4

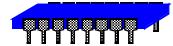
The Intrinsic Silicon

- Thermally generated electrons and holes
- Carrier concentration

$$p_i = n_i$$

ni=1.45X10¹⁰ cm-3 @ room temp

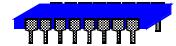
Generally:


 n_i = 3.1X10¹⁶ T^{3/2} e^{-1.21/2KT} cm⁻³

T= temperature in K^o (Degrees Kelvin)

K= Boltzmann Constant

 $= 8.63X10^{-5} \text{ eV/K}^{\circ}$



The Extrinsic Silicon

- Number of carriers is increased by introducing foreign atoms called impurities
- The process of introducing impurities is called doping
- Two Types of dopants: p type and n type p-type dopants: Boron (B), Gallium (G), Aluminum (Al) n-type dopants: Arsenics (Ar), Phosphorous (P), Antimony (Sb)

Doping Concentration

P-type:

```
concentration = p = N_A + p_{th}

N_A = concentration of p type do pant (atoms/cm³)

p_{th} = concentration of thermally generated holes (holes/cm³)

p \approx N_A (N_A >> p_{th})
```

n-type:

```
concentration = n = N_D + n_{th}

N_D = \text{concentration of n type do pant (atoms/cm}^3)

n_{th} = \text{concentration of thermally generated electrons (electrons/cm}^3)

n \approx N_D (N_D >> n_{th})
```


Degrees of Doping

Degree of concentration

```
• N^{-1} or P^{-1}: N_D or N_A < 10^{14} cm<sup>-3</sup>
```

• N⁻ or P⁻ :
$$10^{14} \text{ cm}^{-3} < N_D \text{ or } N_A < 10^{16} \text{ cm}^{-3} \text{ (lightly doped)}$$

• N or P :
$$10^{16}$$
 cm⁻³< N_D or N_A < 10^{18} cm⁻³ (moderately doj

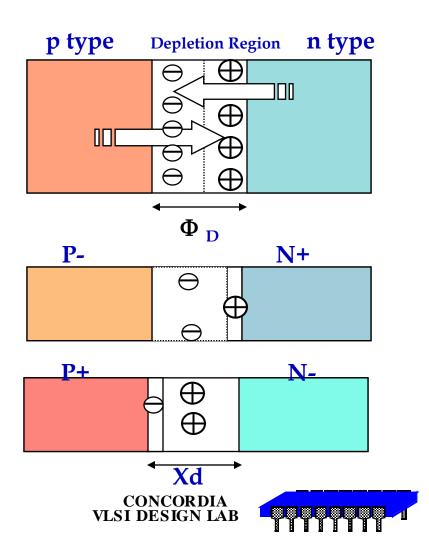
• N⁺ or P⁺ :
$$10^{18}$$
 cm⁻³D or N_A< 10^{20} cm⁻³ (heavily doped)

•
$$N^{++}$$
 or P^{++} : N_D or $N_A > 10^{20}$ cm⁻³

Review of the pn Junction

Potential across pn junction:

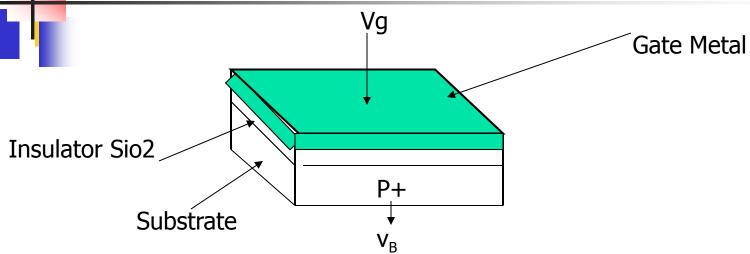
$$\Phi_{\rm D} = (KT/q) \ln(N_{\rm A}.N_{\rm D}/ni^2)$$


Depletion) region length:

$$Xd = K [[(1/N_A) + (1/N_D)] \Phi_D]^{0.5}$$

K constant a function of (ϵ_{si}, q)

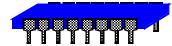
Junction Capacitance:


$$Cj = Cjo / (1+V/\Phi_D)^{0.5}$$

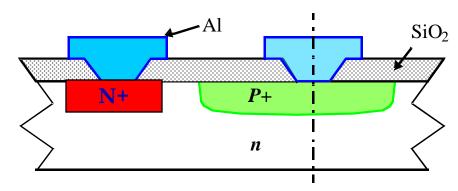
It is a function of the applied voltage and doping concentration

.

