
Graphs

The term graph is used with several different mean-

ings.

It often means a graphical representation of func-

tions, e.g. a statistical evaluation of data.

f(x)

x

y

We will study a different type of graphs:
a graphical representation of large structures.

1

ATLANTIC
OCEAN

PACIFIC OCEAN

OCÉAN PACIFIQUE

OCÉAN ATLA
NTIQUE

Baie de Baffin
Baffin Bay

Baie d'Hudson
Hudson Bay

Détroit de Davis

Davis Strait

Mer du Labrador

Labrador Sea

ARCTIC OCEANOCÉAN ARCTIQUE

Golfe d'Alaska

Gulf of Alaska

L. Winnipeg

L. Athabasca

Reindeer
Lake

Great
Slave
Lake

Grand lac
de l’Esclave

Great
Bear Lake

Grand lac
de l'Ours

L.
M

ic
hi

ga
n

L. Superior L. Supérieur

L. Ontario

L.
Erie

L.
Érié

L. Huron

Missouri

Yukon

M
ackenzie

Nelson

Pe
ac

e

Sk
ee

na

Fr
as

er

Churchill

Thelon

Albany

Ottawa

Saguenay

Caniapiscau

Re
d

Bow

N. Saskatc
hewan

Pa
ix

Saskatchewan

Mississippi

St
. L

aw
re

nc
e

Sa
in

t-L
au

rent

H
udson

Columbia

Co
lum

bia

Fairbanks

Sioux
Lookout

Spokane

Quesnel

New York

Boston

Chicago

Milwaukee

Abbotsford

Minneapolis

Seattle

Portland

Hartford

DetroitGrand
Rapids

ClevelandSalt Lake City

San
Francisco Philadelphia

Philadelphie

Moosonee

Chisasibi

Schefferville

Hebron

NainKuujjuaq

Winisk

York Factory

Gillam

Tadoule Lake

Shamattawa

Resolute

Arctic Bay

Grise Fiord

La Loche

Holman

Fort Simpson

Kugluktuk

Deline
Déline

Juneau

Dauphin

Banff

Jasper

BrandonEstevan

Sandy Lake

Nipigon

Geraldton

Pangnirtung

Nuuk

Ammassalik

Qaanaaq

Inukjuak

qausratreqeQ

Sisimiut

Qaqortoq

Pond Inlet

Cartw
rig

ht

St. A
nthony

Sachs Harbour

Anchorage

Watson Lake
Fort Nelson

Fort McPherson

Barrow

Williams Lake Lloydminster

FortSt. John

Dawson Creek

Comox

Nanaimo

reviRllebpmaC

St-Léonard

Sydney
Îles-d

e-la
-M

adeleine
Gaspé

Bathurst

Deer Lake/

Corner Brook

Mont-Joli/

Rimouski

Baie-Comeau

Wabush

Saguenay/

Bagotville

London
Sarnia

Windsor

Sudbury

Val-d'OrTimmins

North Bay

Rouyn-Noranda

Sault Ste. Marie

Sault-Sainte-Marie

Sept-Îles

Gander

Goose Bay

htuomraY

Kingston

Prince Rupert
Sandspit

Terrace Smithers

PrinceGeorge

Penticton
Castlegar

FortMcMurray

Fort Smith

GrandePrairie

Peace
River

Hay River

High Level

Rainbow Lake

Lethbridge
Cranbrook

Medicine Hat

Kamloops

Dryden

The Pas

Flin Flon

Thompson

Lynn Lake

Brochet
Lac Brochet

Leaf Rapids

Pukatawagan

Churchill

Arviat

Whale Cove

Rankin Inlet

Baker Lake
Lac Baker

Chesterfield Inlet

Repulse Bay

Iqaluit

Coral Harbour

Yellowknife

Norman Wells

Inuvik Cambridge Bay

Halifa
x

Moncton

Montréal

Toronto

Québec

Ottawa

Thunder Bay

Edmonton

Vancouver

Calgary

Winnipeg

Regina

Saskatoon
St.

