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Reciprocity is often treated as a fundamental principle in elastodynamics: if the locations of the source
and receiver are interchanged, the recorded signal remains unchanged. Despite their intriguing power,
reciprocity relations hold only when certain conditions are satisfied in the elastic medium. For exam-
ple, breakdown of reciprocity may take place in nonlinear, active or rotating systems. Non-reciprocity
leads to asymmetric wave propagation for opposite directions, which can be used to develop devices
for rectification and control of elastic waves. Recent experiments have shown the feasibility of realiz-
ing such devices in mechanical metamaterials. In this light, we review the scenarios in which asym-
metric wave propagation is possible in the context of 1D phononic systems and mechanical/acoustic
metamaterials.
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Introduction

Reciprocity theorems provide relations between two elastodynamics states of a medium [1]. Most
famously, reciprocity describes the symmetry of wave propagation: if the locations of the source and
receiver are interchanged, the recorded signal remains unchanged. This property, known for well over
a century [2, 3], has been instrumental in developing certain acoustic and vibration measurement tech-
niques [4, 5, 6], such as measurement of transfer functions and microphone calibration.

Despite their incredible usefulness in acoustics and vibration, reciprocity relations hold only when
certain conditions are satisfied in the elastic medium. Most notably [1, 4, 7], a reciprocity theorem relies
on the linearity and time invariance of the medium (material properties that do not change over time).
Deviations from these conditions are encountered in nonlinear, active or rotating systems, and may lead to
asymmetric wave propagation for opposite directions. This nonreciprocal property of wave propagation
can be employed for developing biased elastic waveguides.

In the light of the recent theoretical and experimental developments in the mechanics community
regarding nonreciprocal wave propagation, we review the scenarios in which asymmetric wave propa-
gation is possible in the context of 1D periodic media. We also distinguish between asymmetric and
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nonreciprocal wave propagation, a distinction that is prone to being overlooked. There exist scenarios for
asymmetric wave propagation that do not involve breaking reciprocity; rather, the asymmetric transmis-
sion follows directly from reciprocity considerations in a linear, time-invariant medium. We will discuss
these scenarios, along with examples of nonreciprocal systems.

Nonreciprocity in 1D periodic media

Elastodynamic nonreciprocity is perhaps most familiarly associated with nonlinear media. Reci-
procity theorems do not generally hold for nonlinear systems, but not every nonlinear system is nonre-
ciprocal. It has been shown in 1D elastodynamics [8] that nonreciprocal propagation could depend on
the boundary conditions, the symmetries of the governing equations, and the choices of the locations
where nonreciprocity is being tested. In the context of periodic media (phononic crystals and mechanical
metamaterials with repeating unit cells and symmetric boundary conditions), breaking the symmetries of
the nonlinear medium, either in gradually changing the geometry of the unit cell or in the functional form
of nonlinearities, is often a good predictor of nonreciprocal response. For example, defective granular
chains were used for switching and rectification of signals based on the post-bifurcation behavior of the
medium [9]: the onset of bifurcation depends on the location of the input force. Nonreciprocal propa-
gation is also possible in granular chains operating in the pre-bifurcation regime; in this case, the tonal
frequency of the signal is mostly preserved [10]. Both bifurcation-based and frequency-preserving nonre-
ciprocity may also be realized in lattice materials with bilinear elasticity [11]. In this case, the asymmetry
is within the functional form of nonlinearity: different stiffness in compression and extension. Whether
nonreciprocity is based on weak nonlinearity or bifurcation, asymmetry is an indispensable ingredient:
if the system is symmetric, then the onset of instability and the post-bifurcation behavior of the medium
remain invariant upon exchanging the source and receiver.

Reciprocity theorems do not generally hold in rotating systems due to the existence of gyroscopic
forces, a property that has been understood since the nineteenth century [4, 3]. Gyroscopic forces play a
significant role in realization of a class of (two-dimensional) topological metamaterials [12]. However,
gyroscopic forces are of limited practical relevance in the context of one-dimensional mechanical systems
and will not be emphasized in this review.

Another well known scenario where reciprocity does not hold is for acoustic waves in the presence
of flow (e.g. sound waves in certain windy environments [2, 3]). This case is not emphasized here either.

