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Abstract

Efficient deployment algorithms are developed in this paper to increase the coverage area in a network of

wireless mobile sensors. The proposed strategies iteratively compute the new candidate position of each sensor

based on the existing coverage holes. These holes are obtained using a Voronoi diagram for the case of sensors

with the same sensing ranges, and a multiplicatively weighted Voronoi (MW-Voronoi) diagram for the case of

sensors with different sensing ranges. Each sensor is driven by some virtual forces which are applied to it from

the vertices and boundaries of its Voronoi cell. These forces are obtained in such a way that when the sensor

is relocated, the covered area of the corresponding cell increases. Simulation results demonstrate the efficacy of

the proposed strategies, and their superiority to existing algorithms.

I. INTRODUCTION

Wireless sensor networks have attracted considerable attention in different areas of science and engi-

neering recently due to their broad range of applications such as environmental monitoring, biomedical

systems and traffic control, to name only a few [1], [2], [3], [4], [5], [6]. A mobile sensor network (MSN)

is comprised of a number of wireless nodes capable of moving in different directions and communicating

with their neighbors. It is desired in this type of system to cooperatively achieve a global objective such

as tracking a moving target [7] or improving network coverage [8]. Furthermore, it is often desirable
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to use a distributed decision-making algorithm, where each sensor is assumed to communicate with its

neighbors only [9]. In addition, the deployment strategy should ideally be independent of the initial

location of sensors because in practice these locations are not known a priori [10]. Moreover, the

cost-effective resource management techniques are required to prolong the network lifetime [11], [12].

The Voronoi diagram is often used for coverage analysis in sensor networks. A Voronoi-based

technique is proposed in [13] to improve coverage in a sensor network with no requirement of global

location assurance condition for the sensors. In [14], distributed gradient-descent algorithms are given to

increase sensing coverage using the Delaunay graph. A class of aggregate objective functions is studied

in [15] using the geometry of the Voronoi cells and proximity graphs. An algorithm is developed in [16]

for efficient sensor deployment and power assignment in a sensor network. To this end, a multi-objective

optimization problem is introduced which is reformulated as a group of single-objective scalar problems.

Non-smooth gradient flows are used in [17] to develop distributed control strategies for the problems

of disk covering and sphere packing. In [18], the problem of positioning a group of sensors in a

region for detection purposes is investigated by minimizing the maximum probability of non-detection.

A decentralized adaptive control law is developed in [19] to properly place a group of sensors in an

environment for optimal sensing coverage. Distributed control strategies are proposed in [20] to obtain a

convex equi-partition configuration in an MSN. Effective deployment techniques are then developed to

increase the sensing coverage. The problem of covering an environment using a group of mobile robots

with different sensor footprints is considered in [21]. An efficient deployment algorithm is proposed

in [22] which finds the appropriate locations for the mobile sensors by minimizing the maximum error

variance and extended prediction variance. In [23]-[27], efficient coverage strategies are developed

which do not use simple sensing models or Voronoi partitions. Distributed gradient-based techniques

are presented in [23], [24] for optimal coverage in an MSN. To this end, the sensors cooperatively

optimize a probabilistic detection metric, as opposed to a simple geometric area metric. Distributed

control strategies are introduced in [25] for optimal coverage in an environment with obstacles, where

the sensors’ field-of-view is limited. In [26], distributed convergence to a Nash equilibrium in an MSN

is investigated. A coverage algorithm is provided in [27] for maximizing the probability of detection,

where the communications cost is minimized in order to increase the network lifetime. Three distributed

deployment algorithms, namely, VEC, VOR and Minimax are introduced in [8] which find proper



locations for sensors to improve coverage. These techniques, however, may not perform efficiently for

certain network configurations [28].

In this paper, novel deployment techniques are proposed to increase coverage in a network of mobile

sensors. Three algorithms are developed: vertex virtual forces (VVF) algorithm, edge virtual forces

(EVF) algorithm, and vertex-edge virtual forces (VEVF) algorithm. The above-mentioned algorithms

are then extended to the case of a network with nonidentical sensors using multiplicatively-weighted

Voronoi (MW-Voronoi) diagrams [29]. Virtual forces are applied to each sensor from every vertex and

boundary of the Voronoi cell containing the sensor, which tend to move the sensor. Each sensor will

move only if the coverage area increases from its new location.