Jo
hn

's

Charlo
tte

town

nhoJtniaS
naeJ-tniaS

notcirederF

Whitehorse

Victoria

Kelowna

NORTH DAKOTA
DAKOTA DU NORD

SOUTH DAKOTA
DAKOTA DU SUD

NEBRASKA

WYOMING

MONTANA

IDAHO

UTAH

IOWA

MINNESOTA

WISCONSIN

ILLINOIS

MICHIGAN

MICHIGAN

PENNSYLVANIA

PENNSYLVANIE

NEW YORK

MAINE

N.H.VT.

MASS.

N.J.

CONN. R.I.

WASHINGTON

OREGON

NEVADA

CALIFORNIA
CALIFORNIE

Q U É B E C

P.E.I.

Î.-P
.-É.

O N T A R I O

M A N I T O B A
S A S K A T C H E W A N

A L B E R T A

NEWFOUNDLAND AND LABRADOR

TERRE-NEUVE ET LABRADOR

N O R T H W E S T T E R R I T O R I E S

N U N A V U T

T E R R I T O I R E S D U N O R D - O U E S T

YUKON TERRITORYTERRITOIRE DUYUKON

BRITISH COLUMBIA
COLOMBIE-BRITANNIQUE

NOVA SCOTIA

NOUVELLE-ÉCOSSE

NEW BRUNSWICK

NOUVEAU-

BRUNSWICK

NEWFOUNDLA
ND

AND
LA

BRADOR

TERRE-N
EUVE ET LA

BRADOR

(Denmark)(Danemark)

C A N A D A

G R E E N L A N D
G R O E N L A N D

SETATSDETINU
É T A T S - U N I S

R
O

C
K

Y

M
O

U
N

T
A

I
N

S

M
O

N
T

A
G

N
E

S

R
O

C
H

E
U

S
E

S

A L A S K A

Stephenville

Air Canada Routes
Vols d’Air Canada

Flights operated by Air Canada Regional Inc.
(doing business as Air Nova, Air Ontario, AirBC,
Air Alliance and Canadian Regional) and other
partner airlines
Vols desservis par Air Canada Régional Inc.
(faisant affaires sous les noms d’Air Nova,
Air Ontario, AirBC, Air Alliance et
Canadien Régional) et par d’autres partenaires

