
Fibonacci Problem:

A farmer raises rabbits. Each rabbit gives birth when

2 months old and then each month there after.

Question:

How many rabbits will the farmer have after n months?

Try it on small numbers.
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Fn ... the number of rabbits after n month.

Each rabbit alive the n-1th month remains nth month.

Each rabbit alive the n− 2th month adds one more

rabbit to nth month.

F1 = 1

F2 = 1

Fn+1 = Fn + Fn−1 if n ≥ 2
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This formula is an example of a recurrence formula

(as opposite to an explicit formula).

Recurrence formulas are often easy to obtain (and

easy to code).

Often we extend the sequence by starting F0 = 0

F1 = 0

F2 = 1

Fn+1 = Fn + Fn−1 if n ≥ 1

Sequence of Fibonacci numbers

0,1,1,2,3,5,8,13,21,34,55,89,144,233, . . .
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Fibonacci numbers occur often in analysis of algo-

rithms.

For that reason, Fibonacci numbers have been stud-

ied in detail.

Some basic identities:

F0 + F1 + F2 + · · ·+ Fn = Fn+2 − 1

F1 + F3 + F5 + · · ·+ F2n−1 = F2n

F0 − F1 + F2 − F3 + · · · − F2n−1 + F2n = F2n−1 − 1

Fn−1Fn+1 − F2
n = (−1)n

4



A Formula for the Fibonacci Numbers

Theorem 10 The Fibonacci numbers are given by

the formula

Fn =
1√
5
((

1 +
√

5

2
)n − (

1−
√

5

2
)n)

Fn ≈
1√
5
(
1 +

√
5

2
)n

Proof is technical and thus omitted.
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Recurrence Relations

Some problems are easily solved by recursive algo-

rithms or definitions (e.g. Fibonacci sequence).

Recursive Algorithm: an algorithm which finds so-

lution of a larger problem in terms of solutions of the

same problem of smaller size.

Typical example:

Compute the nth power of an integer. We can use

the facts that:

x0 = 1 and
xn = x · xn−1 if n > 0
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To find the efficiency of a recursive algorithms, we

need to solve a related recurrence relation expressing

the number of operation needed by the algorithm:

integer power(x, n)

{ if(n == 0) return 1;

else return x ∗ power(x, n− 1);

}

Let pn be the number of multiplications needed:

p0 = 0;

pn = pn−1 + 1

7



A sorting method: To sort n elements we can:

Sort the first half of elements;

Sort the second half of elements;

Merge the two partial solutions together.

Let sn be the number data comparisons needed:

sn = 2sn/2 + n

s1 = 0

(Assuming that the merge of two sorted segments
of size n/2 can be done by comparing n data ele-
ments).
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Problem to consider: given a recurrence formula,

find an explicit formula for it.

We divide the formulas into two groups:

Linear Recurrence formula: the value of xn is de-

fined using element(s) preceding xn by a constant

number of positions in the sequence. xn = axn−5+ c

Divide and Conquer Recurrence formula: the value

of xn is defined using an element(s) preceding xn by

a fraction of n in the sequence. xn = axn/3 + c
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Solving Linear Recurrence formulas:

we have a linear recurrence formula

xn = bxn−i + c recurrence relation

x0 = d0, x1 = d1, . . . , xi−1 = di−1 initial conditions

Find an explicit formula for xn

The number of initial conditions depends on the re-

currence relation.

Initial conditions are needed to get a unique solution.
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Iterative solution (Back-substitution Method)

Use the recurrence relation repeatedly to obtain the

pattern. Then substitute there the initial conditions.

xn = 2xn−1 + 3, x1 = 1

xn = 2xn−1 + 3
= 2(2xn−2 + 3) + 3 = 22xn−2 + 2 · 3 + 3
= 22(2xn−3 + 3) + 2 · 3 + 3 = 23xn−3 + 22 · 32 · 3 + 3
= . . .

= 2kxn−k + 2k−1 · 3 + 2k−2 · 3 + · · ·2 · 3 + 3
= 2n−1x1 + 2n−2 · 3 + 2k−2 · 3 + · · ·2 · 3 + 3
= 2n−1 + 3(2n−2 + 2k−2 + · · ·2 + 1)
= 2n−1 + 3(2n−1 − 1)
= 2n+1 − 3
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In general, we should expect that:

if the recurrence formula is of shape

xn = axn−k + b, x1 = 1

then xn is proportional an/k

(it means that xn ≈ can/k for some constant c).

