Integers and Division

Notations
\mathcal{Z} : set of integers
\mathcal{N} : set of natural numbers
\mathcal{R} : set of real numbers
\mathcal{Z}^{+}: set of positive integers

Some elements of number theory are needed in:

Data structures,
Random number generation,
Encryption of data for secure data transmission,
Scheduling, etc.

Definition: For integers a and b with $a \neq 0$ we define
a divides b iff \exists an integer c such that

$$
b=a c
$$

a divides b is written as $a \mid b$

3|15
3×16
4 | 16
16×4
$a \neq 0$ and $a \mid b$ is equivalent to each of:
a is a factor of b
b is a multiple of a

Theorem: Let a, b, and c be integers. Then
(1) if $a \mid b$ and $a \mid c$ then $a \mid(b+c)$.
(2) if $a \mid b$ then $a \mid b c$ for all integers c.
(3) if $a \mid b$ and $b \mid c$ then $a \mid c$.

Prime and composite numbers

A prime is a positive integer p that has only two distinct positive factors, 1 and p.

Examples: 2, 3, 5, 7, 11, 13, 29, 53, 997, 7951, \ldots

A positive integer greater that 1 which is not a prime is called composite.

Examples: $6=2 \cdot 3,35=5 \cdot 7,57=3 \cdot 19$, etc.

Fundamental Theorem of Arithmetic Every positive integer $n \geq 2$ can be written uniquely as a product of primes.

Proof (by strong induction).

Basis. $n=2$ can be written as a trivial product of primes.

Induction hypothesis. Assume that any integer $2 \leq$ $k<n$ can we written as a product of primes.

Induction step. If n is prime we are done. If n is not a prime it is composite, i.e., $n=n_{1} n_{2}$, where $2 \leq n_{1}, n_{2}<n$. By induction hypothesis n_{1} and n_{2} can be factored into product of primes so can be n.

Large primes are used in cryptology.

$$
40=2 \cdot 2 \cdot 2 \cdot 5=2^{3} \cdot 5
$$

$$
42=2 \cdot 3 \cdot 7
$$

$$
780=2 \cdot 2 \cdot 3 \cdot 5 \cdot 13=2^{2} \cdot 3 \cdot 5 \cdot 13
$$

$$
550=2 \cdot 5 \cdot 5 \cdot 11=2 \cdot 5^{2} \cdot 11
$$

Theorem If n is a composite number then n has a prime factor $\leq \sqrt{n}$.

Proof. If n is composite then n has a factor $a, 1<$ $a<n$, hence $n=a b, a, b>1$. So $a \leq \sqrt{n}$ or $b \leq \sqrt{n}$ (otherwise $a b>n$). Assume without loss of generality that $a \leq \sqrt{n}$. Then either a is prime or it has a prime factor less than $a \leq \sqrt{n}$.

This is an important bound when trying to find a factorization of a number.

Example 1: $n=311$
$\sqrt{311} \doteq 17.6$

Test division by $2,3,5,7,11,13,17$.

If none of these divides 311, it is a prime, otherwise we have found a factor. 311 is a prime number.

Example 2: $n=253$
$\sqrt{253} \doteq 15.9$

Test division by $2,3,5,7,11,13$.
$253=11 * 23$ so 253 is composite.

Factorization of very large numbers by computers is a difficult problem.

This fact is used by some encryption systems.
RSA encryption system, named after the inventors Rivest, Shamir, and Adelman.

Breaking a code would require factoring numbers with 250 to 500 digits that have only two prime factors, both large primes.

The Division Algorithm

Let a be an integer and d a positive integer. Then there exist unique integers q and r,
$0 \leq r<d$, such that

$$
a=d q+r
$$

a is called the dividend
d is called the divisor
r is called the remainder
q is called the quotient.

GCD and LCM

Definition: $G C D(a, b)$, called the greatest common divisor of a and b, is the largest factor of a and b.
$G C D(18,24)=6$
$G C D(18,13)=1$

When $G C D(a, b)=1$, we say that a and b are relatively prime (or coprime)

Definition: $\operatorname{LCM}(a, b)$ is the least common multiple of a and b. It is the smallest integer having a and b as factors.
$\operatorname{LCM}(8,6)=24$
$\operatorname{LCM}(8,12)=24$
$\operatorname{LCM}(11,17)=11 \cdot 17=187$

GCD and LCM

The prime factorization of a and b can be used to find $G C D(a, b)$ or $\operatorname{LCM}(a, b)$:

$$
\begin{aligned}
& 780=2 \cdot 2 \cdot 3 \cdot 5 \cdot 13=2^{2} \cdot 3 \cdot 5 \cdot \\
& 550=2 \cdot 5 \cdot 5 \cdot 11=2 \cdot 5^{2} \cdot 11
\end{aligned}
$$

$G C D(780,550)=2 \cdot 5=10$
take the factors common to both numbers with the lowest exponent.
$\operatorname{LCM}(780,550)=2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13=42900$ take all factors in both numbers with the highest exponent.

$$
\begin{aligned}
& \text { If } a=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{n}^{a_{n}} \text { and } \\
& b=p_{1}^{b_{1}} p_{2}^{b_{2}} \cdots p_{n}^{b_{n}}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{gcd}(a, b)=p_{1}^{\min \left(a_{1}, b_{1}\right)} p_{2}^{\min \left(a_{2}, b_{2}\right)} \ldots p_{n}^{\min \left(a_{n}, b_{n}\right)} \\
& \operatorname{lcm}(a, b)=p_{1}^{\max \left(a_{1}, b_{1}\right)} p_{2}^{\max \left(a_{2}, b_{2}\right)} \cdots p_{n}^{\max \left(a_{n}, b_{n}\right)}
\end{aligned}
$$