É
L

O
I

C
H

A
M

PA
G

N
E

 /
 D

IG
IT

A
L

 I
M

A
G

IN
G

C A N A D A

Vancouver
Calgary

Winnipeg

Toronto

Ottawa
Montréal

Halifax

St. John’s

Edmonton

U N I T E D S TAT E S
É TAT S - U N I S

2

3

4

Privy Council Office
September 22, 2006

Yvan Roy
Counsel to the Clerk
of the Privy Council

957-5778
806-90 Sparks Fax: 957-5032

Louis Lévesque
Deputy Minister,

Intergovernmental Affairs
947-5695

803-66 Slater Fax: 943-1857

André Dulude
A/Assistant Deputy Minister,

Intergovernmental Operations
947-7571

927-66 Slater Fax: 947-8091

Alfred A. MacLeod
Assistant Deputy Minister,

Intergovernmental Policy and
Planning
947-7031

2120-66 Slater Fax: 944-5473

Yaprak Baltacioglu
Deputy Secretary to

the Cabinet, Operations
957-5417

318 Langevin Fax: 957-5637

Liseanne Forand
Assistant Secretary

to the Cabinet,
Social Development Policy

957-5641
700 Blackburn Fax: 957-5445

Simon Kennedy
Assistant Secretary to the

Cabinet, Economic & Regional
Development Policy

957-5368
525 Blackburn Fax: 941-9420

Mary Komarynsky
Assistant Secretary

to the Cabinet,
Operations
957-5102

305 Blackburn Fax:952-4989

Mary O’Neill
Assistant Clerk of the

Privy Council
Orders in Council Division

957-5398
418 Blackburn Fax: 957-5026

Michelle Madore
Chief

Cabinet Papers System
957-5414

404 Langevin Fax: 957-5035

Margaret Biggs
Deputy Secretary to the Cabinet,

Plans and Consultation
957-5462

302A Langevin Fax: 957-5487

Louise Levonian
A/ Assistant Secretary

to the Cabinet,
Priorities and Planning

957-5390
302 Langevin Fax: 957-5487

Dale Eisler
 Assistant Secretary

to the Cabinet, Communications
 and Consultation

957-5426
600 Blackburn Fax: 957-5154

Kevin Page
Assistant Secretary to the

Cabinet, Liaison Secretariat for
Macroeconomic Policy

957-5650
306 Langevin Fax: 957-5341

Kathy O’Hara
Deputy Secretary to the Cabinet,

Machinery of Government
957-5446

312 Langevin Fax: 952-4955

Roberta Santi
Assistant Secretary

to the Cabinet,
Machinery of Government

957-5491
314 Langevin Fax: 957-5034

Matthew King
Assistant Secretary

to the Cabinet,
Legislation and House Planning

944-4029
812-90 Sparks Fax: 944-4769

David Mulroney
Foreign & Defence

Policy Advisor
to the Prime Minister

957-5476
900 Blackburn Fax: 957-5365

Jill Sinclair
Assistant Secretary

to the Cabinet,
Foreign & Defence Policy

957-5415
925 Blackburn Fax: 957-5264

Yvan Roy
 A/National Security Advisor to

the Prime Minister

 948-6697
518B-90 Sparks Fax: 948-6699

Yvan Roy
Assistant Secretary to

the Cabinet,
Security and Intelligence

957-5386
309 PSB Fax: 957-5277

Gregory Fyffe
Executive Director,

International Assessment
Staff

957-5648
407 PSB Fax: 957-5411

Marc O’Sullivan
Assistant Secretary to the
Cabinet, Senior Personnel

and Special Projects
957-5465

108 PSB Fax: 957-5006

Patrick Borbey
Assistant Deputy Minister,
Corporate Services Branch

957-5151
326 Blackburn Fax: 957-5138

Margaret Bloodworth
Associate

Secretary to the Cabinet
957-5466

 328 Langevin Fax: 957-5089

Kevin G. Lynch
Clerk of the Privy Council and

Secretary to the Cabinet
957-5400

332 Langevin Fax: 957-5729

Thérèse Roy
 Executive Director

Finance and Corporate
Planning Division

948-6556
904-155 Queen Fax: 952-4878

Gary Pinder
Executive Director

Informatics & Technical
Services (ITS)

957-5712
830 Blackburn Fax: 957-5601

Lynn Townsend
Director

Administration
957-5492

300 Blackburn Fax: 957-5664

Sheila Powell
Director

Corporate Information
Services
957-5755

1003 Blackburn Fax: 957-5367

Diane Lepage
Executive Director
Human Resources

952-4801
1552 - 55 Metcalfe

Fax: 957-5700

Jaye Jarvis
A/Director

Access to Information
and Privacy
957-5785

400 Blackburn Fax: 991-4706

Vacant
Deputy Secretary to

the Cabinet, Senior Personnel
and Special Projects

957-5296
108 PSB Fax: 957-5006

Patrick Borbey
Assistant Deputy Minister

Corporate Services Branch

5

Graphs are used to represent large discrete systems:

Transportation networks,

Computer Networks,

Communication systems,

Structure of Organizations

Software Structure,

....
6

Thus we consider a graph as an abstraction of the

structure of discrete systems.

This will allow us to find general properties of dis-

crete systems and algorithms that are applicable in

all discrete systems.

Several types of graphs are also used as basic data
structures and we need to know their properties.

7

A graph consists of a set of nodes (some call them

points, vertices), and a set edges connecting some

pairs of nodes.

The set of nodes of a graph G is often denoted by

V and the set of edges by E.

So we write G = (V, E)

If V = {A, B, C, D, E}, E = {AB, AC, AD, AE, BC, CE, ED}

then a picture of the graph is

A B

C
ED

8

The two graphs below are the same:

A B

C
ED

A
B

C

D

E

they have the same nodes {A, B, C, D, E} and

the same edges {AB, AC, AD, AE, BC, CE, ED}.

Only their pictures are drawn differently.

9

Notice that two graphs are different if they have

different vertex set or different edge set.

In some applications we are only interested in the

general type of the graph and we don’t necessarily

specify the vertex set in detail.

In that case we don’t put names of the node in the

picture representation of the graph.

10

We shall start by considering simple graphs:

• there is no edge connecting a node to itself (edge

of type AA is not allowed),

• there is at most one edge between two nodes.