The paper is organized as follows. In Section II, some preliminaries concerning the Voronoi diagram

are presented, and important definitions and assumptions are also given. Section III provides new

methods for efficient coverage in a network of identical sensors. These algorithms are extended to

the case of nonidentical sensors in Section IV. Simulations are given in Section V, which demonstrate

the efficacy of the proposed deployment strategies. The paper concludes with a summary in Section VI.

II. PRELIMINARIES

Consider a set of n nodes in a 2D plane, denoted by S̄ := {S1, S2, . . . , Sn}. The Voronoi diagram

partitions the plane into n convex polygons, each containing only one node. Each polygon is called a

Voronoi polygon, and the node inside it is referred to as the generating node of that polygon. The

Voronoi polygons are constructed in such a way that the generating node of each polygon is the

nearest node to any point inside that polygon [30]. To construct the Voronoi diagram, the perpendicular

bisector of any segment connecting a node to each one of its neighboring nodes is drawn first. The

smallest polygon created by these perpendicular bisectors which contains the node is, in fact, the Voronoi

polygon associated with that node. The Voronoi diagram is used for the analysis and synthesis of sensor

deployment strategies.

Consider now n mobile sensors in a 2D field of polygon shape. Let each sensor be represented by a

node; construct the Voronoi polygon for every node as explained above, to cover the whole field.

Definition 1. Consider a sensor Si, i ∈ n := {1, . . . , n} with the sensing radius r. Let Πi denote the

Voronoi polygon of Si, and Q be an arbitrary point inside Πi. The intersection of the polygon Πi and



a circle of radius r centered at Q is called the i-th coverage area with respect to Q, and is represented

by βQ
Πi

. The i-th coverage area with respect to the position of the sensor Si is referred to as the local

coverage area of that sensor.

Definition 2. Consider an arbitrary point Q inside the Voronoi polygon Πi, i ∈ n. The intersection of

the Voronoi polygon Πi and the region outside the i-th coverage area with respect to Q is called the

i-th coverage hole with respect to Q, and is denoted by θQΠi
. The i-th coverage hole with respect to the

position of the sensor Si is referred to as the local coverage hole of that sensor.

As noted earlier, the nearest node to any point inside a Voronoi polygon is the generating node of

that polygon. Thus, assuming that all sensors have the same sensing range, if a sensor cannot sense a

certain point inside its polygon, no other sensor in the network can sense it either. This implies that in

order to discover the coverage hole of a network, it suffices to find all local coverage holes first. The

total coverage hole of the network is, in fact, the union of all local coverage holes.

III. DEPLOYMENT PROTOCOLS FOR IDENTICAL SENSORS

Three sensor deployment protocols are introduced in this section for efficient coverage in a network

of identical sensors. The algorithms are iterative, and every iteration includes four steps. In the first

step, every sensor Si, i ∈ n, transmits its position information Pi to other sensors, receives similar

information from other sensors, and subsequently constructs its Voronoi polygon. In the second step,

every sensor finds the local coverage hole by checking its Voronoi polygon. If a coverage hole exists

in a polygon, say the i-th polygon, then a proper scheme is used to find a point Ṕi in it such that by

placing the sensor in that point, the coverage hole would be closed or at least would become smaller

by a certain threshold. Once the new destination is found, the coverage area of the sensor with respect

to this location (i.e. βṔi

Πi
) is obtained in the third step. If the coverage area with respect to the new

destination is greater than the local coverage area, i.e. βṔi

Πi
> βPi

Πi
, the sensor moves there; otherwise, it

stays at its present location. In order for the algorithm to terminate in finite time, a proper threshold ǫ is

considered such that if the size of the local coverage area of every sensor does not increase more than ǫ,

the iterations stop. Note that the algorithms developed in this section differ only in the second step. In

each round, the new destination for each sensor is computed according to an appropriate deployment

technique.



As noted above, under the techniques introduced in this work a sensor moves to a new location only

if the coverage area of that sensor with respect to the new position in the old Voronoi polygon increases.

Similar to Theorem 1 of [28], it can be shown that under this type of strategy the total coverage is

guaranteed to increase.

