Integers and Algorithms

Find the GCD by prime factorization is time consuming.
The Euclidean Algorithm
Let $a=b q+r, \quad$ all are integers, then:

$$
G C D(a, b)=G C D(b, r)
$$

If we apply this repeatedly then:

$$
G C D(a, b)=\ldots=G C D\left(r_{n}, 0\right)=r_{n}
$$

Details

Lemma: If a, b are integers not both zero then

$$
G C D(a, b)=\left\{\begin{aligned}
G C D(b, a \bmod b) & : \quad b \neq 0 \\
a & : \quad b=0
\end{aligned}\right.
$$

Proof. Let c be a common divisor of a and b. Since by Division algorithm $a=q \cdot b+a \bmod b$ then $a \bmod b=a-q \cdot b$ and thus $c \mid(a \bmod b)$, so c is a common divisor of b and $a \bmod b$.

Euclidean Algorithm

Let $r_{0}=a, r_{1}=b$ and assume that $a \geq b$. By repeated application of the Division algorithm we get

$$
\begin{array}{ll}
r_{0}=q_{1} r_{1}+r_{2}, & 0 \leq r_{2}<r_{1} \\
r_{1}=q_{2} r_{2}+r_{3}, & 0 \leq r_{3}<r_{2}
\end{array}
$$

$$
\begin{aligned}
r_{n-2} & =q_{n-1} r_{n-1}+r_{n}, \quad 0 \leq r_{n}<r_{n-1} \\
r_{n-1} & =q_{n} r_{n}
\end{aligned}
$$

Notation: $\operatorname{GCD}(a, b)=(a, b)$. Strictly decreasing sequence of nonnegative integers $a=r_{0} \geq$ $r_{1}>r_{2} \ldots, r_{n} \geq 0$ (starting from r_{1}) terminates at 0 after at most a iterations. By the Lemma

$$
\begin{aligned}
& (a, b)=\left(r_{0}, r_{1}\right) \\
& =\left(r_{1}, r_{2}\right)=\ldots=\left(r_{n-1}, r_{n}\right)=\left(r_{n}, 0\right)=r_{n} .
\end{aligned}
$$

Hence (a, b) is the last nonzero remainder.

Example: Find GCD $(662,414)$

$$
\begin{aligned}
& 662=414 \cdot 1+248 \\
& 414=248 \cdot 1+166 \\
& 248=166 \cdot 1+82 \\
& 166=82 \cdot 2+2 \\
& 82=2 \cdot 41+0
\end{aligned}
$$

Therefore $G C D(662,414)=2$

Note: students should review the representations of integers using different bases.

Applications of Number Theory

Example: use the Fundamental Theorem of Arithmetic to show that $\log _{2} 3$ is an irrational number.

Proof (by contradiction). Assume $\log _{2} 3=\frac{a}{b}$ therefore $3=2^{\frac{a}{b}}$ or $2^{a}=3^{b}$ but this is impossible following the Fundamental Theorem of Arithmetic. Therefore $\log _{2} 3$ cannot be written as $\frac{a}{b}$ or $\log _{2} 3$ is irrational.

Theorem: a and b are integers then there exist integers s and t such that:

$$
G C D(a, b)=s a+t b
$$

(Bezout's identity).

Example: express $G C D(662,414)=2$ as a linear combination of 662 and 414.

To express $G C D(662,414)=2$ as a linear combination of 662 and 414 we backtrack the steps of the Euclidean algorithm.

$$
\begin{aligned}
& 2=166-\underline{82} \cdot 2 \\
& \underline{82}=248-\underline{166} \cdot 1 \\
& \underline{166}=414-\underline{248} \cdot 1 \\
& \underline{248}=\underline{662}-\underline{414} \cdot 1
\end{aligned}
$$

Backsubstitution gives:
$G C D(662,414)=2=166-\underline{82} \cdot 2$

$$
\begin{aligned}
& =166-(248-166) \cdot 2 \\
& =166 \cdot 3-248 \cdot 2 \\
& =(414-248) \cdot 3-248 \cdot 2 \\
& =414 \cdot 3-\underline{248 \cdot 5} \\
& =414 \cdot 3-(662-414) \cdot 5 \\
& =(662)(-5)+(\boxed{414})(8)
\end{aligned}
$$

Therefore
$G C D(662,414)=(662)(-5)+(414)(8)$

Lemma 1 (Euclid): If a, b, c are integers and $G C D(a, b)=1$ and $a \mid b c$, then $a \mid c$.

