2.2 **GROWTH OF FUNCTIONS**

DEF: Let f and g be functions $\mathcal{R} \to \mathcal{R}$. Then f is **asymptotically dominated** by g if $(\exists K \in \mathcal{R})(\forall x > K)[f(x) \le g(x)]$

NOTATION: $f \leq g$.

Remark: This means that eventually, there is an location x = K, after which the graph of the function g lies above the graph of the function f.

BIG OH CLASSES

DEF: Let f and g be functions $\mathcal{R} \to \mathcal{R}$. Then f is **in the class** $\mathcal{O}(g)$ ("**big-oh of g**") if $(\exists C \in \mathcal{R})[f \preceq Cg]$

NOTATION: $f \in \mathcal{O}(g)$.

DISAMBIGUATION: Properly understood, $\mathcal{O}(g)$ is the class of all functions that are asymptotically dominated by any multiple of g. TERMINOLOGY NOTE: The phrase "f is big-oh of g" makes sense if one imagines either that the word "in" preceded the word "big-oh", or that "big-oh of g" is an adjective.

Example 2.2.1: $4n^2 + 21n + 100 \in \mathcal{O}(n^2)$ **Proof:** First suppose that $n \ge 0$. Then

$$4n^{2} + 21n + 100 \leq 4n^{2} + 24n + 100$$
$$\leq 4(n^{2} + 6n + 25)$$
$$\leq 8n^{2} \text{ which holds whenever}$$

 $n^2 \ge 6n + 25$, which holds whenever $n^2 - 6n + 9 \ge 34$, which holds whenever $n - 3 \ge \sqrt{34}$, which holds whenever $n \ge 9$. Thus, $(\forall n \ge 9)[4n^2 + 21n + 100 \le 8n^2].$

Remark: We notice that n^2 itself is asymptotically dominated by $4n^2 + 21n + 100$. However, we proved that $4n^2 + 21n + 100$ is asymptotically dominated by $8n^2$, a multiple of n^2 .

WITNESSES

This operational definition of membership in a big-oh class makes the definition of asymptotic dominance explicit.

DEF: Let f and g be functions $\mathcal{R} \to \mathcal{R}$. Then f is **in the class** $\mathcal{O}(g)$ ("**big-oh of g**") if $(\exists C \in \mathcal{R})(\exists K \in \mathcal{R})(\forall x > K)[Cg(x) \ge f(x)]$

DEF: In the definition above, a multiplier C and a location K on the x-axis after which Cg(x)dominates f(x) are called the **witnesses** to the relationship $f \in \mathcal{O}(g)$.

Example 2.2.1, continued: The values C = 8and M = 9 are witnesses to the relationship $4n^2 + 21n + 100 \in \mathcal{O}(n^2).$

Larger values of C and K could also serve as witnesses. However, a value of C less than or equal to 4 could not be a witness.

CLASSROOM EXERCISE

If one chooses the witness C = 5, then K = 30 could be a co-witness, but K = 9 could not.

Lemma 2.2.1. $(x+1)^n \in \mathcal{O}(x^n)$.

Proof: Let C be the largest coefficient in the (binomial) expansion of $(x+1)^n$, which has n+1 terms. Then $(x+1)^n \leq C(n+1)x^n$.

Example 2.2.2: The proof of Lemma 2.2.1 uses the witnesses

$$C = \begin{pmatrix} n \\ \lfloor \frac{n}{2} \rfloor \end{pmatrix}$$
 and $K = 0$

Theorem 2.2.2. Let p(x) be a polynomial of degree n. Then $p(x) \in \mathcal{O}(x^n)$.

Proof: Informally, just generalize Example 2.2.1. Formally, just apply Lemma 2.2.1.

Example 2.2.3: $100n^5 \in \mathcal{O}(e^n)$. Observing that $n = e^{\ln n}$ inspires what follows.

Proof: Taking the upper Riemann sum with unit-sized intervals for $\ln x = \int_1^n \frac{dx}{x}$ implies for n > 1 that

$$\ln(n) < \frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n}$$

$$\leq \left(\frac{1}{1} + \dots + \frac{1}{5}\right) + \frac{1}{6} + \dots + \frac{1}{n}$$

$$\leq \left(\frac{1}{1} + \dots + \frac{1}{5}\right) + \frac{1}{6} + \dots + \frac{1}{6}$$

$$\leq 5 + \frac{n-5}{6}$$

Therefore, $6 \ln n \le n + 25$, and accordingly, $100n^5 = 100 \cdot e^{5 \ln n} < 100 \cdot e^{n+25} < e^{32} \cdot e^n \qquad \diamondsuit$ We have used the witnesses $C = e^{32}$ and K = 0.

Theorem 2.2.3. Powers dominate logs.Proof: See Example 2.2.3.

Theorem 2.2.4. Exponentials dominate polynomials.
Proof: See Example 2.2.3. ◊

Coursenotes by Prof. Jonathan L. Gross for use with Rosen: Discrete Math and Its Applic., 5th Ed.

 $\langle \rangle$

Example 2.2.4: $2^n \in \mathcal{O}(n!)$. Proof:

$$\underbrace{\overbrace{2 \cdot 2 \cdots 2}^{n \text{ times}}}_{\leq 2 \cdot 1 \cdot 2 \cdot 2 \cdots 2} = 2 \cdot 1 \cdot \underbrace{\overbrace{2 \cdot 2 \cdots 2}^{n-1 \text{ times}}}_{\leq 2 \cdot 1 \cdot 2 \cdot 3 \cdots n} = 2n!$$

We have used the witnesses C = 2 and K = 0.

BIG-THETA CLASSES

DEF: Let f and g be functions $\mathcal{R} \to \mathcal{R}$. Then f is **in the class** $\Theta(g)$ ("**big-theta of g**") if $f \in \mathcal{O}(g)$ and $g \in \mathcal{O}(f)$.

Coursenotes by Prof. Jonathan L. Gross for use with Rosen: Discrete Math and Its Applic., 5th Ed.