A. Vertex Virtual Forces (VVF) Strategy

The movement of each sensor under the VVF strategy depends on some virtual forces applied from the

vertices of the Voronoi polygon containing the sensor. Denote the vertices of the i-th Voronoi polygon

by Vi = {Vi1, Vi2, . . . , Vil}. Also, denote by dSi

Vij
the distance between sensor Si and the j-th vertex of

its Voronoi polygon. Denote the sensing radius of every sensor by r. In this strategy, if the distance

between sensor Si and vertex Vij is less than r, then a virtual force form Vij will push Si, tending to

move the sensor away by r− dSi

Vij
. If on the other hand dSi

Vij
> r, then a virtual force form Vij will pull

the sensor, tending to move it toward Vij by dSi

Vij
− r. Eventually, each sensor moves in the direction

of the vector sum of all virtual forces,
−→
V i
v , applied to it from the vertices of the corresponding Voronoi

polygon. The new destination Ṕi is equal to Pi+α
−→
V i
v , where α is a parameter (not necessarily constant)

which is to be chosen properly. For example, a line search procedure can be used to find the optimal

value for α in order to maximize the i-th local coverage area. However, in this paper α is chosen as 1
4

based on simulation to reduce the computational complexity of the strategy [31].

Figure 1 shows an illustrative example of the VVF strategy. In this figure, the virtual forces applied

to the sensor are depicted by dashed vectors, and the displacement 1
4

−→
V i
v is shown by a red vector.

S

Fig. 1: An illustrative example of the VVF strategy.



B. Edge Virtual Forces (EVF) Strategy

The sensor deployment strategy introduced in the previous subsection is vertex-based, as it operates

based on the distance of every sensor from the vertices of its Voronoi polygon. Although this algorithm

proves effective in many scenarios, it is sometimes not as effective for specific sensor configurations.

Consider for example the polygon in Figure 2, where the sensor is denoted by S. It can be easily

verified that the sensor should move in the up-left direction in order for the coverage area to increase.

However, under the VVF strategy the sensor is forced (by the corresponding virtual forces) to move to

point A (which is almost in the opposite direction in this specific configuration), although the movement

adjustment scheme described earlier does not allow the sensor to move. This shortcoming of the VVF

algorithm can be addressed by using an edge-based method described in the sequel.

�

S
A

Fig. 2: A configuration for which the VVF technique is not as effective.

Denote the set of edges of the i-th Voronoi polygon by Ei = {Ei1, Ei2, . . . , Eil}, and the distance

between sensor Si and the j-th edge of its Voronoi polygon by dSi

Eij
. In the EVF method, the movement

of each sensor results from the vector sum of all virtual forces applied from the edges of its polygon.

If the distance between sensor Si and edge Eij is greater than the sensing radius r, then a virtual force

form Eij will pull Si, tending to move the sensor toward the edge by dSi

Eij
− r. If on the other hand

dSi

Eij
< r, then a virtual force form Eij will push Si, tending to move it away by r−dSi

Eij
. Similar to the

VVF strategy, the displacement of a sensor under the EVF technique is proportional to the vector sum of

all virtual forces applied to it from the edges of the corresponding Voronoi polygon, i.e. Ṕi = Pi+β
−→
V i
e ,

where β is a given constant. An illustrative example of the EVF strategy is shown in Figure 3 for β = 1
4
.

In this figure, the virtual forces applied from the edges to the sensor are shown by dotted vectors, and

the displacement 1
4

−→
V i
e is depicted by a red vector.
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Fig. 3: An illustrative example of the EVF strategy.

C. Vertex-Edge Virtual Forces (VEVF) Strategy

The effectiveness of each of the two deployment strategies described so far depends on the relative

position of sensors with respect to each other. One can take advantage of the strengths of both techniques,

by developing a new technique as a combination of the VVF and EVF strategies. In this algorithm,

which is referred to as the VEVF strategy, each sensor selects two points in every round, as its potential

new position: one point based on the VVF method, and the other one based on the EVF technique.

Any of the two points from which the sensor coverage improves the most is then selected as the new

position for the sensor.

IV. DEPLOYMENT PROTOCOLS FOR NONIDENTICAL SENSORS

When sensors have different sensing radii, a point that is not covered by the generating sensor of the

polygon containing the point, may be covered by a neighboring sensor. This means that for a network

of mobile sensors with different sensing radii, the conventional Voronoi diagram cannot be as useful for

the development and analysis of sensor deployment strategies. The multiplicatively weighted Voronoi

(MW-Voronoi) diagram is used in such networks, as described in the next subsection.

A. MW-Voronoi Diagram

Consider a set of n distinct weighted nodes (S1, w1), (S2, w2), . . . , (Sn, wn) in a 2D field, where

wi > 0 is the weighting factor of the node Si, i ∈ n. Let this set be denoted by S. Let also the weighted

distance of a point q from the node (Si, wi) be defined as:

dw(q, Si) =
d(q, Si)

wi



where d(q, Si) is the Euclidean distance between the point q and the node Si.

Partition the field into n regions, where each region contains only one node, which is the closest

node in terms of weighted distance, to any point within that region. The diagram resulted from this

partitioning is referred to as the multiplicatively weighted Voronoi (MW-Voronoi) diagram [29]. Each

region Π̂i in this diagram can be described as:

Π̂i =
{

q ∈ R
2 | dw(q, Si) ≤ dw(q, Sj), ∀j ∈ n− {i}

}

(1)

for any i ∈ n.

Definition 3. Given two points A, B and a constant k, Apollonian circle of the segment AB is the

locus of all points C satisfying the equality AC
BC

= k, and is denoted by ΩAB,k [32].

To obtain the MW-Voronoi region Π̂i, the Apollonian circles ΩSiSj ,
wi
wj

need to be obtained first for

all Sj ∈ S\{Si}. The smallest region created by these circles which contains node i is, in fact, the

MW-Voronoi region Π̂i.

Consider now a group of nonidentical sensors in a field, and let each sensor be represented by a node

whose weight is equal to the sensor’s sensing radius. Draw the MW-Voronoi region for every sensor;

the resulting diagram covers the whole field. Using the mathematical formulation of the MW-Voronoi

diagram described by (1), it is straightforward to show that every sensor should only check its own

MW-Voronoi region in order to identify the coverage holes of the whole network.

One can define the notions of coverage area, local coverage area, coverage hole and local coverage

hole for the case of nonidentical sensors on noting that the Voronoi cells in this case are not polygons.

B. Deployment Protocols

Deployment algorithms similar to the ones developed in the previous section for a network of identical

mobile sensors can also be developed for the case of a network of nonidentical sensors by using the

MW-Voronoi partitions. Note that the boundaries of the regions in this case are parts of some Apollonian

circles, and are not straight edges in general. Note also that an MW-Voronoi region will not have any

vertex when the region is a circle, in which case the center of this circle is considered as the new

location of the corresponding sensor. The corner points and boundary curves of an MW-Voronoi region



can be regarded as the vertices and edges of that region, respectively. Then, analogously to the VVF,

EVF and VEVF strategies developed in the previous section, one can introduce the corner point virtual

forces (CPVF), boundary curve virtual forces (BCVF), and point-curve virtual forces (PCVF) strategies,

respectively.

Remark 1. The complexity of calculating a new sensor destination in all strategies introduced in this

work is of order O(mi) or O(ei), where mi and ei are the number of vertices and edges of the i-th

Voronoi polygon (or MW-Voronoi region), respectively. Since typically a Voronoi polygon (or MW-

Voronoi region) does not have too many vertices and edges, the complexity of the proposed techniques

for computing the new sensor destinations is usually not very high.

Theorem 1. The proposed algorithms are convergent.

Proof: Denote the positions and MW-Voronoi regions of the sensors in the k-th round by P(k) =

{P1(k), P2(k), . . . , Pn(k)} and Π̂(k) =
{

Π̂1(k), Π̂2(k), . . . , Π̂n(k)
}

, respectively. Denote also the total

covered area of the field in the k-th round by β(k). Some sensors will move and change their locations

in the k-th round if the algorithm does not terminate in this round. Let sensor i be one of such sensors,

and denote by Pi(k + 1) its location in the next round (note that Pi(k + 1) 6= Pi(k)). According to

Theorem 1 of [28], if the coverage area with respect to this location is larger than the local coverage

area in the k-th step, then the overall coverage area increases in this round. In other words:

β
Pi(k+1)

Π̂i(k)
> β

Pi(k)

Π̂i(k)
=⇒ β(k + 1) > β(k) (2)

The total coverage area, on the other hand, is upper-bounded by the entire area of the field. This means

that the proposed algorithms are convergent.