If the recurrence formula is of shape

xn = xn−1 + n + b, x1 = 1

then xn is proportional to n2
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Divide and Conquer Recurrences

Different algorithm for the power of an integer:

integer power(x, n)

if (n == 0) return 1;

y = power(x, n/2);

if (even(n)) return y ∗ y;

else return y ∗ y ∗ x;

Let qn be the number of multiplications needed:

qn = qn/2 + 1 if n is even
qn = qn/2 + 2; if n is odd
q0 = 0
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A recurrence relation of type

xn = axn/b + c

x0 = d

is a divide and conquer recurrence relation

This type of relation is obtained when analyzing

divide and conquer algorithms.

The idea of solving a problem by dividing it into

several subproblems of a fractional size often gives

very efficient algorithms.
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To calculate the value of qn, we have to do calcula-

tions separately for the two cases of parity:

Case 1: n, n/2, n/4, . . . are all even, (except the last)

Case 2: n, n/2, n/4, . . . are all odd.

Use the iteration method:

Case 1:

qn = qn/2+1 = qn/22+2 = qn/23+3 = . . . = qn/2k +k

when n = 2i which means i = log2 n we take k = i

to get to q1 and we have

qn = q1 + log2 n = log2 n + 2
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Case 2:

qn = qn/2 + 2 = qn/22 + 2 · 2 = qn/23 + 3 · 2 = . . . =

qn/2k + k · 2

when 2i − 1 = n which means i = log2(n + 1)

we take k = i− 1 times to get to q1.

qn = q1 + 2(·log2(n + 1)− 1) = 2 · log2(n + 1)

We can conclude:

log2 n + 2 ≤ qn ≤ 2 · log2(n + 1)

This algorithm is much better than the first one!
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Consider the recurrence formula of the sorting algo-

rithm for the number of data comparisons needed:

sn = 2sn/2 + n

s1 = 0

sn = 2sn/2 + n

= 2(2sn/22 + n/2) + n = 22sn/22 + 2n

= 22(2sn/23 + n/22) + 2n = 23sn/23 + 3n

= . . .

= 2ksn/2k + kn

If 2k = n which means that k ≤ log2 n we have

sn = ns1 + n log2 n = n log2 n
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Recurrence formulas occur in quite many situations.

We have seen them in the analysis of algorithms.

Some nontrivial counting problems can be solved

easily by recurrence formulas. (Fibonacci sequence)

We should understand, given a recurrence formula
for a sequence of numbers, what are the implications
of the different parameters of the formula on the size
of the elements of the sequence.

18



Recurrence formulas are also used to solve some

counting problems:

Problem: How many binary strings of length 7 con-

tain two consecutive 0? 1101001, 1110001

It is not obvious how to apply a known counting

formula in this case.

We can instead establish a recurrence formula for it:

xn = xn−1 + xn−2 + 2n−2

x0 = x1 = 0

We get x2 = 1, x3 = 3, x4 = 8, x5 = 19,
x6 = 43, x7 = 94, . . .
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Integers, Divisors, Primes (some of it a review)

Let a and b be two integers.

We say that a divides b , or

a is a divisor of b,

or b is a multiple of a

if there exists an integer m such that b = am

These phrases above mean the same thing.

Notation: a|b.

If a is not a divisor of b, then we write a 6 | b.

20



If a 6= 0, then this means that the ratio b/a is an

integer.

If a 6 | b and a > 0, then we can still divide b by a

with remainder.

The remainder r of the division b ÷ a is an integer

that satisfies 0 ≤ r < a.

If the quotient of the division with remainder is q,

then we have

b = aq + r.
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Primes

An integer p > 1 is called a prime if it is not divisible

by any integer other than 1,−1, p and −p.

Thus p > 1 is a prime if it cannot be written as the

product of two smaller positive integers.

An integer n > 1 that is not a prime is called com-

posite (the number 1 is considered neither prime,

nor composite).

2,3,5,7,11 are examples of primes

4 = 2 · 2, 8 = 2 · 4, 18 = 3 · 6 are not primes.
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Table below contains the primes smaller than 1000.