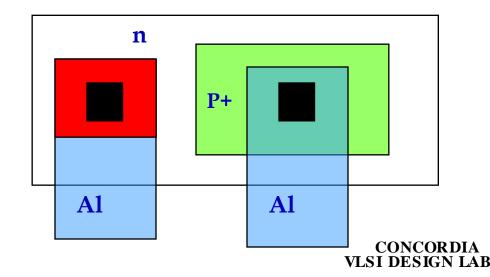
Two terminal MOS Structure

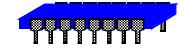

Depth of Depletion region:

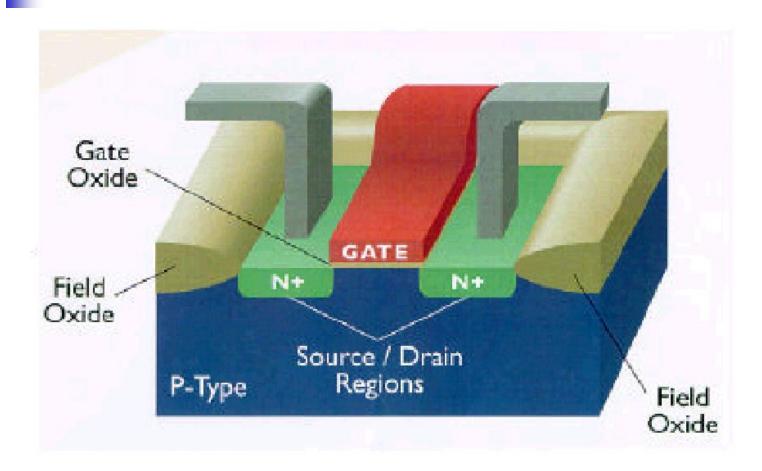
$$X_d = \{ 2 \epsilon_{Si} . | \Phi_s - \Phi_F | \}^{0.5}$$


The Charge Density:

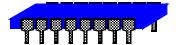
Q = - { 2 q N_A ε_{Si} .
$$|Φ_S - Φ_F|$$
 }^{0.5}