It is to be noted that the proposed algorithms do not necessarily converge in finite time. As noted

earlier, a prescribed threshold ǫ is used to terminate the algorithm in finite time. More precisely, the

algorithm will continue after the k-th round if there is a sensor whose coverage improves by at least ǫ

in this round, i.e.:

∃i ∈ n : β
Pi(k+1)

Π̂i(k)
≥ β

Pi(k)

Π̂i(k)
+ ǫ (3)

The choice of ǫ involves a trade-off between the coverage performance and convergence rate of the



algorithm. On the one hand, a smaller ǫ would lead to a better network coverage. On the other hand,

a larger ǫ yields a faster convergence. The following theorem provides an upper-bound on the number

of rounds required to run the algorithm, as a function of ǫ.

Theorem 2. Let a set S of n mobile sensors be deployed randomly in a flat plane. Using any of the

algorithms proposed in this work with a prescribed coverage threshold ǫ, the number of rounds the

algorithm iterates before it terminates does not exceed Atotal

ǫ
, where Atotal represents the entire area of

the field.

Proof: Denote by ζf the number of required rounds to satisfy the termination condition in any

of the algorithms. Let the whole area of uncovered region in the k-th round be denoted by θ(k), and

notice that β(k) = Atotal − θ(k). Let also the locations of the sensors in this round be represented by

P(k) = {P1(k), P2(k), . . . , Pn(k)}, and denote by Π̂i(k) the MW-Voronoi region associated with the

i-th sensor, i ∈ n. It follows from (1) that:

θ(k) =
n

∑

i=1

θ
Pi(k)

Π̂i(k)
, ∀k ∈ {1, . . . , ζf} (4)

Define the moving set of the k-th round as the largest subset of sensors that change position in the k-th

round, and let the set Indx(k) contain the indices of these sensors. Note that at least one sensor moves

in the k-th round, i.e. Indx(k) 6= Ø, ∀k ∈ {1, . . . , ζf}. Note also that the i-th sensor, i ∈ Indx(k),

changes position in the k-th round if β
Pi(k+1)

Π̂i(k)
≥ β

Pi(k)

Π̂i(k)
+ ǫ. This implies that:

θ
Pi(k+1)

Π̂i(k)
≤ θ

Pi(k)

Π̂i(k)
− ǫ, ∀i ∈ Indx(k) (5)

On the other hand, part of the area θ
Pi(k+1)

Π̂i(k)
might be covered by some other sensor positioned at

Pj(k + 1), where j ∈ n\{i}. This means that:

θ(k + 1) ≤
n

∑

i=1

θ
Pi(k+1)

Π̂i(k)
(6)

From (5), (6) and on noting that the i-th sensor does not move if i ∈ n\Indx(k) (which means that



θ
Pi(k+1)

Π̂i(k)
= θ

Pi(k)

Π̂i(k)
), it can be concluded that:

θ(k + 1) ≤
n

∑

i=1

θ
Pi(k)

Π̂i(k)
− |Indx(k)| ǫ (7)

It follows from (4) and the above relation that:

θ(k + 1) ≤ θ(k)− |Indx(k)| ǫ ≤ θ(k)− ǫ (8)

or equivalently:

β(k + 1) ≥ β(k) + |Indx(k)| ǫ ≥ β(k) + ǫ (9)

which means that under the proposed sensor deployment scheme the covered area of the sensors improves

by at least ǫ in each round. Hence, the increased coverage from the initial round to the termination round

is at least ζfǫ. Now, since the entire covered area is less than or equal to Atotal, it can be concluded

that Atotal ≥ ζfǫ or equivalently Atotal

ǫ
≥ ζf .