Mechanical systems with time-dependent properties are another class of media in which reciprocity
does not hold. Because of the power required for maintaining the modulations, such mechanical systems
are often active media. In particular, periodic composites in which the elastic/inertial properties change
in time and space in a wave-like fashion have been known, theoretically, to violate reciprocity since
the twentieth century [13]. However, it was only recently [14] that this phenomenon was demonstrated
experimentally. In mechanical systems subject to spatiotemporal modulations, there are frequency ranges
in which unidirectional wave propagation is possible: waves can only propagate freely in one direction.
Nonreciprocity in modulated phononic crystals and metamaterials occurs in the linear operating range.

Although reciprocity is a very familiar theorem in elastodynamics, it can sometimes be misinterpreted
or applied in a setting that is not appropriate. For example, some misconceptions regarding acoustic and
thermal diodes were addressed recently [15]. The choice of the input(s) and output(s) is another important
consideration. If one’s goal is simply to extract different outputs by interchanging the locations of the
source and receiver, there is no need to break reciprocity. We discuss an example in which asymmetric
wave transmission takes place in a linear time-invariant system in compliance with reciprocity. Our
main goal is to highlight the importance of choosing the correct inputs and outputs when checking for
reciprocity.
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Reciprocal asymmetric wave propagation

Consider the array of N coupled oscillators shown in Fig. 1. The equations governing the motion of
this mechanical system may be written in matrix form as

[M ]{ẍ}+ [C]{ẋ}+ [K]{x} = {f(t)} (1)

where [M ] is a diagonal mass matrix, [C] is a proportional viscous damping matrix that is included to
avoid infinities at resonance frequencies, [K] is a tridiagonal stiffness matrix, {x} = [x1(t), ..., xN(t)]

T is
the state vector of displacements, {f(t)} is the vector of external forces applied at each degree of freedom,
and an overdot represents time derivative. Because the governing equations are linear, we can focus on
the steady-state response of the system to harmonic excitation without loss of generality. Assuming a
time dependence of exp(iωt) for both the input and output, we can rewrite Eq. (1) as

[D]{X} = {F} ⇒ {X} = [H]{F} , [H] ≡ [D]−1 ≡
(
−ω2[M ] + iω[C] + [K]

)−1 (2)

where {X} = [X1, ..., XN ]
T and {F} = [F1, ..., FN ]

T are vectors of complex-valued displacement
and force amplitudes. Without loss of generality, we assume {F} to be real-valued throughout this
work. [D] and [H] are known, respectively, as the dynamic stiffness and receptance matrices in structural
dynamics [7]. Note that all the components of {X} and {F} may be functions of the forcing frequency;
e.g. Xn = Xn(ω) for 1 ≤ n ≤ N . For brevity, we will not explicitly write the dependence on ω hereafter.

We consider two configurations for the input (source) and output (receiver) locations: (i) forward
configuration: where the input is applied to the left boundary and the output is recorded at the right
boundary; (ii) backward configuration: the same source is applied to the right boundary and the output
is recorded at the left boundary. The recorded output is the steady-state displacement amplitude for both
configurations. The input is either a prescribed force amplitude or a prescribed displacement amplitude.
These two cases are treated separately.

Force input

We first choose a prescribed force amplitude as the input. For the forward configuration, we have
{F} = {P F , 0, ..., 0}T where P F is the prescribed input. Thus, using the components of the receptance
matrix [H], we have XF

n = Hn1P
F for 1 ≤ n ≤ N . For the backward configuration, we have {F} =

[0, ..., 0, PB]T where PB is the prescribed input. In this case, we have XB
n = HnNP

B for 1 ≤ n ≤ N .
Denoting the output of the forward and backward configurations by UF and UB, we have

UF = XF
N = HN1P

F

UB = XB
1 = H1NP

B

}
H1N=HN1======⇒ UF

P F
=
UB

PB
(3)

where we have used the symmetry property of the receptance matrix [7]; i.e. [H]T = [H]. If the input
amplitude is the same for both configurations, P F = PB, then Eq. (3) reduces to UF = UB, which is

Figure 1: A one-dimensioal array of N coupled oscillators.
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the most familiar statement of reciprocity: interchanging the locations of the input and output leaves the
recorded output unchanged.

