & D_{i_{k},i_{k}} \\ \vdots & \vdots \\ C_{i_v} & D_{i_{v},i_{v}} \end{bmatrix} < n
 \]

 for some \(i_k \in \{1,2,\ldots,v\} \), \(k = 1,2,\ldots,v \) such that \(\{i_1,i_2,\ldots,i_v\} = \{1,2,\ldots,v\} \).

 4) \[
 \text{rank} \begin{bmatrix} A - \lambda I & B_{i_1} & B_{i_2} \\ C_{i_1} & D_{i_{1},i_{1}} & D_{i_{1},i_{2}} \\ \vdots & \vdots & \vdots \\ C_{i_v} & D_{i_{v},i_{1}} & D_{i_{v},i_{2}} \end{bmatrix} < n
 \]

 for some \(i_k \in \{1,2,\ldots,v\} \), \(k = 1,2,\ldots,v \) such that \(\{i_1,i_2,\ldots,i_v\} = \{1,2,\ldots,v\} \).

 \vdots

 \[v + 1\) \[
 \text{rank} \begin{bmatrix} A - \lambda I & B_{i_1} & B_{i_2} & \cdots & B_{i_{v-1}} \\ C_{i_1} & D_{i_{1},i_{1}} & D_{i_{1},i_{2}} & \cdots & D_{i_{1},i_{v-1}} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ C_{i_{v-1}} & D_{i_{v-1},i_{1}} & D_{i_{v-1},i_{2}} & \cdots & D_{i_{v-1},i_{v-1}} \end{bmatrix} < n
 \]
for some \(i_k \in \{1, 2, \ldots, \nu\}, k = 1, 2, \ldots, \nu \) such that \(\{i_1, i_2, \ldots, i_{\nu}\} = \{1, 2, \ldots, \nu\} \).

Remark 3.1: It is to be noted that the condition in Step 1 of Theorem 3.2 is in fact met iff the system is unobservable. Similarly, the condition in Step 2 of Theorem 3.2 is in fact met iff the system is uncontrollable. In other words, if Step 1 or Step 2 of Theorem 3.2 are satisfied, the corresponding DFM is also a CFM of the system (3.1).

- **Example 3.2:** Consider the system given in Example 3.1. We want to use Theorem 3.2 to find the value of \(\alpha \) for which the system has a DFM. We will check the rank of matrices given in Steps 1 to \(\nu + 1 = 3 \) in Theorem 3.2.

The matrix corresponding to Step 1 of Theorem 3.2:

\[
M_1 = \begin{bmatrix}
A - \lambda I \\
C_1 \\
C_2
\end{bmatrix}
\]

The matrix corresponding to Step 2 of Theorem 3.2:

\[
M_2 = \begin{bmatrix}
A - \lambda I & B_1 & B_2
\end{bmatrix}
\]

The matrices corresponding to Step 3 of Theorem 3.2:

\[
M_3 = \begin{bmatrix}
A - \lambda I & B_2 \\
C_1 & 0
\end{bmatrix},
M_4 = \begin{bmatrix}
A - \lambda I & B_1 \\
C_2 & 0
\end{bmatrix}.
\]

It can be verified that for all eigenvalues of \(A \ (\lambda \in \{-1, \alpha, -3\}) \) the matrices \(M_1 \) and \(M_2 \) are full-rank. In other words, the system is observable and controllable. However, the rank of the matrix \(M_4 \) for \(\lambda = \alpha = 0.1 \) will be less than 3, as follows:

\[
\text{rank}(M_4) = \text{rank}\left(\begin{bmatrix}
-1.1 & 0 & -3 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & -3.1 & 1 \\
-1.1 & 0 & 0.1 & 0
\end{bmatrix}\right) = 2 < n = 3
\]

From Theorem 3.2 it will be concluded that the system has a DFM at \(\lambda = 0.1 \) for \(\alpha = 0.1 \).
References:

