ELEC361: Signals And Systems

Topic 5:
Discrete-Time Fourier Transform (DTFT)

- DT Fourier Transform
 - Overview of Fourier methods
 - DT Fourier Transform of Periodic Signals
 - Properties of DT Fourier Transform
 - Relations among Fourier Methods
 - Summary
 - Appendix:
 - Transition from DT Fourier Series to DT Fourier Transform

Figures and examples in these course slides are taken from the following sources:

DT Fourier Transform

- (Note: a Fourier transform is unique, i.e., no two same signals in time give the same function in frequency)
- The DT Fourier Series is a good analysis tool for systems with periodic excitation but cannot represent an aperiodic DT signal for all time
- The DT Fourier Transform can represent an aperiodic discrete-time signal for all time
- Its development follows exactly the same as that of the Fourier transform for continuous-time aperiodic signals
DT Fourier Transform

- Let $x[n]$ be the aperiodic DT signal
- We construct a periodic signal $\tilde{x}[n]$ for which $x[n]$ is one period
 - $\tilde{x}[n]$ is comprised of infinite number of replicas of $x[n]$
 - Each replica is centered at an integer multiple of N
 - N is the period of $\tilde{x}[n]$
- Consider the following figure which illustrates an example of $x[n]$ and the construction of $\tilde{x}[n]$
- Clearly, $x[n]$ is defined between $-N_1$ and N_2
- Consequently, N has to be chosen such that $N > N_1 + N_2 + 1$ so that adjacent replicas do not overlap
- Clearly, as we let
 $$N \to \infty, \quad \tilde{x}[n] = x[n]$$
 as desired
DT Fourier Transform

Let us now examine the FS representation of \(\tilde{x}[n] \)

\[
\tilde{x}[n] = \sum_{<N>} a_k e^{jk(2\pi/N)n}
\]

where

\[
a_k = \frac{1}{N} \sum_{<N>} \tilde{x}[n] e^{-jk(2\pi/N)n}
\]

Since \(x[n] \) is defined between \(-N_1\) and \(N_2\)

\[a_k \text{ in the above expression simplifies to } \]

\[
\begin{align*}
a_k &= \frac{1}{N} \sum_{n=-N_1}^{N_2} \tilde{x}[n] e^{-jk(2\pi/N)n} \\
&= \frac{1}{N} \sum_{n=-\infty}^{\infty} x[n] e^{-jk(2\pi/N)n} \\
\end{align*}
\]

\(\omega = 2\pi/N \)
DT Fourier Transform

- Now defining the function \(X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} \)
- We can see that the coefficients \(a_k \) are related to \(X(e^{j\omega}) \) as \(a_k = \frac{1}{N}X(e^{jk\omega_0}) \)
- where \(\omega_0 = \frac{2\pi}{N} \) is the spacing of the samples in the frequency domain
- Therefore \(\tilde{x}[n] = \sum_{<N>} \frac{1}{N}X(e^{jk\omega_0})e^{jk\omega_0 n} \)
 \[= \frac{1}{2\pi} \sum_{<N>} X(e^{jk\omega_0})e^{jk\omega_0 n}\omega_0 \]
- As \(N \) increases \(\omega_0 \) decreases, and as \(N \to \infty \) the above equation becomes an integral
One important observation here is that the function $X(e^{j\omega})$ is periodic in ω with period 2π.

Therefore, as $N \to \infty$, $\tilde{x}[n] = x[n]$.

(Note: the function $e^{j\omega}$ is periodic with $N=2\pi$).

This leads us to the DT-FT pair of equations:

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega \quad \text{Synthesis equation}$$

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n} \quad \text{Analysis equation}$$
DT Fourier Transform: Forms

Inverse F Form Forward

$x[n] = \int X(F)e^{j2\pi Fn}dF \overset{F}{\Rightarrow} X(F) = \sum_{n=-\infty}^{\infty} x[n]e^{-j2\pi Fn}$

Inverse Ω Form Forward

$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(j\Omega)e^{j\Omega n}d\Omega \overset{F}{\Rightarrow} X(j\Omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n}$

\otimes DT Fourier Transform: $\text{DT} \Rightarrow \text{CT} + P_{2\pi}$

$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$

\otimes Inverse DT Fourier Transform: $\text{CT} + P_{2\pi} \Rightarrow \text{DT}$

$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n}d\omega$
DT Fourier Transform: Examples

- Let $x[n] = \delta[n] \rightarrow X(e^{j\omega}) = 1$

- Let $x[n] = \begin{cases} 1, & |n| \leq 5 \\ 0, & \text{e.w.} \end{cases} \rightarrow X(e^{j\omega}) = \sum_{n=-5}^{5} e^{-j\omega n} = \frac{\sin[\omega(11/2)]}{\sin[\omega/2]}$
Consider the sequence \(x(n) = \alpha^n u(n), \ |\alpha| < 1 \).

For this sequence, \(X(\Omega) = \sum_{n=0}^{\infty} \alpha^n \exp[-j\Omega n] = \frac{1}{1 - \alpha \exp[-j\Omega]} \).

The magnitude is given by \(|X(\Omega)| = \frac{1}{\sqrt{1 + \alpha^2 - 2\alpha \cos \Omega}} \).

And the phase by \(\text{Arg} X(\Omega) = -\tan^{-1}\frac{\alpha \sin \Omega}{1 - \alpha \cos \Omega} \).
Outline

- DT Fourier Transform
- **Overview of Fourier methods**
 - DT Fourier Transform of Periodic Signals
 - Properties of DT Fourier Transform
 - Relations among Fourier Methods
 - DTFT: Summary
- Appendix:
 - Transition from DT Fourier Series to DT Fourier Transform
Overview of Fourier Analysis Methods: Types of signals

- Analog:
 - Continuous-Time Signal
 - Discrete-Time Signal
 - Continuous-Value Signal

- Digital:
 - Discrete-Time Signal
 - Continuous-Time Signal
 - Continuous-Value Signal

Periodic → Non-periodic

- Noise

Number of cars crossing an intersection between red lights
Overview of Fourier Analysis Methods: Types of signals

Continuous (analog)
- Periodic
 - Fourier Series
- Non-periodic
 - Fourier Transform

Discrete (digital)
- Periodic
 - Discrete Fourier Series
- Non-periodic
 - Discrete-time Fourier Transform & Z-transform
Overview of Fourier Analysis

Methods: Continuous-Value and Continuous-Time Signals

- All continuous signals are CT but not all CT signals are continuous

[Diagrams showing continuous and continuous-time signals, including points of discontinuity]
Overview of Fourier Analysis Methods

<table>
<thead>
<tr>
<th></th>
<th>Periodic in Time</th>
<th>Discrete in Frequency</th>
<th>Aperiodic in Time</th>
<th>Continuous in Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous</td>
<td>CT Fourier Series: CT - P_T (\Rightarrow) DT</td>
<td>(a_k = \frac{1}{T} \int_{0}^{T} x(t)e^{-jk\omega t} dt)</td>
<td>CT Fourier Transform: CT (\Rightarrow) CT</td>
<td>(X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt)</td>
</tr>
<tr>
<td></td>
<td>CT Inverse Fourier Series: DT (\Rightarrow) CT - P_T</td>
<td>(x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega t})</td>
<td>Inverse CT Fourier Transform: CT (\Rightarrow) CT</td>
<td>(x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega)e^{j\omega t} d\omega)</td>
</tr>
<tr>
<td>Aperiodic</td>
<td>DT Fourier Series: DT - P_N (\Rightarrow) DT - P_N</td>
<td>(X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\omega kn})</td>
<td>DT Fourier Transform: DT (\Rightarrow) CT + P (2\pi)</td>
<td>(X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n})</td>
</tr>
<tr>
<td>Discrete</td>
<td>Inverse DT Fourier Series: DT - P_N (\Rightarrow) DT - P_N</td>
<td>(x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k]e^{j\omega kn})</td>
<td>Inverse DT Fourier Transform: CT + P (2\pi) (\Rightarrow) DT</td>
<td>(x[n] = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(e^{j\omega})e^{j\omega n} d\omega)</td>
</tr>
<tr>
<td>Time</td>
<td>Periodic in Frequency</td>
<td>Continuous in Frequency</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\omega = \frac{2\pi}{T}\)
Outline

- DT Fourier Transform
- Overview of Fourier methods
- DT Fourier Transform of Periodic Signals
- Properties of DT Fourier Transform
- Relations among Fourier Methods
- DTFT: Summary
- Appendix:
 - Transition from DT Fourier Series to DT Fourier Transform
Fourier Transform of Periodic DT Signals

- Consider the continuous time signal $x(t) = e^{j\omega_0 t}$
- This signal is periodic
- Furthermore, the Fourier series representation of this signal is just an impulse of weight one centered at $\omega = \omega_0$
- Now consider this signal $x[n] = e^{j\omega_0 n}$
- It is also periodic and there is one impulse per period
 However, the separation between adjacent impulses is 2π, which agrees with the properties of DT Fourier Transform
- In particular, the DT Fourier Transform for this signal is

$$X(e^{j\omega}) = \sum_{l=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 - 2\pi l)$$
Fourier Transform of Periodic DT Signals: Example

- Let \(x[n] = \cos w_0 n \) with \(w_0 = \frac{2\pi}{5} \)

- The signal can be expressed as \(x[n] = \frac{1}{2} (e^{jw_0 n} + e^{-jw_0 n}) \)

- We can immediately write
 \[
 X(e^{j\omega}) = \sum_{l=-\infty}^{\infty} \pi \delta(\omega - \frac{2\pi}{5} - 2\pi l) + \sum_{l=-\infty}^{\infty} \pi \delta(\omega + \frac{2\pi}{5} - 2\pi l)
 \]

- Or equivalently
 \[
 X(e^{j\omega}) = \pi \delta(\omega - \frac{2\pi}{5}) + \pi \delta(\omega + \frac{2\pi}{5}) \quad -\pi \leq \omega < \pi
 \]

where \(X(e^{j\omega}) \) is periodic in \(\omega \) with period \(2\pi \)
Outline

- DT Fourier Transform
- Overview of Fourier methods
- DT Fourier Transform of Periodic Signals
- Properties of DT Fourier Transform
- Relations among Fourier Methods
- DTFT: Summary
- Appendix:
 - Transition from DT Fourier Series to DT Fourier Transform
Properties of the DT Fourier Transform

- Periodicity

\[X(e^{j(\omega+2\pi)}) = X(e^{j\omega}) \]

- Note: the function \(e^{j\omega} \) is periodic with \(N=2\pi \)
Properties of the DT Fourier Transform

- Linearity: If \(x_1[n] \xrightarrow{F} X_1(e^{j\omega}) \) and \(x_2[n] \xrightarrow{F} X_2(e^{j\omega}) \)

Then \(\Rightarrow \alpha x_1[n] + \beta x_2[n] \overset{F}{\longrightarrow} \alpha X_1(e^{j\omega}) + \beta X_2(e^{j\omega}) \)

\(\alpha x[n] + \beta y[n] \overset{F}{\longrightarrow} \alpha X(F) + \beta Y(F) \)

\(\alpha x[n] + \beta y[n] \overset{F}{\longrightarrow} \alpha X(j\Omega) + \beta Y(j\Omega) \)
Properties of the DT Fourier Transform

- **Time-Shifting:** If \(x[n] \xrightarrow{F} X(e^{j\omega}) \)
 Then \(x[n - n_0] \xrightarrow{F} e^{-j\omega n_0} X(e^{j\omega}) \)

\[
x[n - n_0] \xrightarrow{F} e^{-j2\pi F n_0} X(F)
\]

\[
x[n - n_0] \xrightarrow{F} e^{-j\Omega n_0} X(j\Omega)
\]
Properties of the DT Fourier Transform

- **Frequency Shifting:** If $x[n] \xrightarrow{F} X(e^{j\omega})$

 Then

 $e^{-j\omega_0 n} x[n] \xrightarrow{F} X(e^{j(\omega-\omega_0)})$

 $e^{j2\pi F_0 n} x[n] \xrightarrow{F} X(F - F_0)$

 $e^{j\Omega_0 n} x[n] \xrightarrow{F} X(j(\Omega - \Omega_0))$
Properties of the DT Fourier Transform

- Conjugation and Conjugate Symmetry

\[x[n] \overset{F}{\rightarrow} X(e^{j\omega}) \]
\[x^*[n] \overset{F}{\rightarrow} X^*(e^{-j\omega}) \]

- For real-valued signals,

\[x^*[n] = x[n] \Rightarrow X(e^{j\omega}) = X^*(e^{-j\omega}) \]

- For real-valued and even signals, the Fourier transform is real and even

- For real-valued and odd signals, the Fourier transform is purely imaginary and odd
Properties of the DT Fourier Transform

- Differencing

\[x[n] - x[n-1] \xrightarrow{F} (1 - e^{-j\omega}) X(e^{j\omega}) \]

\[x[n] - x[n-1] \xrightarrow{F} (1 - e^{-j2\pi F}) X(F) \]

\[x[n] - x[n-1] \xrightarrow{F} (1 - e^{-j\Omega}) X(j\Omega) \]
Properties of the DT Fourier Transform

- Accumulation

\[
\sum_{m=-\infty}^{n} x[m] \overset{F}{\longleftrightarrow} \frac{1}{1 - e^{-jw}} X(e^{jw}) + \pi X(e^{j0}) \sum_{m=-\infty}^{\infty} \delta(w - 2\pi k)
\]

\[
\sum_{m=-\infty}^{n} x[m] \overset{F}{\longleftrightarrow} \frac{X(F)}{1 - e^{-j2\pi F}} + \frac{1}{2} X(0) \text{comb}(F)
\]

\[
\sum_{m=-\infty}^{n} x[m] \overset{F}{\longleftrightarrow} \frac{X(j\Omega)}{1 - e^{-j\Omega}} + \frac{1}{2} X(0) \text{comb}\left(\frac{\Omega}{2\pi}\right)
\]

where the impulse train on the right-hand side of the above equation reflects the average value (or dc component) that may result from the summation.

- Accumulation Definition of a Comb Function

\[
\sum_{n=-\infty}^{\infty} e^{j2\pi Fn} = \text{comb}(F)
\]
Properties of the DT Fourier Transform

- Accumulation
Properties of the DT Fourier Transform

- Time Reversal: If
 \[x[n] \xrightarrow{F} X(e^{j\omega}) \]
 Then
 \[x[-n] \xrightarrow{F} X(e^{-j\omega}) \]
Properties of the DT Fourier Transform

- **Time Expansion:**
 Let \(k \) be a positive integer.

 Define

 \[
 x_{(k)}[n] = \begin{cases}
 x[n/k], & \text{if } n \text{ is a multiple of } k \\
 0, & \text{otherwise}
 \end{cases}
 \]

 Now if \(x[n] \xrightarrow{F} X(e^{jw}) \)

 then \(x_{(k)}[n] \xrightarrow{F} X(e^{jkw}) \)
Properties of the DT Fourier Transform

- Differentiation in Frequency: If

\[x[n] \overset{F}{\longleftrightarrow} X(e^{j\omega}) \]

then

\[nx[n] \overset{F}{\longleftrightarrow} j\frac{dX(e^{j\omega})}{d\omega} \]
Properties of the DT Fourier Transform

- Parseval’s Relation

\[\sum_{n=-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{2\pi} |X(e^{j\omega})|^2 d\omega \]

\[\sum_{n=-\infty}^{\infty} |x[n]|^2 = \int_{-\infty}^{\infty} |X(F)|^2 dF \]

\[\sum_{n=-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(j\Omega)|^2 d\Omega \]

The signal energy is proportional to the integral of the squared magnitude of the DTFT of the signal over one period.
Properties of the DT Fourier Transform

Multiplication-Convolution Duality

- $x[n] \ast y[n] \xrightarrow{F} X(F)Y(F)$
- $x[n] \ast y[n] \xrightarrow{F} X(j\Omega)Y(j\Omega)$
- $x[n]y[n] \xrightarrow{F} X(F) \odot Y(F)$
- $x[n]y[n] \xrightarrow{F} \frac{1}{2\pi} X(j\Omega) \odot Y(j\Omega)$

As in other transforms, convolution in the time domain is equivalent to multiplication in the frequency domain:

$x[n] \rightarrow \boxed{h[n]} \rightarrow y[n] = h[n] \ast x[n]$
$X(F) \rightarrow \boxed{H(F)} \rightarrow Y(F) = H(F)X(F)$
Properties of the DT Fourier Transform
Properties of the DT Fourier Transform: Example

- Let $y[n] = x[n] * h[n]$ Then $Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega})$

Example: Consider the following system

$x[n] = b^n u[n]$

$h[n] = a^n u[n]$

$y[n] = ??$

From the convolution property, we have $Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega})$

$$Y(e^{j\omega}) = \frac{1}{(1 - ae^{-j\omega})(1 - be^{-j\omega})} = \frac{A}{1 - ae^{-j\omega}} + \frac{B}{1 - be^{-j\omega}}$$

using partial fraction $A = \frac{a}{a-b}$ and $B = -\frac{b}{a-b}$

Therefore,

$$y[n] = \frac{1}{a-b} \left[a^{n+1} u[n] - b^{n+1} u[n] \right] = \frac{a^{n+1} - b^{n+1}}{a - b} u[n]$$
Properties of the DT Fourier Transform

- Multiplication: Let

\[y[n] = x_1[n] \cdot x_2[n] \]

then

\[Y(e^{j\omega}) = \frac{1}{2\pi} \int_{2\pi} X_1(e^{j\theta})X_2(e^{j(\omega-\theta)})d\theta \]
Properties of the DT Fourier Transform: Difference equation

- DT LTI Systems are characterized by Linear Constant-Coefficient Difference Equations
- A general linear constant-coefficient difference equation for an LTI system with input $x[n]$ and output $y[n]$ is of the form
 \[\sum_{k=0}^{N} a_k y[n - k] = \sum_{k=0}^{M} b_k x[n - k] \]

- Now applying the Fourier transform to both sides of the above equation, we have
 \[\sum_{k=0}^{N} a_k e^{-jkw} Y(e^{jw}) = \sum_{k=0}^{M} b_k e^{-jkw} X(e^{jw}) \]

- But we know that the input and the output are related to each other through the impulse response of the system, denoted by $h[n]$, i.e.,
 \[y[n] = x[n] * h[n] \]
Properties of the DT Fourier Transform: Difference equation

- Applying the convolution property

\[Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega}) \quad \text{or} \quad H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{\sum_{k=0}^{M} b_k e^{-jkw}}{\sum_{k=0}^{N} a_k e^{-jkw}} \]

=> if one is given a difference equation corresponding to some system, the Fourier transform of the impulse response of the system can be found directly from the difference equation by applying the Fourier transform.

- Fourier transform of the impulse response = Frequency response
- Inverse Fourier transform of the frequency response = Impulse response
Properties of the DT Fourier Transform: Example

- With $|a| < 1$, consider the causal LTI system that is characterized by the difference equation
 \[y[n] - ay[n - 1] = x[n] \]

- From the discussion, it is easy to see that the frequency response of the system is
 \[H(e^{j\omega}) = \frac{1}{1 - ae^{-j\omega}} \]

- From tables (or by applying inverse Fourier transform), one can easily find that
 \[h[n] = a^n u[n] \]
Outline

- DT Fourier Transform
- Overview of Fourier methods
- DT Fourier Transform of Periodic Signals
- Properties of DT Fourier Transform
- Relations among Fourier Methods
- DTFT: Summary
- Appendix:
 - Transition from DT Fourier Series to DT Fourier Transform
Relations Among Fourier Methods

<table>
<thead>
<tr>
<th>Continuous in Time</th>
<th>Aperiodic in Time</th>
<th>Periodic in Time</th>
<th>Discrete in Frequency</th>
<th>Aperiodic in Time</th>
<th>Continuous in Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT Fourier Series</td>
<td>CT Fourier Transform</td>
<td>CT - P<sub>T</sub> ⇒ DT</td>
<td>$a_k = \frac{1}{T} \int_{0}^{T} x(t)e^{-j\omega_k t} , dt$</td>
<td>$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} , dt$</td>
<td>CT ⇒ CT</td>
</tr>
<tr>
<td>CT Inverse Fourier Series</td>
<td>CT Inverse Fourier Transform</td>
<td>$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega)e^{j\omega t} , d\omega$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DT Fourier Series</td>
<td>DT Fourier Transform</td>
<td>DT - P<sub>N</sub> ⇒ DT - P<sub>N</sub></td>
<td>$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\omega_k n}$</td>
<td>$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$</td>
<td>DT ⇒ CT + P<sub>2\pi</sub></td>
</tr>
<tr>
<td>DT Inverse Fourier Series</td>
<td>DT Inverse Fourier Transform</td>
<td>DT - P<sub>N</sub> ⇒ DT - P<sub>N</sub></td>
<td>$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k]e^{j\omega_k n}$</td>
<td>$x[n] = \frac{1}{2\pi} \int_{2\pi}^{2\pi} X(e^{j\omega})e^{j\omega n} , d\omega$</td>
<td>CT + P<sub>2\pi</sub> ⇒ DT</td>
</tr>
</tbody>
</table>
Relations Among Fourier Methods

DT Fourier Series

CT Fourier Series

DT Fourier Transform

CT Fourier Transform
\[X(f) = \sum_{k=-\infty}^{\infty} X[k] \delta(f - kf_0) \]
CT Fourier Transform - CT Fourier Series

\[
X_p[k] = f_p X(kf_p)
\]
CT Fourier Transform - DT Fourier Transform

Let \(x_\delta(t) = x(t) \frac{1}{T_s} \text{comb} \left(\frac{t}{T_s} \right) = \sum_{n=-\infty}^{\infty} x(nT_s) \delta(t - nT_s) \)

and let \(x[n] = x(nT_s) \)

There is an “information equivalence” between \(x_\delta(t) \) and \(x[n] \). They are both completely described by the same set of numbers.

\[
X_{DTFT}(F) = X_\delta(f_sF) \quad X_\delta(f) = X_{DTFT} \left(\frac{f}{f_s} \right)
\]

\[
X_{DTFT}(F) = f_s \sum_{k=-\infty}^{\infty} X_{CTFT} \left(f_s(F - k) \right)
\]
CT Fourier Transform - DT Fourier Transform

\[x[n] \xrightarrow{\mathcal{F}} X(F) \]

\[x_s(t) \xrightarrow{\mathcal{F}} X_s(f) \]

\[x(t) \xrightarrow{\mathcal{F}} X(f) \]
DT Fourier Series - DT Fourier Transform

\[X(F) = \sum_{k=-\infty}^{\infty} X[k] \delta(F - kF_0) \]
DT Fourier Series - DT Fourier Transform

\[X_p[k] = \frac{1}{N_p} X(kF_p) \]
Outline

- DT Fourier Transform
- Overview of Fourier methods
- DT Fourier Transform of Periodic Signals
- Properties of DT Fourier Transform
- Relations among Fourier Methods
- **DTFT: Summary**
- Appendix:
 - Transition from DT Fourier Series to DT Fourier Transform
DTFT: Summary

- DT Fourier Transform represents a discrete time aperiodic signal as a sum of infinitely many complex exponentials, with the frequency varying continuously in (-π, π)

\[
x(t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega t} \, d\omega, \quad X(e^{j\omega}) = \sum_{n} x[n] e^{-jn\omega}
\]

- DTFT is periodic
 - only need to determine it for \(\omega \in (-\pi, \pi) \)
DTFT: Summary

- Know how to calculate the DTFT of simple functions
 - Know the geometric sum:

 \[\sum_{n=0}^{\infty} a^n = \frac{1}{1-a}, \quad \text{if} \quad |a|<1 \]

- Know Fourier transforms of special functions, e.g. \(\delta[n] \), exponential
- Know how to calculate the inverse transform of rational functions using partial fraction expansion
- Properties of DT Fourier transform
 - Linearity, Time-shift, Frequency-shift, …
A discrete-time LTI system has impulse response \(h[n] = \left(\frac{1}{2}\right)^n u[n] \)

Find the output \(y[n] \) due to input \(x[n] = \left(\frac{1}{7}\right)^n u[n] \)

(Suggestion: work with and using the convolution property)

Solution

This can be solved using convolution of \(h[n] \) and \(x[n] \).

However, the point was to use the convolution in time \(\rightarrow \) multiplication in frequency property.

Therefore,
\[
y[n] = h[n] * x[n] \Rightarrow Y(e^{j\omega}) = H(e^{j\omega})X(e^{j\omega})
\]

It can be readily shown that
\[
m[n] = (a)^n u[n] \Rightarrow M(e^{j\omega}) = \frac{1}{1 - ae^{-j\omega}}, \quad a < 1
\]

Therefore,
\[
H(e^{j\omega}) = \frac{1}{1 - \frac{1}{2}e^{-j\omega}} \quad \text{and} \quad X(e^{j\omega}) = \frac{1}{1 - \frac{1}{7}e^{-j\omega}}
\]
DT-FT Summary: a quiz

- Exploiting the convolution in time \rightarrow multiplication in frequency property gives:

$$Y(e^{j\omega}) = \left(\frac{1}{1 - \frac{1}{7}e^{-j\omega}}\right)\left(\frac{1}{1 - \frac{1}{2}e^{-j\omega}}\right)$$

- Using partial fraction expansion method of finding inverse Fourier transform gives:

$$Y(e^{j\omega}) = \frac{-2/5}{1 - \frac{1}{7}e^{-j\omega}} + \frac{7/5}{1 - \frac{1}{2}e^{-j\omega}}$$

- Therefore,
 - since a Fourier transform is unique, (i.e. no two same signals in time give the same function in frequency) and
 - since $m[n] = (a)^n u[n] \Rightarrow M(e^{j\omega}) = \frac{1}{1 - ae^{-j\omega}}$

 \Rightarrow It can be seen that a Fourier transform of the type $\frac{1}{1 - ae^{-j\omega}}$
 should correspond to a signal $a^n u[n]$.

- Therefore,
 - the inverse Fourier transform of $\frac{-2/5}{1 - \frac{1}{7}e^{-j\omega}}$ is $-\frac{2}{5}\left(\frac{1}{7}\right)^n u[n]$
 - the inverse transform of $\frac{7/5}{1 - \frac{1}{2}e^{-j\omega}}$ is $\frac{7}{5}\left(\frac{1}{2}\right)^n u[n]$

- Thus the complete output

$$y[n] = -\frac{2}{5}\left(\frac{1}{7}\right)^n u[n] + \frac{7}{5}\left(\frac{1}{2}\right)^n u[n]$$
Outline

- DT Fourier Transform
- Overview of Fourier methods
- DT Fourier Transform of Periodic Signals
- Properties of DT Fourier Transform
- Relations among Fourier Methods
- DTFT: Summary

Appendix:
- Transition from DT Fourier Series to DT Fourier Transform
Transition: DT Fourier Series to DT Fourier Transform

- DT Pulse Train Signal: \(x(n) = \text{rect}_{N_w}[n] \ast \text{comb}_{N_0}[n] \)

- This DT periodic rectangular-wave signal is analogous to the CT periodic rectangular-wave signal used to illustrate the transition from the CT Fourier Series to the CT Fourier Transform.
Transition: DT Fourier Series to DT Fourier Transform

- DTFS of DT Pulse Train
- As the period of the rectangular wave increases, the period of the DT Fourier Series increases and the amplitude of the DT Fourier Series decreases
Transition: DT Fourier Series to DT Fourier Transform

- Normalized DT Fourier Series of DT Pulse Train
- By multiplying the DT Fourier Series by its period and plotting versus instead of k, the amplitude of the DT Fourier Series stays the same as the period increases and the period of the normalized DT Fourier Series stays at one
Transition: DT Fourier Series to DT Fourier Transform

- The normalized DT Fourier Series approaches this limit as the DT period approaches infinity.