Note that $\min \left(a_{i}, b_{i}\right)+\max \left(a_{i}, b_{i}\right)=a_{i}+b_{i}$, leading to

Theorem

Let a and b be positive integers. Then

$$
a b=\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)
$$

Example:
$G C D(780,550)=2 \cdot 5=10$
$780 \cdot 550=429000$
$\operatorname{LCM}(780,550)=42900$

Co-prime integers

Definition: The integers a and b are said to be coprime or relatively prime if $\operatorname{gcd}(a, b)=1$.

Example 1:
6 and 25 are co-prime, as $\operatorname{gcd}(6,25)=1$.

Example 2:
6 and 27 are not co-prime, since $\operatorname{gcd}(6,27)=3 \neq 1$.

Example 3:
Any two distinct prime numbers are relatively prime.

Modular Arithmetic

Let a be an integer and m be a positive integer.

$$
a \bmod m
$$

is defined as the remainder when a is divided by m.

$$
0 \leq(a \bmod m)<m
$$

$8 \bmod 7=1$
$12 \bmod 7=5$
$30 \bmod 7=2$
$51 \bmod 7=2$
$21 \bmod 7=0$

Since the result of the mod operation must be ≥ 0 and <7,
$-3 \bmod 7=4$ since $-3=-1 \cdot 7+4$
$-22 \bmod 6=2$ since $-22=-4 \cdot 6+2$

Example of the use of mod:

A scheduling problem:

We have processors $1,2,3,4,5$
and jobs $1,2,3,4,5,6,7,8,9,10,11,12,13, \ldots$

Scheduling: Given a job number, select a processor on which to execute the job.
round-robin scheduling:
jobs $1,6,11,16,21, \ldots$ are done on processor 2 jobs $2,7,12,17,22, \ldots$ are done on processor 3 jobs $3,8,13,18,23, \ldots$ are done on processor 4 jobs $4,9,14,19,24, \ldots$ are done on processor 5 jobs $5,10,15,20,25, \ldots$ are done on processor 1
job i is assigned to processor $(i \bmod 5)+1$

Congruences

Definition: Let a and b be integers and m be a positive integer. We say that
a is congruent to b modulo m if $m \mid(a-b)$.

$$
a \equiv b(\bmod m)
$$

Examples:

$$
\begin{array}{lll}
5 \mid(14-9) & \Leftrightarrow & 14 \equiv 9(\bmod 5) \\
5 \mid(19-9) & \Leftrightarrow & 19 \equiv 9(\bmod 5) \\
5 \mid(32-12) & \Leftrightarrow & 32 \equiv 12(\bmod 5) \\
7 \mid(14-7) & \Leftrightarrow & 14 \equiv 7(\bmod 7)
\end{array}
$$

Theorem

Let a and b be integers and m be a positive integer. $a \equiv b(\bmod m) \quad \Leftrightarrow \quad(a \bmod m)=(b \bmod m)$

Theorem

Let a and b be integers and m be a positive integer. $a \equiv b(\bmod m)$ iff $a=b+k m$ for some integer k

Problem:
Find all integers congruent to 7 modulo 6.

It is the infinite set $\{a: a=7+6 k, k \in Z\}$.

$$
\begin{array}{ll}
7 \equiv 13(\bmod 6) & 7 \equiv 19(\bmod 6) \\
7 \equiv 25(\bmod 6) & 7 \equiv 31(\bmod 6) \\
7 \equiv 37(\bmod 6) & 7 \equiv 1(\bmod 6) \\
7 \equiv-5(\bmod 6) & 7 \equiv-11(\bmod 6)
\end{array}
$$

Theorem.

Let m be a positive integer. If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$ then

$$
\begin{aligned}
a+c & \equiv b+d(\bmod m) \\
a \cdot c & \equiv b \cdot d(\bmod m)
\end{aligned}
$$

Applications

Hashing Functions
Assign memory locations to files/records so that they can be retrieved quickly.

Records like student records are identified by a key, which uniquely identifies each record.

Hashing function h assigns memory location $h(k)$ to the record that has k as its key.

One of the hashing functions often used is:

$$
h(k)=k(\bmod m)
$$

where m is the number of available memory locations.

Hashing function should be onto so that all memory locations are possible, but it is not one-to-one (there are more possible keys than memory locations.) When this happens more than one file may be assigned to a memory location, we say that a collision occurs.

Pseudorandom numbers: Choose 4 integers:
m - the modulus,
a - the multiplier,
c - the increment,
x_{0} - the seed.
$2 \leq a<m$ and $0 \leq c, x_{0}<m$

$$
x_{n+1} \equiv\left(a x_{n}+c\right) \bmod m
$$

$n=0,1,2, \ldots$.

Cryptology: Primitive encryption is to shift each letter in the English alphabet by m positions forward (or backward).

Example: In the English alphabet, each letter from a to z is assigned an integer from 0 to 25 respectively. A letter in position p is encrypted by:

$$
f(p)=(p+m) \bmod 26
$$

To recover the message, do f^{-1} :

$$
f^{-1}(p)=(p-m) \bmod 26
$$

Obviously this method does not provide a high level of security.

