2.2 GROWTH OF FUNCTIONS

DEF: Let f and g be functions $\mathcal{R} \rightarrow \mathcal{R}$. Then f is asymptotically dominated by g if

$$
(\exists K \in \mathcal{R})(\forall x>K)[f(x) \leq g(x)]
$$

NOTATION: $f \preceq g$.
Remark: This means that eventually, there is an location $x=K$, after which the graph of the function g lies above the graph of the function f.

BIG OH CLASSES

DEF: Let f and g be functions $\mathcal{R} \rightarrow \mathcal{R}$. Then f is in the class $\mathcal{O}(g)$ ("big-oh of g ") if

$$
(\exists C \in \mathcal{R})[f \preceq C g]
$$

NOTATION: $f \in \mathcal{O}(g)$.
disambiguation: Properly understood, $\mathcal{O}(g)$ is the class of all functions that are asymptotically dominated by any multiple of g.

TERMINOLOGY NOTE: The phrase " f is big-oh of g " makes sense if one imagines either that the word "in" preceded the word "big-oh", or that "big-oh of g " is an adjective.

Example 2.2.1: $\quad 4 n^{2}+21 n+100 \in \mathcal{O}\left(n^{2}\right)$ Proof: First suppose that $n \geq 0$. Then

$$
\begin{aligned}
4 n^{2}+21 n+100 & \leq 4 n^{2}+24 n+100 \\
& \leq 4\left(n^{2}+6 n+25\right) \\
& \leq 8 n^{2} \text { which holds whenever }
\end{aligned}
$$

$n^{2} \geq 6 n+25$, which holds whenever $n^{2}-6 n+9 \geq 34$, which holds whenever $n-3 \geq \sqrt{34}$, which holds whenever $n \geq 9$. Thus,

$$
(\forall n \geq 9)\left[4 n^{2}+21 n+100 \leq 8 n^{2}\right]
$$

Remark: We notice that n^{2} itself is asymptotically dominated by $4 n^{2}+21 n+100$. However, we proved that $4 n^{2}+21 n+100$ is asymptotically dominated by $8 n^{2}$, a multiple of n^{2}.

WITNESSES

This operational definition of membership in a big-oh class makes the definition of asymptotic dominance explicit.

DEF: Let f and g be functions $\mathcal{R} \rightarrow \mathcal{R}$. Then f is in the class $\mathcal{O}(g)$ ("big-oh of g ") if $(\exists C \in \mathcal{R})(\exists K \in \mathcal{R})(\forall x>K)[C g(x) \geq f(x)]$

DEF: In the definition above, a multiplier C and a location K on the x-axis after which $C g(x)$ dominates $f(x)$ are called the witnesses to the relationship $f \in \mathcal{O}(g)$.

Example 2.2.1, continued: The values $C=8$ and $M=9$ are witnesses to the relationship $4 n^{2}+21 n+100 \in \mathcal{O}\left(n^{2}\right)$.
Larger values of C and K could also serve as witnesses. However, a value of C less than or equal to 4 could not be a witness.

CLASSROOM EXERCISE

If one chooses the witness $C=5$, then $K=30$ could be a co-witness, but $K=9$ could not.

Lemma 2.2.1. $(x+1)^{n} \in \mathcal{O}\left(x^{n}\right)$.
Proof: Let C be the largest coefficient in the (binomial) expansion of $(x+1)^{n}$, which has $n+1$ terms. Then $(x+1)^{n} \leq C(n+1) x^{n}$.

Example 2.2.2: The proof of Lemma 2.2.1 uses the witnesses

$$
C=\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor} \text { and } K=0
$$

Theorem 2.2.2. Let $p(x)$ be a polynomial of degree n. Then $p(x) \in \mathcal{O}\left(x^{n}\right)$.
Proof: Informally, just generalize Example 2.2.1. Formally, just apply Lemma 2.2.1.

Example 2.2.3: $100 n^{5} \in \mathcal{O}\left(e^{n}\right)$. Observing that $n=e^{\ln n}$ inspires what follows.
Proof: Taking the upper Riemann sum with unit-sized intervals for $\ln x=\int_{1}^{n} \frac{d x}{x}$ implies for $n>1$ that

$$
\begin{aligned}
\ln (n) & <\frac{1}{1}+\frac{1}{2}+\cdots+\frac{1}{n} \\
& \leq\left(\frac{1}{1}+\cdots+\frac{1}{5}\right)+\frac{1}{6}+\cdots+\frac{1}{n} \\
& \leq\left(\frac{1}{1}+\cdots+\frac{1}{5}\right)+\frac{1}{6}+\cdots+\frac{1}{6} \\
& \leq 5+\frac{n-5}{6}
\end{aligned}
$$

Therefore, $6 \ln n \leq n+25$, and accordingly,
$100 n^{5}=100 \cdot e^{5 \ln n}<100 \cdot e^{n+25}<e^{32} \cdot e^{n}$
We have used the witnesses $C=e^{32}$ and $K=0$.
Theorem 2.2.3. Powers dominate logs.
Proof: See Example 2.2.3.
Theorem 2.2.4. Exponential dominate polynomials.
Proof: See Example 2.2.3.

Example 2.2.4: $\quad 2^{n} \in \mathcal{O}(n!)$.
Proof:

$$
\begin{aligned}
\overbrace{2 \cdot 2 \cdots 2}^{n \text { times }} & =2 \cdot 1 \cdot \overbrace{2 \cdot 2 \cdots 2}^{n-1}{ }^{\text {times }} \\
& \leq 2 \cdot 1 \cdot 2 \cdot 3 \cdots n=2 n!
\end{aligned}
$$

We have used the witnesses $C=2$ and $K=0$.

BIG-THETA CLASSES

DEF: Let f and g be functions $\mathcal{R} \rightarrow \mathcal{R}$. Then f is in the class $\Theta(g)$ ("big-theta of $\boldsymbol{g} ")$ if $f \in \mathcal{O}(g)$ and $g \in \mathcal{O}(f)$.

