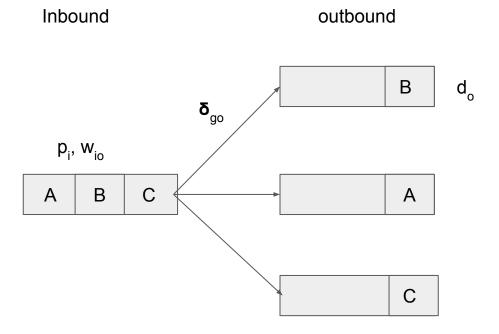

Cross-dock Scheduling with Fixed Outbound Departures Known Order of Shipments and Multiple trips

T. Vu, W. Nassief and B. Jaumard

Agenda

- Cross-dock Scheduling
- Motivation
- Models
- Results

Cross-dock Scheduling



 δ_{aa} : transshipment time from inbound gates to <u>prescheduled</u> outgoing trucks

Objective:

Parameters

- p_i: processing time of incoming trucks i
- w_{io}: number of pallets for a given shipment from incoming truck *i* to outgoing truck *o*
- **ō**_{go}: time to transfer shipment from gate
 g to outgoing truck **o**
- d_o: due date of outgoing truck o

Network-based model and Time indexed model

Network-based model	Time indexed model
$\mathbf{x}^{\mathbf{g}}_{ij}$ = 1 if incoming truck \mathbf{j} is processed directly after incoming truck \mathbf{i} at inbound door \mathbf{g} ; 0, otherwise	$\mathbf{x}^{t}_{ig} = 1$ if incoming truck i is processed on inbound door g at time t ; 0, otherwise
	Processing time p _i have to be integer

	t = 1	t = 2	t = 3	t = 4		L
--	-------	-------	-------	-------	--	---

References

- N. Boysen, D. Briskorn, and M. Tsch öke. Truck scheduling in cross-docking terminals with fixed outbound departures.OR Spectrum, 35(2):479–504, 2013.
- Y. Unlu and S. Mason. Evaluation of mixed integer programming formulations for non-preemptive parallel machine scheduling problems. Computers and Industrial Engineering, 58(4):785–800, 2010.
- K. Stephan and N. Boysen. Cross-docking. Journal of Management Control, 22(1):129, 2011.
- N. Boysen and M. Fliedner. Cross dock scheduling: Classification, literature review and research agenda. Omega, 38(6):413–422, 2010.

Motivation - Boysen et al. [2013] - Network-based model

[TSFD]	minimize	$\sum_{i \in \text{TR}^{\text{IN}}} \sum_{o \in \text{TR}^{\text{OUT}}} w_{io} U_{io}$		(1)
	subject to	$\sum_{g \in G^{\text{IN}}} \sum_{i' \in \text{TR}^{\text{IN}} \cup \{0\} i \neq i'} x_{i'i}^g = 1$	$i \in \mathrm{TR}^{\scriptscriptstyle \mathrm{IN}}$	(2)
		$\sum_{i \in \mathrm{TR^{IN}}} x_{0,i}^g \le 1$	$g \in G^{ ext{IN}}$	(3)
		$\sum_{\substack{i' \in \mathrm{TR^{IN}} \cup \{0\} \\ i \neq i'}} x_{i'i}^g = \sum_{\substack{i' \in \mathrm{TR^{IN}} \cup \{\mathrm{LAST}\}\\ i \neq i'}} x_{i'i}^g = \sum_{\substack{i' \in \mathrm{TR^{IN}} \cup \{\mathrm{LAST}\}\\ i \neq i'}} x_{i'i}^g = \sum_{\substack{i' \in \mathrm{TR^{IN}} \cup \{\mathrm{LAST}\}\\ i \neq i'}} x_{i'i}^g = \sum_{\substack{i' \in \mathrm{TR^{IN}} \cup \{\mathrm{LAST}\}\\ i \neq i'}} x_{i'i}^g = \sum_{\substack{i' \in \mathrm{TR^{IN}} \cup \{\mathrm{LAST}\}\\ i \neq i'}} x_{i'i}^g = \sum_{\substack{i' \in \mathrm{TR^{IN}} \cup \{\mathrm{LAST}\}\\ i \neq i'}} x_{i'i}^g = \sum_{\substack{i' \in \mathrm{TR^{IN}} \cup \{\mathrm{LAST}\}\\ i \neq i'}} x_{i'i}^g = \sum_{\substack{i' \in \mathrm{TR^{IN}} \cup \{\mathrm{LAST}\}\\ i \neq i'}} x_{i'i}^g = \sum_{\substack{i' \in \mathrm{TR^{IN}} \cup \{\mathrm{LAST}\}\\ i \neq i'}} x_{i'i}^g = \sum_{\substack{i' \in \mathrm{TR^{IN}} \cup \{\mathrm{LAST}\}\\ i \neq i'}} x_{i'i}^g = \sum_{\substack{i' \in \mathrm{TR^{IN}} \cup \{\mathrm{LAST}\}\\ i \neq i'}} x_{i'i}^g = \sum_{\substack{i' \in \mathrm{TR^{IN}} \cup \{\mathrm{LAST}\}\\ i \neq i'}} x_{i'i}^g = \sum_{\substack{i' \in \mathrm{TR^{IN}}\\ i \neq i'}} x_{i'i}^g = \sum$	$x_{ii'}^g, \qquad i \in \mathrm{TR^{\mathrm{IN}}}, g \in G^{\mathrm{IN}}$	(4)
		$C_i \ge C_{i'} + p_i - M \cdot \left(1 - x_{i'i}^g\right)$	$i \in \mathrm{TR^{IN}}, i' \in \mathrm{TR^{IN}} \cup \{0\}; g \in G^{\mathrm{IN}}$	(5)
		$U_{io}.M \ge C_i + \sum_{g \in G^{\text{IN}}} \sum_{i' \in \text{TR}^{\text{IN}} \cup \{0\}}$ $i \ne i'$	$\delta_{go}.x_{i'i}^g - d_o i \in TR^{IN}, o \in TR^{OUT}$	(6)
		$C_0 = 0$		(7)
		$x^g_{ii'} \in \{0,1\}$	$i,j \in I \cup \{0, ext{LAST}\}, g \in G^{ ext{IN}}$	(8)
		$C_i \ge 0$	$i \in \mathrm{TR}^{\scriptscriptstyle{\mathrm{IN}}}$	(9)
		$U_{io} \in \{0, 1\}$	$i \in \mathrm{TR^{IN}}, o \in \mathrm{TR^{OUT}}$	(10)