Basic terms:

Two nodes connected by an edge are called

adjacent.

Nodes adjacent to a given node are called its

neighbours.

Degree of a node is the number of its neighbours.
The degree of node v is denoted by d(v).

11

6 examples of simple graphs

12

Theorem 16 In a graph G = (V, E) the sum of the

degrees of all the nodes is equal to 2|E|.

Proof

Each edge contributes 2 to the sum degrees of nodes

it connects.

Theorem 17 In every graph, the number of nodes

with odd degree is even.

Proof
If a graph contains odd number of nodes with odd
degree, then the sum of the degrees of all the nodes
would be odd, a contradiction to Theorem 29

13

Some graphs occur often and are thus given special

names.

Edgeless graph: a graph in which E is empty.

Complete graph: a graph in which any pair of

nodes is connected by an edge.

Such a graph is called a complete graph (or a clique).

A complete graph with n nodes has
(n
2

)
= n(n−1)/2

edges and is often denoted as Kn.

14

The complement of a graph G = (V, E) is the graph

G = (V, V × V − E).

G is the graph having the same nodes as G and

containing all possible edges which are not in G.

Star: a graph in which one node is connected to
all other nodes and no other nodes are connected.

A star with n nodes has n−1 edges

15

Path: a sequence of distinct nodes in which there is

an edge between consecutive nodes in the sequence.

There are two nodes of degree 1 in a path, called

the endpoints, all other nodes are of degree 2.

x1 x

x
x3

4

5x 2

x1

2

3

45

x

x

xx

Cycle: a sequence of distinct nodes in which each
node is connected to the next node and a previous
node, and the last one is connected to the first one.

16

Walk: a sequence of nodes (not necessarily distinct)

in which there is an edge between consecutive nodes

in the sequence.

Since nodes can repeat, the walk can be closed if

the first and last node of the walk are the same.

Paths, cycles are special cases of walks.

The length of a walk, path or a cycle is the number

of edges in it.

A cycle of length k is often called a k−cycle.
17

A graph H is called a subgraph of a graph G if H

can be obtained from G by omitting some nodes and

edges. (If a node is omitted, we have to remove all

edges to it.

Graph G is connected if for any two nodes u and

v of the graph there exists a path with endpoints u

and v that is a subgraph of G.

A connected component of graph G is a maximal

subgraph of G that is connected.

18

Eulerian Walks and Hamiltonian Cycles

Eulerian walk is a walk that contains each edge of

the graph exactly once.

Example:

An Eulerian walk can be a useful way to

• verify all links in a network in a systematic manner,

• for drawing a graph in a continuous motion.

19

Theorem 18

(a) If a connected graph has more than two nodes

of odd degree then it has no Eulerian walk.

(b) If a connected graph has exactly two nodes of

odd degree then it has an Eulerian walk. Every Eule-

rian walk starts in one of these and ends in the other

one.

(c) If a connected graph has no nodes of odd de-

gree then it has Eulerian walk. Every Eulerian walk

is closed.

20

Hamiltonian cycle is a cycle that contains all nodes

of a graph.

(Unlike in an Eulerian walk, no node can be visited

more than once)

A Hamiltonian cycle can be a useful way to verify all

nodes in a network in a systematic manner, without

visiting any node twice.

There is no theorem that allow us to determine, for
any graph, if it has a Hamiltonian cycle.

21

The Hamilton cycle problem is related to the

Traveling Salesman Problem:

We have a graph G with distances assigned to the

edges between nodes.
5

12

4

9

8

10
76

Problem: Find the lowest cost close walk through

the graph that visits every node.

This problem is computationally very difficult, but
it can be solved optimally for quite large graphs.
(Chvatal et al.)

22

Trees

Tree is a special type of graph that is used in many

computer applications:

• Enumeration procedures,

• Data structures

What do we intuitively understand to be a tree?

When should we call a graph to be a tree?

23

Which one of the graphs below should we call a tree?

24

Definition

A graph G = (V, E) is called a tree if it is connected

and contains no cycle as a subgraph.

It does not need to look like a tree in nature.

25

Theorem 19

(a) A graph G is a tree if and only if it is connected,

but deleting any of its edges results in a disconnected

graph.