We emphasize that the appropriate output in this context is a displacement amplitude, not a ratio of
displacement amplitudes. To clarify this point, we introduce the displacement ratio parameter, r. For
the forward configuration, the input is located at n = 1 (left end) and rF = XF

N/X
F
1 . For the backward

configuration, the input is located at n = N and rB = XB
1 /X

B
N . Assuming P F = PB for simplicity, we

have
rF = HN1/H11

rB = H1N/HNN

}
H1N=HN1======⇒
H11 6=HNN

rF 6= rB (4)

Thus, if a displacement ratio is monitored as the output, then the forward and backward configurations do
not have the same output. This might appear in contrast with reciprocity in the first glance (same output
expected for the same input), but in fact there is no contrast. The reciprocity theorem in this context [7]
requires the symmetry of the receptance matrix [H] and has no bearing on the relation between H11 and
HNN .

Displacement input

In the second scenario, we choose a prescribed displacement as the input. For the forward configura-
tion, we apply the displacement input amplitude Y F

in = Y F
in (ω) to the first unit (XF

1 = Y F
in ) and monitor

the output at the other end (UF = XN ). Because the governing equations are linear and there is only
one input and one output, without loss of generality, we can replace the prescribed input displacement at
n = 1 with an unknown input force at n = 1, denoted by QF for the forward configuration. Considering
that XF

n = Hn1Q
F , we can write Y F

in = XF
1 = H11Q

F to obtain QF = Y F
in/H11, which is the exter-

nal force that ensures the prescribed displacement amplitude Y F
in at n = 1. Similarly, for the backward

configuration, we apply the prescribed displacement input Y B
in = Y B

in (ω) to the last unit (XB
N = Y B

in )
and monitor the output at the first unit, UB = XB

1 . Following the same reasoning as in the forward
configuration, we can write XB

N = Y B
in = HNNQ

B and obtain QB = Y B
in /HNN . Here, QB is the external

force that is applied to the N -th uint to ensure the prescribed displacement amplitude Y B
in at n = N .

Now we are equipped to compare the outputs of the forward and backward configurations for this
scenario:

UF = XF
N = HN1Q

F =
HN1

H11

Y F
in

UB = XB
1 = H1NQ

B =
H1N

HNN

Y B
in

 H1N=HN1======⇒
H11 6=HNN

UF

Y F
in

6= UB

Y B
in

(5)

In contrast to the force-input scenario of Section 3.1, we can see that prescribing the same displacement
as the input (Y F

in = Y B
in ) does not result in the same output – compare Eq. (5) to Eq. (3).

There are of course situations in which we can force the outputs to be equal in this scenario. This
is done by arranging the mass and stiffness matrices such that H11 = HNN . Most notably, this can be
achieved by having a spatially symmetric system; e.g. for the system shown in Fig. 1 this condition can
be written as kn = kN+1−n and mn = mN+1−n for 1 ≤ n ≤ N . Of course, this result is trivial for a
spatially symmetric system because in this case the forward and backward configurations are identical.

Numerical example

To illustrate the results in Eq. (3) and Eq. (5), we use the mechanical system in Fig. 1 with N = 13
units. We use the following non-dimensional parameters: mn = 1 for all n and kn = 1 + δn for
1 ≤ n ≤ N + 1 with δn increasing linearly from −0.33 to 0.67. We consider viscous damping forces
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(a) (b)

Figure 2: The response of the mechanical system to (a) unit force input, Eq. (3), (b) unit displacement in-
put, Eq. (5). Reciprocity holds in both cases. Displacement input leads to asymmetric wave propagation.

to act between adjacent units with uniform coefficients 0.005 – a stiffness-proportional damping matrix.
The steady-state response is calculated based on Eq. (2). We note that a linear viscous damping, even if
it is non-proportional, does not alter the outcome.

For the force-input scenario (Section 3.1), Fig. 2(a) shows the output for the forward and backward
configuration. As expected from Eq. (3), the propagation is symmetric and the two responses are indis-
tinguishable. Fig. 2(b) shows the outputs for the case of displacement input (Section 3.2). We can see
that the outputs for the forward and backward configurations are not generally the same, as predicted by
Eq. (5). We conclude that choosing a prescribed displacement input results in asymmetric propagation of
waves.

Concluding Remarks

It is important and helpful to distinguish between asymmetric and nonreciprocal wave propagation
because they are not always interchangeable. A main focus in systems with asymmetric wave propagation
is to show that if the locations of the input and output are interchanged, the recorded output does not
remain unchanged. Nonreciprocity can lead to asymmetric propagation, but the inverse is not necessarily
true. We provided an example in which asymmetric propagation occurs in a one-dimensional elastic
medium in compliance with reciprocity. See [16] for an example in a two-dimensional elastic medium
involving surface waves.

