Integers and Division

Notations

- \mathcal{Z} : set of integers
- $\mathcal{N}:$ set of natural numbers
- $\mathcal{R}:$ set of real numbers
- \mathcal{Z}^+ : set of positive integers

Some elements of number theory are needed in:

Data structures, Random number generation, Encryption of data for secure data transmission, Scheduling, etc. **Definition**: For integers a and b with $a \neq 0$ we define

a divides b iff \exists an integer c such that

b = ac

a divides b is written as $a \mid b$

3|15 3 ∦16 4|16 16 ∦4

 $a \neq 0$ and $a \mid b$ is equivalent to each of: a is a **factor** of bb is a **multiple** of a **Theorem:** Let a, b, and c be integers. Then

(1) if $a \mid b$ and $a \mid c$ then $a \mid (b + c)$.

(2) if $a \mid b$ then $a \mid bc$ for all integers c.

(3) if $a \mid b$ and $b \mid c$ then $a \mid c$.

Prime and composite numbers

A **prime** is a positive integer p that has only two distinct positive factors, 1 and p.

Examples: 2, 3, 5, 7, 11, 13, 29, 53, 997, 7951, ...

A positive integer greater that 1 which is not a prime is called **composite**.

Examples: $6 = 2 \cdot 3$, $35 = 5 \cdot 7$, $57 = 3 \cdot 19$, etc.

Fundamental Theorem of Arithmetic Every positive integer $n \ge 2$ can be written uniquely as a product of primes.

Proof (by strong induction).

Basis. n = 2 can be written as a trivial product of primes.

Induction hypothesis. Assume that any integer $2 \le k < n$ can we written as a product of primes.

Induction step. If n is prime we are done. If n is not a prime it is composite, i.e., $n = n_1 n_2$, where $2 \le n_1, n_2 < n$. By induction hypothesis n_1 and n_2 can be factored into product of primes so can be n. Large primes are used in *cryptology*.

 $40 = 2 \cdot 2 \cdot 2 \cdot 5 = 2^{3} \cdot 5$ $42 = 2 \cdot 3 \cdot 7$ $780 = 2 \cdot 2 \cdot 3 \cdot 5 \cdot 13 = 2^{2} \cdot 3 \cdot 5 \cdot 13$

 $550 = 2 \cdot 5 \cdot 5 \cdot 11 = 2 \cdot 5^2 \cdot 11$

Theorem If *n* is a composite number then *n* has a prime factor $\leq \sqrt{n}$.

Proof. If *n* is composite then *n* has a factor a, 1 < a < n, hence n = ab, a, b > 1. So $a \le \sqrt{n}$ or $b \le \sqrt{n}$ (otherwise ab > n). Assume without loss of generality that $a \le \sqrt{n}$. Then either *a* is prime or it has a prime factor less than $a \le \sqrt{n}$.

This is an important bound when trying to find a factorization of a number.

Example 1: n = 311

 $\sqrt{311} \doteq 17.6$

Test division by 2, 3, 5, 7, 11, 13, 17.

If none of these divides 311, it is a prime, otherwise we have found a factor. 311 is a prime number. Example 2: n = 253

 $\sqrt{253} \doteq 15.9$

Test division by 2, 3, 5, 7, 11, 13.

253 = 11*23 so 253 is composite.

Factorization of very large numbers by computers is a difficult problem.

This fact is used by some encryption systems. **RSA encryption system**, named after the inventors Rivest, Shamir, and Adelman.

Breaking a code would require factoring numbers with 250 to 500 digits that have only two prime factors, both large primes.

The Division Algorithm

Let *a* be an integer and *d* a positive integer. Then there exist unique integers *q* and *r*, $0 \le r < d$, such that

$$a = dq + r$$

a is called the dividend
d is called the divisor
r is called the remainder
q is called the quotient.

GCD and LCM

<u>Definition</u>: GCD(a, b), called the **greatest common divisor** of a and b, is the <u>largest</u> factor of a and b.

GCD(18, 24) = 6GCD(18, 13) = 1

When GCD(a, b) = 1, we say that a and b are relatively prime (or coprime)

<u>Definition</u>: LCM(a, b) is the least common multiple of a and b. It is the <u>smallest</u> integer having a and b as factors.

LCM(8,6) = 24LCM(8,12) = 24 $LCM(11,17) = 11 \cdot 17 = 187$

GCD and LCM

The prime factorization of a and b can be used to find GCD(a,b) or LCM(a,b):

 $780 = 2 \cdot 2 \cdot 3 \cdot 5 \cdot 13 = 2^2 \cdot 3 \cdot 5 \cdot 13$ $550 = 2 \cdot 5 \cdot 5 \cdot 11 = 2 \cdot 5^2 \cdot 11$

 $GCD(780, 550) = 2 \cdot 5 = 10$

take the factors common to both numbers with the lowest exponent.

 $LCM(780, 550) = 2^2 \cdot 3 \cdot 5^2 \cdot 11 \cdot 13 = 42900$ take all factors in both numbers with the highest exponent.