(b) A graph G is a tree if and only if it contains no

cycles, but adding any new edge creates a cycle.

Proof: Done in class

26

Theorem 20

In a tree, every two nodes are connected by a unique

path.

Conversely, if in a graph every pair of nodes is con-

nected by by a unique path, then the graph is a tree.

Proof done in class.

27

An edge is called a cut-edge of a connected graph G

if removing that edge makes the graph disconnected.

Cut-edges are in red color:

In a tree, every edge is a cut-edge.

28

Take a connected graph G and execute the following

process:

finished = false;

do

if (there is an edge e that is not a cut edge)

then remove edge e from G;

else finished = true;

until finished;

The graph G′ which is obtained in this manner is
connected and it does not contain any cut-edge.

29

G′ is a tree that contains all nodes of G.

Such a tree is called a spanning tree of G.

30

In Computer Science, we often use trees in which

one node is distinguished as the root of the tree.

The root is usually the node from which the con-

struction of a tree starts.

A tree with specified root is called a rooted tree.

Rooted trees have been used as family trees to show

the ancestry of related people.

For that reason a family terminology is used in rooted

trees.

31

Let G be a rooted tree with root r.

For a node v different from r, consider the unique

path from r to v.

The node on the path that directly precedes v is

called the parent of v. All other neighbors of v are

called the children of v.

r

v

child of v

child of v

parent of v

32

A leaf is a node without children (i.e., of degree 1).

In computer science we commonly represent a rooted

tree by putting the root at the top and putting the

children one level down from their parent.

r

parent of v

v

child of v child of v

33

Tree growing Procedure

• Start G with a single node.

• Repeat any number of times:

take a new node and

connect it to one of the existing nodes of G.

Theorem 21 Every graph obtained by the Tree grow-

ing Procedure is a tree. Every tree can be obtained

in this manner.

Proof: Done in class

34

The Tree-growing Procedure can be used to estab-

lish a number of properties of trees.

Theorem 22 Every tree on n nodes has n-1 edges.

Proof:

When building a tree we start with one node and no

edge.

At each step, one new node and one new edge is

added, so this difference of 1 between the number

of nodes and edges is maintained.

35

Computer Representation of Graphs

Adjacency matrix: a 2-dimensional matrix M .

For each node we have one row and one column.

Mi.j =

 1 if there is an edge between ith and jth nodes,
0 if there is no edge between ith and jth nodes.

36

Example:

A
B

C

D

E

A B C D E

0 1 1 1 1

1 0 1 0 0

1 1 0 0 1

1 0 0 0 1

1 0 1 1 0

A

B

C

E

D

37

Adjacency matrix is a common computer represen-

tation of graphs.

For a simple graph its adjacency matrix is symmetric

so we only need to store the part below the diagonal.

In some applications, the entries in the adjacency

matrix are used to store some properties associated

of the edges.

38

Example: In a transportation network we can put

there the actual distance between the nodes.

Mi.j =

0 if there is no edge between ith and jth nodes,
> 0 if there is an edge between ith and jth nodes,

the value gives the distance in kilometers.

B

C

D

E

A B C D E

0 4 5 2 3

4 0 7 0 0

5 7 0 0 6

2 0 0 0 4

3 0 6 4 0

A

B

C

E

D
6

5
3

A

24

4

7

39

For a tree, an adjacency matrix is very sparse:

it contains n(n−1)+1 zeros and only n−1 non-zero

elements.

Thus it is not a very efficient way to represent a tree,

even when the entries in the table are only bits.

Since the number of edges in a tree is small, we can

store a tree by given a list of edges

Such a list can be represented in several ways.

40

1 2 2 2 4

2 3 5 6 51

2

3

4

5
6

of the edge list:
Matrix representation

Edge−list: (12, 23, 25, 26, 45)

Such a representation is not unique.

41

Graph Algorithms

Finding the best tree

Problem to solve: A country with n towns wants to

construct a new fiber-optic telephone network for

these towns. The cost should be minimized.

The cost of building a line between any two cities is

known.

We can represent the problem as a graph G with
values attached to edges corresponding to the cost
such a line.

42

5

12

4

9

8

10
76

Solution: a connected subgraph of G containing

all nodes of G such that the sum of all the costs

on the edges is minimum from all such subgraphs.