Reciprocity theorems in linear elastodynamics are powerful invariance relations that hold for sclero-
nomic, holonomic systems [7]. These restrictions exclude, for example, systems with moving boundaries,
time-dependent properties or rotating parts. Reciprocity in this context can be reduced in the frequency
domain to the symmetry of the receptance matrix.

Care should also be taken in the choice of inputs and outputs when checking for reciprocity. As
demonstrated, using a prescribed displacement as the input or using amplitude ratios as the output are
both inappropriate. A good check is that the product of the variables to be interchanged under reciprocity
yields the power or energy [17].

The matrix formulation in Section 3 is general and applies to any elastodynamic problem that can
be described by Eq. (1), for example by discretizing the governing equations using the finite element
method. The presence of extra features, such as internal resonances or non-proportional damping, does
not alter the outcome.

ICSV26, Montreal, 7-11 July 2019 5



ICSV26, Montreal, 7-11 July 2019

Acknowledgement

We acknowledge the support from the National Science Foundation under EFRI Grant No. 1741565. We
appreciate helpful discussions with Jinwoong Cha and Antonio Palermo.

REFERENCES

1. J.D. Achenbach, “Reciprocity and related topics in elastodynamics”, Applied Mechanics Reviews, 59, 13-32
(2006).

2. L. Rayleigh, “On the application of the principle of reciprocity to acoustics”, Proceedings of the Royal Society
of London, 25, 118-122 (1876).

3. H. Lamb, “On reciprocal theorems in dynamics”, Proceedings of the London Mathematical Society, 1 (1),
144-151 (1888).

4. R.K. Cook, “Lord Rayleigh and reciprocity in physics”, Journal of the Acoustical Society of America, 99 (1),
24-29 (1996).

5. T. ten Wolde, “Reciprocity measurements in acoustical and mechano-acoustical systems. Review of theory and
applications”, Acta Acustica united with Acustica, 96, 1-13 (2010).

6. F.J. Fahy, “Some applications of the reciprocity principle in experimental vibroacoustics”, Acoustical Physics,
49 (2), 217-229 (2003).

7. D.E. Newland, Mechanical Vibration Analysis and Computation (Wiley, New York, 1989).

8. A. Blanchard, T.P. Sapsis & A.F. Vakakis, “Non-reciprocity in nonlinear elastodynamics”, Journal of Sound
and Vibration, 412, 326-35 (2018).

9. N. Boechler, G. Theocharis & C. Daraio, “Bifurcation-based acoustic switching and rectification”, Nature
Materials, 10 (9), 665-668 (2011).

10. J.G., Cui, T. Yang & Chen LQ, “Frequency-preserved non-reciprocal acoustic propagation in a granular chain”,
Applied Physics Letters, 112 (18), 181904 (2018).

11. B. Yousefzadeh, B.J. Ramirez & C. Daraio, “Non-reciprocal dynamic response of a bilinear lattice”, March
Meeting of the American Physical Society, Boston, MA (2019).

12. L.M. Nash, D. Kleckner, A. Read, V. Vitelli, A.M. Turner & W.T.M. Irvine, “Topological mechanics of gyro-
scopic metamaterials” Proceedings of the National Academy of Sciences, 112 (47), 14495-14500 (2015).

13. K.A. Lurie, “Effective properties of smart elastic laminates and the screening phenomenon”, International
Journal of Solids and Structures, 34, 1633-1643 (1997).

14. Y. Wang, B. Yousefzadeh, H. Chen, H. Nassar, G. Huang & C. Daraio, “Observation of non-reciprocal wave
propagation in a dynamic phononic lattice”, Physical Review Letters, 121 (19), 194301 (2018).

15. AA. Maznev, A.G. Every & O.B. Wright, “Reciprocity in refletion and transmission: What is a ‘phonon
diode’?”, Wave Motion, 50, 776-784 (2013).

16. A. Colombi, D. Colquitt, P. Roux, S. Guenneau & R.V. Craster, “A seismic metamaterial: The resonant
metawedge”, Scientific Reports, 6, 27717 (2016).

17. L. Cremer, M. Heckl & B.A.T. Petersson, Structure Borne Sound (Springer, Germany, 2005).

6 ICSV26, Montreal, 7-11 July 2019


	Introduction
	Nonreciprocity in 1D periodic media
	Reciprocal asymmetric wave propagation
	Force input
	Displacement input
	Numerical example

	Concluding Remarks