Remark 2. One of the important properties of the MW-Voronoi diagram is that it partitions the field; in

addition, there is exactly one sensor in each resultant region. Since under the proposed algorithms the

new location of every sensor lies inside the MW-Voronoi region of the sensor and also each sensor moves

within its region only, thus the sensors would not collide. However, if a sensor cannot communicate with

some of its neighbors, then some boundaries of the resultant MW-Voronoi region (obtained according

to the incomplete information) would be different from the exact ones. As a result, the MW-Voronoi

regions might not partition the field in the sense that some of them might overlap with each other. This

can negatively impact the detection of coverage holes, and may also lead to sensor collisions.

V. SIMULATION RESULTS

It is well-known that no tractable analytical solution exists for the optimal coverage problem in

the sensor networks [8], [33], [34]. The evaluation and comparison of different sensor deployment

algorithms are usually performed by simulation. In this section, the performance of the proposed

sensor deployment algorithms are evaluated and compared using several simulations with random initial

sensor configurations. In the examples given below, the average results are depicted by performing 100

simulations with random initial configurations for Examples 1 and 2, and 20 simulations (also with



random initial configurations) for Example 3.

Example 1: This example compares the performance of the strategies introduced in Section III for

different number of sensors: n=20, 30, 40, and 50. The sensors are deployed randomly in a flat square

field of size 50m×50m and their sensing and communication ranges are 6m and 20m, respectively. The

algorithms used in this example are terminated when no sensor’s coverage in its corresponding Voronoi

polygon increases by more than 1% in the next move. In Figure 4, the final coverage factor (defined

as the ratio of the covered area to the whole area of the field) is depicted under the three algorithms

introduced in Section III, for different number of sensors. This figure shows that the coverage area

under the VEVF strategy is greater than that under the VVF and EVF methods, for different number

of sensors.
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Fig. 4: Coverage factor for different number of sensors in Example 1 using the proposed algorithms.

Convergence rate is also an important issue in the performance assessment of sensor deployment

techniques. Since the sensor deployment time in each round of different algorithms is more or less the

same, the number of rounds the algorithm runs until the termination condition is met can be used to

assess time efficiency. Figure 5 demonstrates that the number of times each algorithm runs in order to

meet a prescribed termination condition decreases as the number of sensors increases between 30 and

50. This is because of the fact that for large number of sensors in the target field, the Voronoi polygons

are small compared to the corresponding sensing circles. As a result, it is likely that each sensor covers

a large portion of its Voronoi polygon; thus, the algorithm reaches the termination condition faster. The



number of rounds in the EVF procedure is relatively small, and hence it is more desirable in terms of

convergence rate.
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Fig. 5: The number of rounds required to meet the termination condition in Example 1 for different number of sensors using the

proposed strategies.

The energy consumed by sensors in order to provide the desired coverage level is another important

issue which needs to be taken into consideration when evaluating the efficiency of different algorithms.

The energy consumption of the network is closely related to the distance the sensors travel as well as

the number of times they stop before reaching their final position (note that once a sensor stops, it has

to overcome the static friction in order to move again). Thus, to compare the energy-efficiency of the

proposed methods, one should take into account the traveling distance of the sensors as well as the

number of times they stop. Figure 6 provides the average traveling distance vs. the number of sensors

for all three algorithms. This figure shows that the average traveling distance decreases with increasing

the number of sensors in all three algorithms. This results from the fact that when the number of sensors

is large, the Voronoi polygons are relatively small. This, in turn, decreases the distance between each

sensor and its candidate destination (which is in the corresponding Voronoi polygon). Therefore, the

average displacement distance of the sensors under all three strategies decreases. It is also observed

from Figure 6 that the average displacement distance using the VVF method is less than that using the

other two techniques.

Figure 7 gives the number of sensor movements for various number of sensors. The figure shows that
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Fig. 6: The average travel distance for different number of sensors in Example 1, using the proposed algorithms.

the number of movements in all scenarios decreases by increasing the number of sensors. This results

from the fact that when the number of sensors is large, the Voronoi polygons are small, and hence the

sensors are likely to cover a large area of their Voronoi polygons. Thus, the termination condition will

be met in a shorter time, which, in turn, decreases the number of sensor displacements. It can also be

seen form Figure 7 that the smallest number of movements results from the EVF strategy.
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Fig. 7: The number of sensor displacements for different number of sensors in Example 1, using the proposed deployment strategies.