If
$$a = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n}$$
 and $b = p_1^{b_1} p_2^{b_2} \cdots p_n^{b_n}$

$$gcd(a,b) = p_1^{min(a_1,b_1)} p_2^{min(a_2,b_2)} \cdots p_n^{min(a_n,b_n)}$$
$$lcm(a,b) = p_1^{max(a_1,b_1)} p_2^{max(a_2,b_2)} \cdots p_n^{max(a_n,b_n)}$$
Note that $min(a_i,b_i) + max(a_i,b_i) = a_i + b_i$, leading to

Theorem

Let a and b be positive integers. Then

$$ab = gcd(a, b) \cdot lcm(a, b)$$

Example: $GCD(780, 550) = 2 \cdot 5 = 10$ $780 \cdot 550 = 429000$ LCM(780, 550) = 42900

Co-prime integers

<u>Definition</u>: The integers a and b are said to be **coprime** or **relatively prime** if gcd(a,b) = 1.

Example 1: 6 and 25 are co-prime, as gcd(6, 25) = 1.

Example 2: 6 and 27 are not co-prime, since $gcd(6,27) = 3 \neq 1$.

Example 3:

Any two distinct prime numbers are relatively prime.

Modular Arithmetic

Let a be an integer and m be a positive integer.

 $a \mod m$

is defined as the remainder when a is divided by m.

 $0 \leq (a \mod m) < m$

8 mod 7 = 112 mod 7 = 530 mod 7 = 251 mod 7 = 221 mod 7 = 0

Since the result of the *mod* operation must be ≥ 0 and < 7,

 $-3 \mod 7 = 4 \text{ since } -3 = -1 \cdot 7 + 4$ -22 mod 6 = 2 since $-22 = -4 \cdot 6 + 2$ Example of the use of *mod*:

A scheduling problem:

We have *processors* 1, 2, 3, 4, 5 and *jobs* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, ...

<u>Scheduling</u>: Given a job number, select a processor on which to execute the job.

round-robin scheduling:

jobs 1, 6, 11, 16, 21, ... are done on processor 2 jobs 2, 7, 12, 17, 22, ... are done on processor 3 jobs 3, 8, 13, 18, 23, ... are done on processor 4 jobs 4, 9, 14, 19, 24, ... are done on processor 5 jobs 5, 10, 15, 20, 25, ... are done on processor 1

job *i* is assigned to processor $(i \mod 5) + 1$

Congruences

<u>Definition</u>: Let a and b be integers and m be a positive integer. We say that

a is congruent to b modulo m if $m \mid (a - b)$.

 $a \equiv b \pmod{m}$

Examples:		
$5 \mid (14 - 9)$	\Leftrightarrow	$14 \equiv 9 \pmod{5}$
$5 \mid (19 - 9)$	\Leftrightarrow	$19 \equiv 9 \pmod{5}$
5 (32 – 12)	\Leftrightarrow	$32 \equiv 12 \pmod{5}$
$7 \mid (14 - 7)$	\Leftrightarrow	$14\equiv$ 7 (mod 7)

Theorem

Let a and b be integers and m be a positive integer. $a \equiv b \pmod{m} \iff (a \mod m) \equiv (b \mod m)$

Theorem

Let a and b be integers and m be a positive integer.

 $a \equiv b \pmod{m}$ iff a = b + km for some integer k

Problem:

Find all integers congruent to 7 modulo 6.

It is the infinite set $\{a : a = 7 + 6k, k \in Z\}$.

$7 \equiv 13 \pmod{6}$	$7\equiv19~({ m mod}~6)$
$7 \equiv 25 \pmod{6}$	$7 \equiv 31 \pmod{6}$
$7 \equiv 37 \pmod{6}$	$7 \equiv 1 \pmod{6}$
$7 \equiv -5 \pmod{6}$	$7\equiv -11~({ m mod}~6)$

Theorem.

Let *m* be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ then

$$a + c \equiv b + d \pmod{m}$$

 $a \cdot c \equiv b \cdot d \pmod{m}$

Applications

Hashing Functions

Assign memory locations to files/records so that they can be retrieved quickly.

Records like student records are identified by a **key**, which uniquely identifies each record.

Hashing function h assigns memory location h(k) to the record that has k as its key.

One of the hashing functions often used is:

$$h(k) = k \pmod{m}$$

where m is the number of available memory locations.

Hashing function should be onto so that all memory locations are possible, but it is not one-to-one (there are more possible keys than memory locations.) When this happens more than one file may be assigned to a memory location, we say that a collision occurs.

<u>Pseudorandom numbers</u>: Choose 4 integers:

- m the modulus,
- \boldsymbol{a} the multiplier,
- c the increment,
- x_0 the seed.
- $2 \leq a < m$ and $0 \leq c$, $x_0 < m$

$$x_{n+1} \equiv (ax_n + c) \mod m$$

 $n = 0, 1, 2, \dots$

<u>Cryptology</u>: Primitive encryption is to shift each letter in the English alphabet by m positions forward (or backward).

Example: In the English alphabet, each letter from a to z is assigned an integer from 0 to 25 respectively. A letter in position p is encrypted by:

$$f(p) = (p+m) \mod 26$$

To recover the message, do f^{-1} :

$$f^{-1}(p) = (p - m) \mod 26$$

Obviously this method does not provide a high level of security.