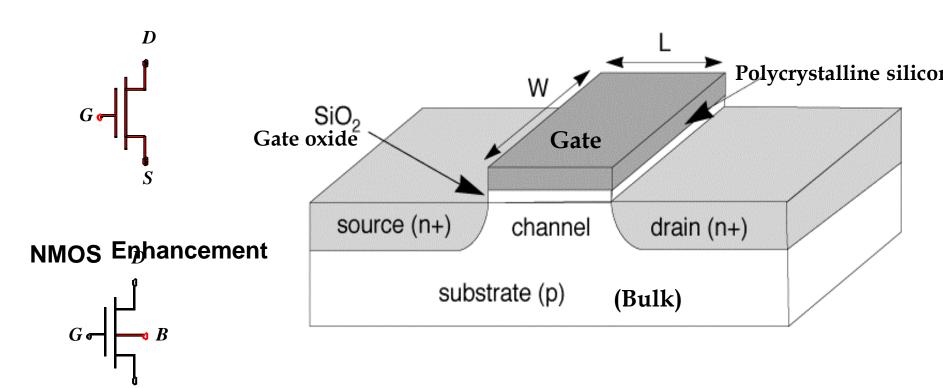


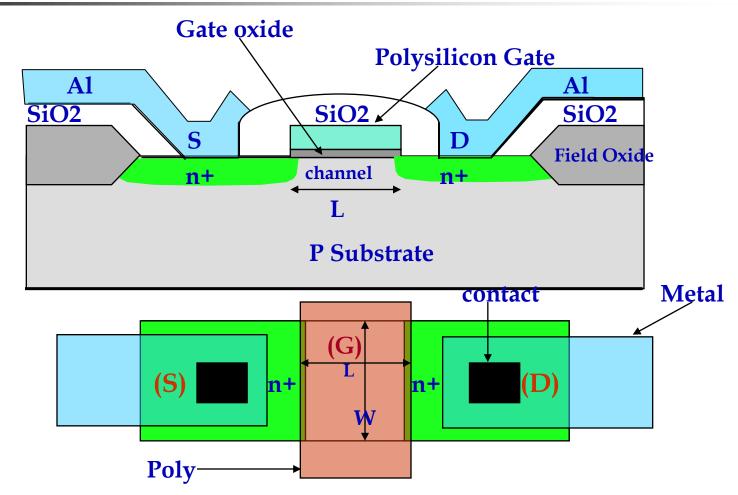


Cross-section of *pn*-junction in an IC process

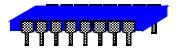


3D Perspective




Nmos Transistor

NMOS with Bulk Contact

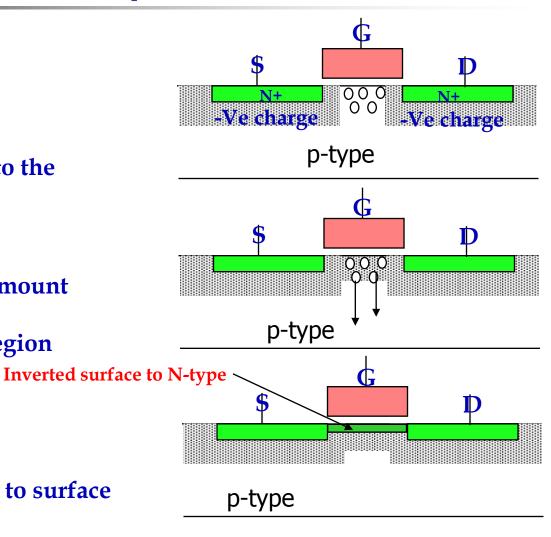

The Physical Structure (NMOS)

The process and sequence is designed by the fabrication house

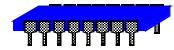
You design the MASKS

Regimes of Operation

1. Accumulation

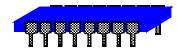

 V_{GS} is negative Majority carries attracted to the surface

2. Depletion


V_{GS} increased by a small amount Majority carriers depleted Space charge (depletion) region formed Inverted


3. Inversion

VGS increased further Minority carriers attracted to surface Inverted surface provides conduction



The Threshold Voltage

- The voltage applied between the gate and the source which causes the beginning of the channel surface strong inversion.
- ■Threshold voltage V_t is a function of:
 - V_{fb} = flatband voltage; depends on difference in work function between gate and substrate and on fixed surface charge.
 - $\Phi_{\rm s}$ = surface potential.
 - Gate oxide thickness.
 - Charge in the channel area.
 - Additional ion implantation.
- Typical values: 0.2V to 1.0V for NMOS and -0.2 to -1.0V for PMOS

Threshold Adjust

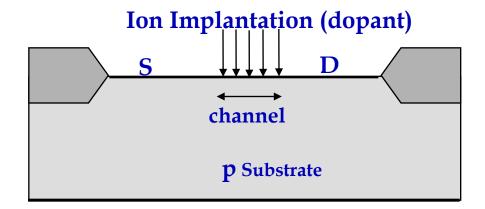
- Threshold voltage is a function of source to substrate voltage V_{SR} .
- Body factor γ is the coefficient for the V_{SB} dependence factor.

$$V_{\rm T} = V_{\rm TO} \pm \Upsilon(\sqrt{|-\phi_{\rm S} + V_{\rm SB}|} - \sqrt{|\phi_{\rm S}|})$$
, $\Phi_{\rm S} = 2\Phi_{\rm F}$
 $\Phi_{\rm S}$ is the surface potential ~ -0.6V for NMOS