43

Which one to take?

12
10

76

5

12
10

6

cost = 39 cost = 33

cost = 29 cost = 31

5

1276

5

4

9

8

10

4

44

Is there a solution better than any of the above?

The solution should be

• a spanning tree of G,

• minimizing the cost.

The minimum spanning tree of G.

One cannot obtain the answer by trying out all the

spanning trees if the graph is large.

There are too many different spanning trees for a

large graph on n nodes with m edges: ≈
(m
n−1

)
45

Kruskal’s Algorithm

//n is the number of nodes;

E = sequence of all edges of G;

sort(E); // by the weights;

S = empty; // set of min. sp. edges;

i = 1;

while |S| < n− 1) do

{ if (ei and S do not create a cycle)

S = S ∪ ei;

i + +;

}
46

Solution:

take edge 4, take edge 5

skip edge 6 (creates a cycle)

take edge 7, take edge 8

Total cost = 24

5

12

4

9

8

10
76

47

Theorem 23 The Kruskal’s algorithm calculates the

minimum spanning tree

Proof: Done in class

This is an example of a greedy algorithm.

It takes, at every step what seems to be the cheapest

way to extend the network.

It works for spanning trees, but not in some other
problems

48

Notice that the algorithm gives a solution.

There is no unique solution in some cases, like when

some of the edges have the same cost.

There are other algorithms for producing a minimum

spanning tree, but they are not substantially any bet-

ter or faster (Prim, Boruvka).

Chazelle’s algorithm is the fastest.

49

Traveling Salesman Problem:

(related to the Hamilton cycle problem)

We have a graph G with distances assigned to the

edges between nodes.
5

12

4

9

8

10
76

Problem: Find the lowest cost close walk through

the graph that visits every node.

This problem is computationally very difficult, but
it can be solved optimally for quite large graphs
(Chvatal et al.) and approximately in other cases.

50

Shortest Path Algorithm

Problem: We have a road network. Find the shortest

route between two given nodes.

Example: Find the shortest path between A and B

5

4

9

8

76

8

3 4

10 6

9

12

10

A

B

51

Shortest Path Algorithm is one of the very frequently

used algorithms.

Many other problems can be solved using this algo-

rithm.

This algorithm can be used to find the length of a

shortest path from a given node A to all other nodes.

Restriction: The cost on edges should be positive
numbers (this is the case of almost all applications).

52

Main idea: Maintain a list S of nodes for which the

shortest path is already known. (Initially, S = �)

Maintain a list L which contains for each node the

path length from A known at this time.

L(u) = path length from A to u known at this time.

(Initially, L(A) = 0 and L(u) = ∞ for any other

node.)

At each phase of the algorithm, find in L node v

such that

L(v) is the smallest value for nodes not in S.

This L(v) is the length of a shortest path from A
to v. Thus we add v S.

53

Since L(v) is the length of a shortest path from a

A, a shortest path form A to the neighbors of L(v)

could be obtained by extending this path by edges

incident to v.

A v

neighbours of v 5

3

6known shortest path of length 17

3 5 3
6

If any of these extensions produces a path shorter

than the known one in L,

update the information in L.

Then repeat the phase again if S 6= V .
54

8

4

3

8

73

8

10 5

10

A

C

G H I

D E F

B

2
9

9

12 3

A B C D E F G H I S
L1 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ �
L2 0 ∞ 8 ∞ ∞ ∞ 4 ∞ ∞ {A}
L3 0 ∞ 7 ∞ ∞ ∞ 4 12 ∞ {A, G}
L4 0 ∞ 7 11 ∞ ∞ 4 10 ∞ {A, G, C}
L5 0 ∞ 7 11 ∞ ∞ 4 10 18 {A, G, C, H}
L6 0 ∞ 7 11 20 ∞ 4 10 18 {A, G, C, H, D}
L7 0 28 7 11 20 ∞ 4 10 18 {A, G, C, H, D, I}
L8 0 28 7 11 20 25 4 10 18 {A, G, C, H, D, I, E}
L9 0 27 7 11 20 25 4 10 18 {A, G, C, H, D, I, E, F}

55

Dijkstra’s Algorithm for a path between A and B in

a graph with nodes V . The cost(uv) is the value

associated with edge uv.

for (i = 1; i <= n; i + +) initialize the lists
L(vi) = maxint;

L(A) = 0;
S = �;
while B 6∈ S do

{u = node in V − S with minimal L value;
S = S ∪ {u}; //we have shortest path to u
for every v adjacent to u
if (L(u) + cost(uv) < L(v))

L(v) = L(u) + cost(u, v); //update list L
}

56

The number of operations needed in the Dijkstra’s

algorithm is cn2 for some constant c.