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,
47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103,
107, 109, 113, 127, 131, 137, 139, 149, 151, 157,
163, 167, 173, 179, 181, 191, 193, 197, 199, 211,
223, 227, 229, 233, 239, 241, 251, 257, 263, 269,
271, 277, 281, 283, 293, 307, 311, 313, 317, 331,
337, 347, 349, 353, 359, 367, 373, 379, 383, 389,
397, 401, 409, 419, 421, 431, 433, 439, 443, 449,
457, 461, 463, 467, 479, 487, 491, 499, 503, 509,
521, 523, 541, 547, 557, 563, 569, 571, 577, 587,
593, 599, 601, 607, 613, 617, 619, 631, 641, 643,
647, 653, 659, 661, 673, 677, 683, 691, 701, 709,
719, 727, 733, 739, 743, 751, 757, 761, 769, 773,
787, 797, 809, 811, 821, 823, 827, 829, 839, 853,
857, 859, 863, 877, 881, 883, 887, 907, 911, 919,
929, 937, 941, 947, 953, 967, 971, 977, 983, 991,
997
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Primes have fascinated people ever since ancient

times.

Their sequence seems very irregular,

yet it seems to carry a lot of hidden structure.

The ancient Greeks already knew that there are in-

finitely many primes. (They proved it!)

It was not easy to prove many further facts about

primes.

Their sequence has holes and dense spots.
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Theorem 11 Every positive integer can be written

as a products of primes and the factorization is unique

(up to the order of primes).

Theorem 12 Let π(n) denotes the number of primes

among 1,2,3, . . . , n.

π(n) ≈
n

lnn

This can be used to find how many primes are there
having say certain number of digits
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Theorem 13 Fermat’s little theorem

If p is a prime and a is an integer, then p | ap − a

It can be stated in several equivalent ways, an alter-

native:

If p is a prime and a is an integer, then ap ≡ a(mod
p)
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Euclidean Algorithm

For two positive integers a and b we define gcd(a, b)

to be largest positive integer dividing both a and b.

Euclidean Algorithm is an efficient way to find gcd(a, b).

(Factorizations of a and b would give the answer, but

it would be very inefficient.)
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Euclidean Algorithm:

Input: Positive integers a, b

Output: gcd(a, b)

While (a > 0) do
{

r = b mod a;
b = a;
a = r;

}
print b; // the GCD
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For an algorithm, we must establish:

Termination (done in class)

Correctness (done in class)

Efficiency:

Lemma 1 During the execution of the Euclidean Al-

gorithm, if a < b then the value of the product of ab

drops by a factor of at least 2 in each iteration.
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Theorem 14 The number of steps of the Euclidean

algorithm applied to two positive integers a and b is

at most log2 a + log2 b.

Thus this algorithm is very efficient.

Theorem 15 gcd(a, b) = am + bn for some integers

m, n.

(Obviously, one of m, n is negative.)
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To find gcd(a, b) as a linear combination of a, b we

can use the intermediate steps of the Euclidean al-

gorithm:

gcd(300,18) = gcd(18,12) = gcd(12,6) = 6

300 = 16 · 18 + 12

18 = 1 · 12 + 6

12 = 2 · 6

So 6 = 18 − 1 · 12 = 18 − 1 · (300 − 16 · 18) = 17 ·
18− 1 · 300
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The Eucledian algorithm can be used to solve some

linear equations when the required solutions must be

integers.

Example: Find integer values x and y such that

7x + 13y = 1

Since GCD(7,13) = 1 the Euclidean algorithm can

be used to find x and y such that 1 = GCD(13,7) =

7x + 13y

Some other equations can be solved in this manner.
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Congruences

How to run several application, say A1, A2, . . . , Ak on

a single computer:

We select a small time unit, say d milliseconds and

the time is divided into infinite sequence of time slots

t1, t2, . . . , tj, . . . of length d.

During time slot tj the computer runs application Ai

if j mod k = i + 1.

Since human actions and perception is slow, we have

impression that all applications are running at the

same time.
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We could say that time j1, j2 are assigned to the

same application when j1 mod k = j2 mod k.

Since this case occurs often, we have a special no-

tation for it, called congruence.

a ≡ b (modm)

if a mod m = b mod m. We call m the modulus of

the congruence relation.

Congruence mod m is an equivalence relation on N .
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a ≡ a (mod m)

a ≡ b (mod m) =⇒ b ≡ a (mod m)

a ≡ b (mod m) and b ≡ c (mod m) =⇒

a ≡ c (mod m)

≡ (mod m is an equivalence relation.

If a ≡ b (mod m) and c ≡ d (mod m) then:

a + c ≡ b + d (mod m)
a− c ≡ b− d (mod m)
ac ≡ bd (mod m)
ak ≡ bk (mod m) for every integer k.
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In many computer applications we need to use ran-

dom numbers, something which can be seen as a

toss of a coin or a throw of a die.

Pseudorandom Numbers: numbers that look ran-

dom.