 γ is the body factor ~ 0.6 to 1.2 $V^{1/2}$

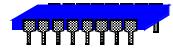
Fermi potential $\Phi_{\mathbf{F}}$ is is –ve in nMOS, +ve in pMOS

The body effect coefficient γ is +ve in nMOS, -ve in pMOS


The substrate bias voltage V_{SB} is +ve in nMOS, -ve in pMOS

Threshold Adjust

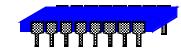
- In notice in a decrease in threshold voltage
- An effective mean to adjust the threshold is to change the doping concentration through an ion implantation dose.
- In MOS transistors implanted with p-type dopant results in an increase in the threshold voltage.



$$V_{TO}'=V_{TO}+(q.D_I/Cox)$$

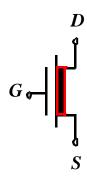
D_I = dose of dopant in the channel area(atoms/cm²)

C_{ox} = gate oxide capacitance per unit area

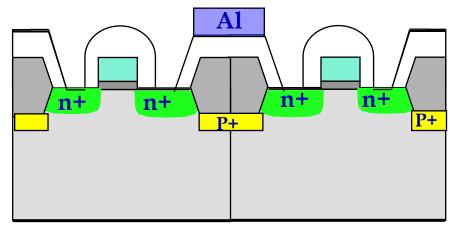

Example of Numerical Values for our process

$$C_{OX} = \frac{0.345}{200A^o} = 0.1725 * 10^{-2} pF / \mu m^2$$

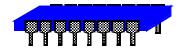
$$q = +1.6 * 10^{-19} Col / atom$$

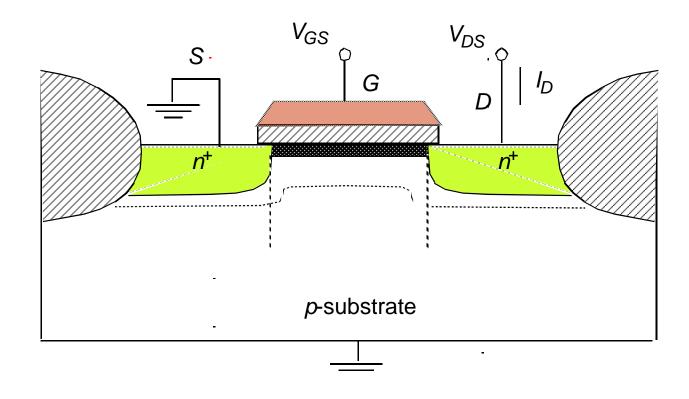

$$D_I = \frac{0.1725 * 10^{-2} F}{1.6 * 10^{-19} Col / atom} * \frac{10^{-12}}{10^{-8} cm^2}$$

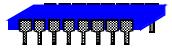
$$= 1.078 * 10^{12} atom / cm^2$$



Threshold Adjust

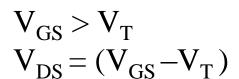

- Depletion NMOS transistor
 - Heavy ion implantation of n dopant in the channel area results in negative threshold voltage
 - Transistor conducts with zero gate to source voltage.
 - It is called Depletion mode transistor
- Field threshold adjust
 - Required to minimize interaction between transistors.
 - Heavy implantation called pguard/n-guard
 - VTF = 12 to 22V


NMOS Depletion

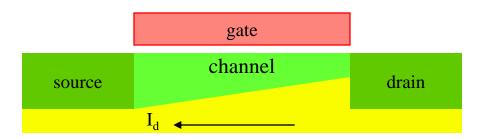


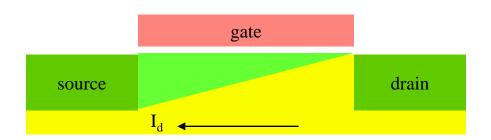
Current-Voltage Relations

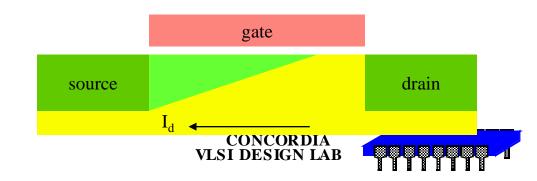
MOS transistor and its bias conditions



Gate Voltage and the Channel


$$V_{GS} > V_{T}$$


$$V_{DS} < (V_{GS} - V_{T})$$



$$V_{GS} > V_{T}$$

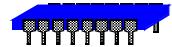
$$V_{DS} > (V_{GS} - V_{T})$$

Qualitative Operation of NMOS Transistor

1. Cut-Off Region

$$V_{GS} < V_{T}$$

- No Inversion or Weak Inversion
- I_{DS} = leakage current or sub-threshold current