A very common case in many applications (e.g.,

computer networks), graph cost of each edge is taken

as 1.

Dijkstra’s Algorithm then usually produces several

nodes with the minimal cost in each phase and the

number of phases is smaller.

57

Theorem 24 Given a graph G and two nodes in the

same component of G, the Dijkstra’s algorithm cal-

culates the shortest part between these nodes.

Proof : Done in class

This is not a greedy algorithm. A greedy algorithm

would not find a shortest path in some cases.

58

Sometimes we need to find, given a node A of a

graph G, all the nodes in the same component as A.

Dijkstra’s algorithm can be modified to calculate the

component of the given graph containing A.

In this case the costs of edges are not important and

we count each edge being of cost 1.

We keep for each node whether it belongs to the
component.

59

Calculating the component containing a given node

A in a graph with n nodes.

for (i = 1; i <= n; i + +)
belong(vi) = false; initialize marks

S[1] = A; S is a list of nodes in the component
belong(A) = true; mark it is in the component
i = 1; // number of nodes in the component
j = 1; // which node is processed
while (j <= i) do

{for (every v adjacent to S[j])
if (belong(v) == false)
{S[+ + i] = v; //add it to the list
belong(v) = true; mark it.
}

j + +;
}

//value of i gives the size of the component, S its nodes.

60

This algorithm finds the nodes of a component con-

taining A in the order of the distance of the nodes

from A, starting with nodes that are closest to A.

This type of processing of nodes is called

breadth-first order.

More on this is seen in the course on Data Structures

and Algorithms.

There are many other important problems that can

be represented by a graph and solved by graph algo-

rithms.

61

Perfect Matching

Given some tasks and processors and an indication

on which processors are best suited for each task.

find the perfect matching of tasks and processors.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Processors

tasks

62

Red edges indicate a possible solution:

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Processors

tasks

There is an algorithm for this problem.

63

Scheduling

We are are to design a schedule of courses so that:

• any two courses usually taken by same students

are scheduled at different times,

• any two courses taught by the same professor are

scheduled at different times,

• we use the smallest number of time-slots.

This can be represented by a graph.

64

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

comp238 comp335

comp354

comp352

comp249 comp229

comp239comp248

comp228

Solution: Color the nodes of the graph so that no

two nodes of the same color are connected. Each

color represents a different time-slot.

Color using the minimum number of colors.

65

��
��
��

��
��
��

�
�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�
��

�
�
� ��

��
��

��
��
��comp238 comp335

comp354

comp352

comp249 comp229

comp239comp248

comp228

The graph coloring problem is a difficult one (sim-

ilarly to the travelling salesman problem)

There are some good approximation algorithms for

the coloring of graphs.
66

There are many other problems that can be

• represented by graphs and

• and solved by graphs

There is a large number of algorithms to solve graph

problem.

We don’t have time to discuss them.

67

Planar Graphs

A graph is called planar if we can draw nodes and

edges of the graph in the plane so that no two edges

of the graph cross each other.

A planar map of a graph is a drawing of the graph

where no two edges of the graph cross each other.

Planar graphs have some important properties, for

that reason they are studied in more detail.

68

Graph G and a planar map of G:

G:

Since there is a planar map of G, it is a planar graph.

69

A planar map divides the plane into separate regions,

called faces. (Think of it as countries).

Outer face is the region that “surrounds” the graph.

The map above has 6 faces.

70

Theorem 25 Let G be a connected planar map that

contains n nodes, e edges and f faces.

f + v = e + 2

Proof done in class.

71

Theorem 26 The complete graph K5 on five nodes

is not a planar graph.

The graph K3,3 on 6 nodes below is not a planar

graph.

Proof done in class.