A linear congruential method for generating pseudo-

random numbers :

xi+1 = (axi + c) mod m

If a, c, m are well-chosen, this generates m distinct

integers in a row in no apparent order.
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A possible choice:

m = 2i, gcd(c, m) = 1, a− 1 is a multiple of 4.,

xi+1 = (9xi + 307) mod 1024

The value of x0 is called the seed.

See below an example for seed 0

0, 307, 1022, 289, 860, 879, 26, 541, 56, 811, 438,

153, 660, 103, 210, 149, 624, 803, 366, 529, 972,

906, 269, 680, 283, 806, 393, 772, 87, 66, 901, 224,

275, 734, 769, 60, 847, 762, 1021, 280
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If we need random numbers between 1 and k inclu-

sive, where k < m, we take (xi mod k) + 1.

Example: k = 36:

1,11,23,30,9,28,26,23,19,34,31,5, . . .

If we need random numbers to be real numbers be-

tween 0 and 1 we take xi/m.
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Often it is convenient to work with arithmetic oper-

ation in mod manner and use = instead of ≡.

If we work in (mod11) then

3 + 4 ≡ 7(mod 11), 3 + 8 ≡ 0(mod 11)

When this is done very often we can use a bar to

denote that we work in mod manner to simplify the

notation. We must clearly identify the modulus or

understand which one is used.

3 + 4 = 7, 3 + 8 = 0, 3 ∗ 5 = 4
39



How do we define a division by a in (mod11)?

We do it by defining an inverse 1
a of a in mod 11

arithmetics.

Then c/a = c · (1a).

This can be done when we work mod p where p is a
prime number.
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Division in modular arithmetic

We define that b is a reciprocal or inverse

of a (mod p) if

ab ≡ 1(mod p)

Then we define c/a (mod p) = cb (mod p)

Important p must be a prime number.

We can use the Euclidean algorithm to find 1/a.

41



If p is a prime then gcd(a, p) = 1.

Euclidean algorithm can be used to find gcd(a, p) in

form ua + vp where u. v are integers.

We get ua + vp = 1 which implies that

ua ≡ 1(mod p)

Since u could be greater than p,

(and we want the inverse to be between 0 and p−1)

take x = u mod p.

Then ax ≡ au ≡ 1(mod p).

Thus, x is the inverse of a.
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Important: If p is not a prime then there are integers

a such that for every integer b

ab 6≡ 1(mod p)

Take p = 6 and a = 2

2 · 0 ≡ 0 (mod 6), 2 · 1 ≡ 2 (mod 6)

2 · 2 ≡ 4 (mod 6) 2 · 3 ≡ 0 (mod 6)

2 · 4 ≡ 2 (mod 6) 2 · 5 ≡ 4 (mod 6)

2 · 6 ≡ 0 (mod 6), and so on.

Thus, there is no reciprocal to 2 in (mod 6)
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Once we have all arithmetic operations mod p de-

fined, we can solve equations involving

congruences as easily as ordinary equations.

Consider equation 7x + 3 ≡ 0 (mod 47)

7x ≡ −3 (mod 47)

Find reciprocal of 7 (mod 47) which is 27.

So we get 27 · 7x ≡ 27 · −3 (mod 47)

x ≡ −81 (mod 47)

Solution: x = 13.
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Similarly we can solve a system of two equations if

both use the same modulus.

12x + 31y ≡ 2 (mod 127)

2x + 89y ≡ 23 (mod 127)

Eliminate one of the variables:

12x + 31y ≡ 2 (mod 127)

12x + 6 · 89y ≡ 6 · 23 (mod 127)

Subtract the equations:

−503y ≡ −136 (mod 127) which is the same as
5y ≡ 118 (mod 127)
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Find the reciprocal of 5 (mod 127) which is 51.

So y ≡ 51 · 118 (mod 127) or y ≡ 49 (mod 127)

Substitute for y above,

2x + 89 · 49 ≡ 23 (mod 127)

2x ≡ 107 (mod 127)

Find the reciprocal of 2(mod 127) which is 64.

x ≡ 64 · 107 (mod 127) or x ≡ 117 (mod 127)
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Notice:

The above allow us to solve equations involving the

same prime modulus.

One can also solve equations in which different prime

moduli are used, as

7x + 3y ≡ 1 (mod 13)

2x + 5y ≡ 2 (mod 17)

but it needs a different technique. One cannot solve

the above equations using the reciprocal alone.

It needs the so called Chinese remainder theorem,
which is not covered in this course.
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