2. Linear Region

$$V_{GS} > V_T$$
 and $V_{DS} < V_{GS} - V_T$

- Channel surface is inverted
- Output current depends on V_{GS} and V_{DS}
- The relationship between I_{DS} and V_{DS} is almost linear

$$I_{DS} = K' \cdot \frac{W}{L} \cdot \left[(V_{GS} - V_T) \cdot V_{DS} - \frac{1}{2} \cdot V^2_{DS} \right]$$

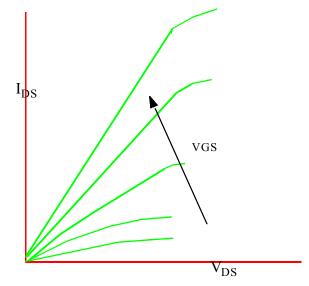
NMOS Operation-Linear

$$I_{DS} = K' \cdot \frac{W}{L} \cdot \left[(V_{GS} - V_T) \cdot V_{DS} - \frac{1}{2} \cdot V^2_{DS} \right]$$

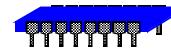
$$K' = \mu C_{ox}$$

 $K' = \mu C_{ox}$ Process Tranconductance uA/V² for 0.35u, K' (Kp)=196uA/V²

$$C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}}$$

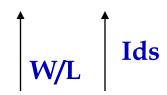

 $C_{OX} = \frac{\varepsilon_{OX}}{\varepsilon_{OX}}$ Gate oxide capacitance per unit area

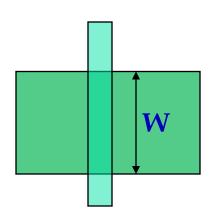
 $\varepsilon_{\rm ox} = 3.9 \text{ x } \varepsilon_{\rm o} = 3.45 \text{ x } 10^{-11} \text{ F/m}$

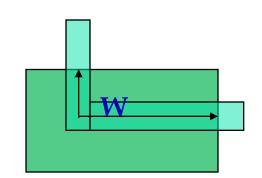

t_{ox} Oxide thickness for 0.35 u and tox=100A $^{\circ}$

Quick calculation of Cox: $Cox = 0.345 / tox (A^{\circ}) pf/um^2$

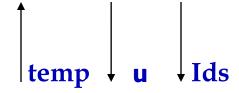
u = mobility of electrons 550 cm²/V-sec for 0.35 **u** process

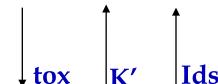


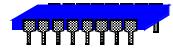




NMOS Operation-Linear






Effect of temperature

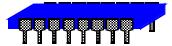
Impact of oxide thickness



Transistor in Saturation

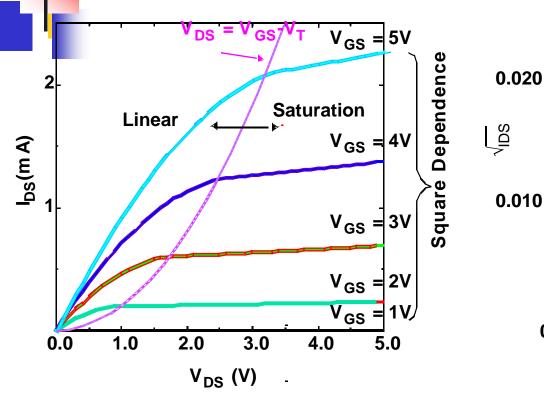
Electrons leaving channel are injected in depletion region and accelerated towards drain