K K5 3,3

72

Theorem 27 A planar graph on n nodes has at most

3n− 6 edges.

Proof done in class.

Thus in a planar graph, similarly as in a tree, the
number of edges is linearly proportional to the num-
ber of nodes.

73

Theorem 28 A graph is planar if and only if it con-

tains no subdivision of K5 or K3,3.

This very interesting theorem is due to Kuratowski

(1930)

However, it does not give us a nice algorithm for
testing whether a given graph is planar.

74

There are several algorithms that can decide, for a

given graph G,

• whether G is planar and

• how to place the nodes in the plane and draw the

edges to get a planar map of the graph.

(Demoucron, Malgrange, Pertuiset, (1965)

Hopcroft and Tarjan, (1974))

These algorithms are quite efficient.

75

Directed Graphs

Graphs that we discussed so far were simple graphs.

In a simple graph edge uv is the same as edge vu.

Such a graph is often called undirected.

In some applications we have situations when we can

go from node u to node v, but not from v to u.

(one-way street for cars))

In these applications we use a directed graph to

model the traffic.

76

Example of a directed graph representing the behav-

ior of a system:

start

output results stoprun simulation

simulation pause

77

A directed graph consists of a set of nodes and a

set OF directed edges, each edge being an ordered

pair of nodes.

The set of nodes of a graph G is often denoted by

V and the set of edges by E.

So we write G = (V, E)

A specification of a directed graph looks very much

like a specification of an undirected graph. Thus we

must alway specify the term directed when dealing

with a directed graph.

78

Example of a directed graph:

A B

C
ED

Directed graph G = (V, E) where V = {A, B, C, D, E}

and E = {AB, AD, AC, EA, BB, BC, CE, DA, ED}.

In a directed graph, loop edges are often allowed.

79

Most of the terms introduced for undirected graphs

are also defined with appropriate modifications for

directed graph.

For a directed edge uv we say that u is its initial

node and v is its terminal node.

in-degree of a node is the number of edges that

terminate in it,

out-degree of a node is the number of edges that

have the node as its initial node.

80

Directed path: a sequence of distinct nodes in

which there is a directed edge from each node of

the sequence to the next node of the sequence.

Directed cycle: a sequence of distinct nodes in

which there is a directed edge from each node of

the sequence to the next node of the sequence and

from the last one to the first one.

Directed walk: a sequence of nodes (not necessar-

ily distinct) in which there is a directed edge from

each node of the sequence to the next node of the

sequence.
81

We have an obvious generalization of a result for

undirected graphs:

Theorem 29 In a directed graph G = (V, E) the sum

of the in-degrees of all the nodes is equal to the sum

of the out-degrees of all the nodes and is equal |E|.

Dijkstra’s algorithm can be applied to directed graph

with little modifications.

There are some useful algorithms dealing exclusively

with directed graphs, e.g maximal flow algorithm.
82

Directed graphs have been used for a specification

and a construction of simple computational devices

and algorithms.

They are used in the design of computer chips.

A finite state machine is a directed graph in which

• each edge is labeled by an input and an output

symbol (/ separates input and output symbols), and

• one state is designated as the state where the com-

putation starts.

83

For a given input string a1a2 · · · ak, the computa-

tion follows the directed walk from the start state in

which the ith edge of the walk is labeled by ai.

The output of the computation is the string b1b2 · · · bk

where bi is the output label of the ith edge of the

walk.

d / 0

a / 1a / 0
b / 1
c / 1

b / 0
c / 0
d / 1

start

input: aabcdbdaba

output: 0011001110

84

The directed graph is an algorithm for adding two

binary numbers.

a represents 00

b represents 01

c represents 10

d represents 11

The adding is done by starting with the least signif-
icant digits of the two numbers.

85

An algorithm for scanning a text and replacing each

preposition “the” by “a” is represented by a directed

graph below.

s represents any character, ws is a blank or EOL,

s−′ t′ is any character different from ′t′.

’h’ /

’e’ /

s / s

start

s / ’the’s

’t’ /

ws / ws

ws / ws

s / s

ws / ’a’ws

86

The two examples given here are meant to illustrate

the use of directed graph for representing computa-

tions.

The course on theoretical computer science uses this

type of representation extensively.

87