New Time-indexed model

Pre-processing

Pre-processing

If we know the scheduling of a incoming truck, we can calculate the number of tardy shipments from this truck!

Extension 1 - Number of trips

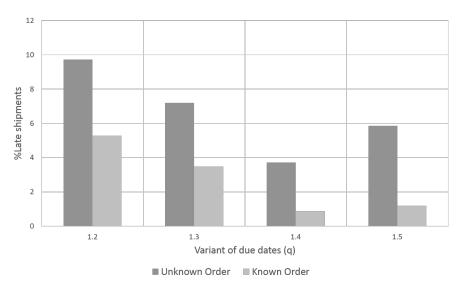
We assume that if a shipment from an incoming truck to another outgoing truck is late then all the pallets in this shipment will be late ⇒ In practice, we usually have to transfer these pallets many time!

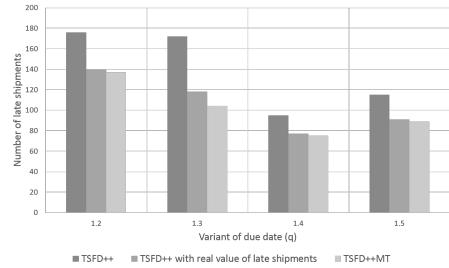
Define J_{io} be the number of trips need to transfer all pallets w_{io}

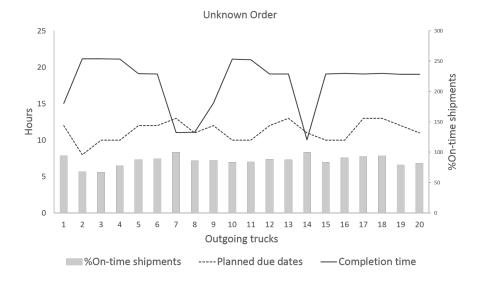
Extension 1 - Number of trips

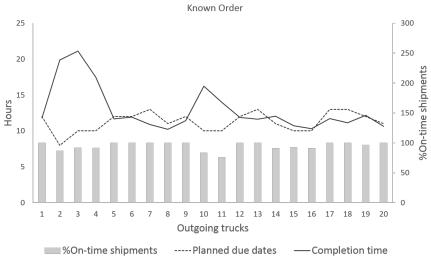
Extension 2 - Known order of shipments

We assume that all shipments in an incoming truck have the same unloading time $(p_i) \Rightarrow$ If we take into account the order of shipments in each truck, we can schedule more precisely