Voltage across channel tends to remain constant


weak dependence on V_{DS}

$$I_{DS} = K' \cdot \frac{W}{2I} \cdot (V_{GS} - V_T)^2 \cdot (1 + \lambda \cdot V_{DS})$$

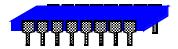
 λ = channel length modulation parameter typical values 0.01V⁻¹ to 0.1



 V_{GS} - V_{T}

 $V_{DS} > V_{GS} - V_{T}$

I-V Relation

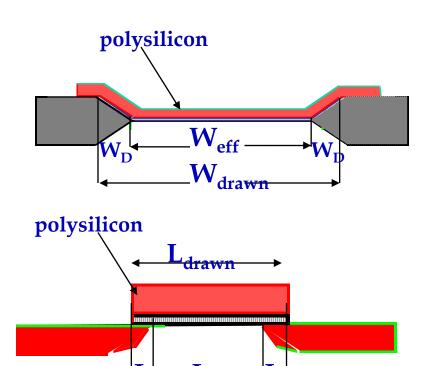

O.010 Subthreshold Current V_{GS} (V)

(a) I_{DS} as a function of V_{DS}

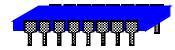
(b)
$$\sqrt{I_{DS}}$$
 as a function of V_{GS} (for $V_{DS} = 5V$)

NMOS Enhancement Transistor

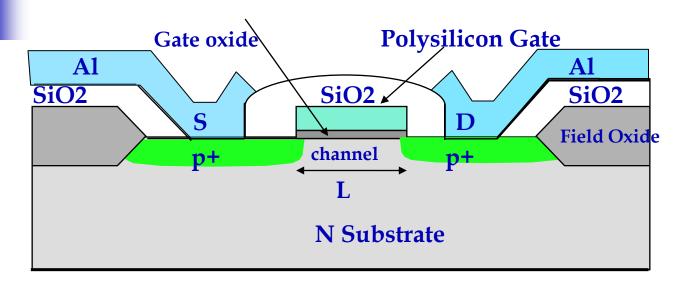
Variations in Width and Length

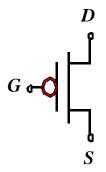

1. Width Oxide encroachment

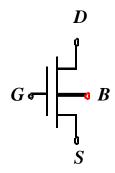
$$W_{eff} = W_{drawn} - 2W_{D}$$


2. Length Lateral diffusion

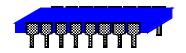
$$L_{D} = 0.7Xj$$

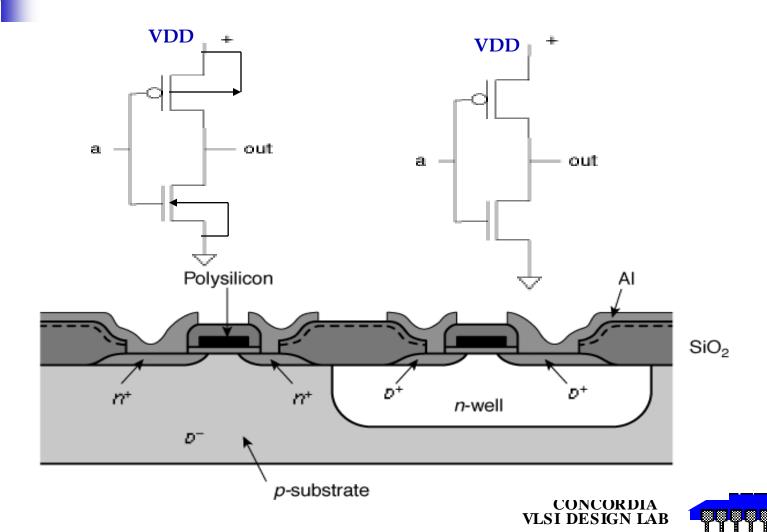

$$L_{eff} = L_{drawn} - 2L_{D}$$





The PMOS Transistor





PMOS Enhancement

PMOS with CONCORDIA Bulk Contacton LAB

The CMOS

Prentice Hall/Rabaey