Let the energy that a sensor spends to travel 1m (with no stop) be 8.268J [35], [36]. Consider two

cases, where the amount of energy spent to stop a sensor and then overcome the static friction following



a complete stop is the same as the energy that the sensor spends to travel 1m (first case) and 4m (second

case) [8], [37]. Tables I and II give a summary of the energy consumption results for these two cases,

and demonstrate that in both scenarios the EVF strategy performs better than the other two strategies

as far as energy-efficiency is concerned.

TABLE I: The energy consumption in Joule for various number of sensors using the proposed strategies in the first case of Example 1.

n = 20 n = 30 n = 40 n = 50
VVF 106.8229 J 80.3771 J 48.5951 J 29.5852 J

EVF 91.4222 J 69.6011 J 43.1367 J 28.1033 J

VEVF 111.2314 J 79.8485 J 48.6748 J 29.3468 J

Example 2: Consider 20 identical sensors with the sensing radius of 6m and the communication

radius of 20m, randomly deployed in a field of size 50m by 50m. This example aims to evaluate the

performance of the VEVF algorithm and compare it with some existing techniques, namely Minimax,

VOR, VEC [8], Minmax-edge, Maxmin-edge, Maxmin-vertex, and VEDGE [28]. The coverage factor

of the sensors in each round of different algorithms is provided in Figure 8. This figure indicates that

the VEVF algorithm outperforms the other strategies in terms of sensor coverage. In addition, the

complexity of finding the new destination of each sensor in the VEVF strategy is of order O(m), while

this complexity in the Minimax, Maxmin-edge, Maxmin-vertex, VEDGE and Minmax-edge techniques

is of order O(m4), where m is the number of vertices of the Voronoi polygon.

Example 3: In this example, 27 sensors are deployed randomly in a field of size 50m by 50m: 15

sensors with a sensing range of 6m, 6 with a sensing range of 5m, 3 with a sensing range of 7m,

and 3 with a sensing range of 9m. The communication radius of each sensor is assumed to be 10/3

times larger than its sensing radius. The CPVF algorithm is now compared with six other techniques

TABLE II: The energy consumption in Joule for different number of sensors using the proposed algorithms in the second case of

Example 1.

n = 20 n = 30 n = 40 n = 50
VVF 257.8297 J 216.9892 J 127.5152 J 74.5747 J

EVF 198.1787 J 160.3506 J 94.1152 J 58.3443 J

VEVF 257.4014 J 202.7688 J 120.1662 J 68.8397 J
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Fig. 8: Coverage factor in each round of the algorithms for 20 sensors in Example 2.

reported in the literature, namely WVB, FPB [38], Minmax-vertex, Maxmin-vertex [39], Minmax-curve

and Maxmin-curve [10]. The coverage factor in each round of the algorithm is shown in Figure 9 for

different strategies. This figure clearly confirms that the coverage factor obtained by using the CPVF

algorithm is better than that obtained by using any other algorithm cited above. As in the previous

example, the complexity of finding the new destination of each sensor in the CPVF strategy is of order

O(m), while this complexity in the Maxmin-vertex, Minmax-vertex, Maxmin-curve and Minmax-curve

algorithms is of order O(m4).
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Fig. 9: Coverage factor in each round of different algorithms in Example 3.



VI. CONCLUSIONS

Three distributed sensor deployment strategies are developed in this work to improve coverage in

a network of mobile sensors. The sensing field is first partitioned using the Voronoi diagram, and the

deployment algorithms are developed based on the configuration of Voronoi polygons. The proposed

strategies are iterative, where the next candidate position of any sensor is obtained in each iteration

based on the distance of the sensor from the edges and vertices of its polygon. Different virtual forces

are defined which are applied to the sensor from the vertices and boundaries of the polygon. Each

sensor tends to move to a new location under the vector sum of these virtual forces, but it only moves

to the new location if its coverage increases. The results are extended to the case of sensors with

nonidentical sensing ranges using the notion of the multiplicatively-weighted Voronoi (MW-Voronoi)

diagram. Simulations demonstrate the efficacy of the proposed algorithms in increasing the network

coverage.
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