The interval time for time indexed models is 1 hour


Set R17				TSFD ⁺⁺					į.	$TSFD^+$					TSFD				
Trucks	G^{IN}	$G^{\scriptscriptstyle ext{OUT}}$	q	%LP	%gap	$\%\mathrm{UB}$	B&B	Time	%LP	%gap	$\%\mathrm{UB}$	B&B	Time	%LP	%gap	$\%\mathrm{UB}$	B&B	Time	
	10	10	1.2	1.08	15		42	23.10	98.81	74.68	51.92	835	1h	100	100	483.65	29,346	1h	
	10	10	1.3	0.93			3	14.12	97.94	45.21	1.39	24,787	1h	100	100	316.67	86,656	1h	
	10	10	1.4	1.60	3		19	20.46	97.62	29.82	7.55	19,422	1h	100	100	566.04	61,796	1h	
00.00	10	10	1.5	0.0			0	6.72	96.73	0.0	0.0	0	$428 \mathrm{\ s}$	100	100	815.00	31,813	1h	
	15	15	1.2	0.30	×		0	14.88	97.92	73.33	33.93	186	1h	100	100	589.29	9,744	1h	
	15	15	1.3	0.49	1.5		0	20.58	96.73	55.56	3.45	4,939	1h	100	100	475.86	10,580	1h	
80x80	15	15	1.4	0.0	0.0	0.0	0	18.03	96.60	48.72	8.33	3,968	1h	100	100	897.22	7,805	1h	
	15	15	1.5	0.0			0	10.06	94.95	14.89	6.82	5,378	1h	100	100	1509.09	24,124	1h	
	20	20	1.2	0.20	(*)		0	21.05	98.51	78.46	30.16	4	1h	100	100	364.02	3,287	1h	
	20	20	1.3	0.72			0	22.14	97.88	73.91	31.97	5	1h	100	100	356.56	25	1h	
	20	20	1.4	0.0			0	16.95	96.55	56.99	43.08	1,451	1h	100	100	1432.31	5,552	1h	
	20	20	1.5	2.34			69	54.34	95.75	44.74	18.75	2,018	1h	100	100	729.69	3,779	1h	


-	Set 1	R13			$TSFD^+$	+MT		$TSFD^{++}$				
Truck	$G^{\scriptscriptstyle ext{IN}}$	$G^{\scriptscriptstyle ext{OUT}}$	\mathbf{q}	%tardy	$\% \mathrm{Imp}$	$\% \mathrm{Diff}$	Time	%tardy	$\% \mathrm{Imp}$	%Diff	Time	
	10	10 1.		1.97	57.69	98	8.08	4.66			23.10	
	10	10	1.3	1.12	65.28	100	5.34	3.22			14.12	
	10	10 1.		0.85	64.15	96	5.24	2.37			20.46	
	10	10	1.5	0.85	52.50	100	3.86	1.79			6.72	
	15	15	1.2	2.82	43.75	100	38.68	5.01			14.88	
80x80	15	15	1.3	1.84	52.87	97	7.55	3.89			20.58	
00X00	15	15	1.4	1.21	62.50	98	9.46	3.22	0.0	0.0	18.03	
	15	15	1.5	0.85	56.82	98	5.21	1.97			10.06	
	20	20	1.2	4.34	48.68	100	28.49	8.46			21.05	
	20	20	1.3	2.37	56.56	100	76.15	5.46			22.14	
	20	20	1.4	0.94	67.69	100	15.17	2.91			16.95	
	20	20	1.5	0.94	67.19	98	8.81	2.86			54.34	

1.5	~ -			I	=~==	1 2 5 5 5 6		T C T D L L				
	Set 1	R13			$TSFD^+$	^{+}MTO		$TSFD^{++}$				
Truck	$G^{\scriptscriptstyle ext{IN}}$	$G^{\scriptscriptstyle ext{OUT}}$	\mathbf{q}	%tardy	$\% \mathrm{Imp}$	%Diff	Time	%tardy	$\% \mathrm{Imp}$	%Diff	Time	
	10) 10 1		0.85	81.73	98	102.41	4.66			23.10	
	10	10	1.3	0.58	81.94	100	9.89	3.22		•	14.12	
	10	10	1.4	0.49	79.25	97	16.32	2.37			20.46	
	10	10	1.5	0.31	82.50	98	4.06	1.79			6.72	
	15	15	1.2	1.30	74.11	98	6.69	5.01			14.88	
80x80	15	15	1.3	0.67	82.76	100	14.55	3.89			20.58	
OUXOU	15	15	1.4	0.58	81.94	97	7.01	3.22	0.0	0.0	18.03	
	15	15	1.5	0.58	70.45	100	4.90	1.97			10.06	
	20	20	1.2	1.48	82.54	100	14.97	8.46			21.05	
	20	20	1.3	0.67	87.70	100	7.15	5.46			22.14	
	20	20	1.4	0.58	80.00	98	8.86	2.91			16.95	
	20	20	1.5	0.67	76.56	98	6.55	2.86			54.34	

The End