Proof. We have by Bezout's identity

$$
(a, b)=1=a \cdot s+b \cdot t
$$

Multiplying both sides by c we have

$$
c=a(c s)+(b c) t .
$$

Assumption $a \mid b c$ implies that a divides the RHS and thus it divides the LHS, i. e., $a \mid c$.

Lemma 2: (Generalization of Lemma 1) If p is prime and if $p \mid a_{1} \cdot a_{2} \cdots a_{n}$ where a_{i} are integers, then $p \mid a_{i}$ for some i.

Proof. To prove this Lemma use induction on n. The case $n=1$ is trivial.

Assume that the result is true for n (induction hypothesis). Consider the product of $n+1$ integers $\left(a_{1} \cdots a_{n}\right) a_{n+1}=b a_{n+1}$ that is divisible by p. By the Euclid's Iemma $p \mid b$ or $p \mid a_{n+1}$. In the latter case we are done. In the former case by induction hypothesis $p \mid a_{i}$ for some $1 \leq i \leq n$.

Problem Prove that the decomposition of a composite into primes is unique. This is part of the Fundamental Theorem of Arithmetic.

Proof. We prove this by contradiction and Lemma 2. Assume that there are two different prime factorizations of n :

$$
n=p_{1} p_{2} \cdots p_{s}=q_{1} q_{2} \cdots q_{t}
$$

where $p_{1} \leq \ldots \leq p_{s}$ and $q_{1} \leq \ldots \leq q_{t}$ are all primes. Remove all common primes from the two factorizations to obtain

$$
p_{i_{1}} p_{i_{2}} \cdots p_{i_{u}}=q_{j_{1}} q_{j_{2}} \cdots q_{j_{v}}
$$

where the primes on the LHS differ from the primes on the RHS, $u \geq 1, v \geq 1$ (because original factorizations were presumed to differ). However, by Lemma 2, $p_{i_{1}} \mid q_{j_{k}}$ for some k which is impossible, since $q_{j_{k}}$ is prime that is different from $p_{i_{1}}$.

Theorem Let m be a positive integer, and a, b, c be integers. If $a c \equiv b c(\bmod m)$ and $G C D(c, m)=1$ then $a \equiv b \quad(\bmod m)$.

Proof.

$$
\begin{aligned}
& a c \equiv b c \quad(\bmod m) \Longleftrightarrow \\
& m|(a c-b c) \Longleftrightarrow m| c(a-b)
\end{aligned}
$$

Since $(c, m)=1$ we have by Euclid's Iemma

$$
m \mid(a-b) \Longleftrightarrow a \equiv b \quad(\bmod m)
$$

Inverse of $a(\bmod m)$:
If \bar{a} exists such that $\bar{a} \cdot a \equiv 1(\bmod m)$ we say \bar{a} is an inverse of $a(\bmod m)$.

Linear Congruences

$$
a x \equiv b(\bmod m)
$$

is called a linear congruence, m is a positive integer, a, b are integers, x is an integer variable.

Theorem: If a, m are relatively prime integers, $m>1$, then an inverse of a modulo m exists and is unique modulo m.

Proof. Existence.

By Bezout's identity there exist integers s, t such that $G C D(a, m)=1=s a+t m$ thus $s a+$ $t m \equiv 1(\bmod m)$. Since $m \mid t m$ then $t m \equiv$ $0(\bmod m)$ thus $s a \equiv 1(\bmod m)$ or $s=\bar{a}$ (mod m).

Uniqueness.

Let $b a \equiv 1 \quad(\bmod m)$. Since $\bar{a} a \equiv 1 \quad(\bmod m)$ we have $b a-\bar{a} a=(b-\bar{a}) a \equiv 0 \quad(\bmod m)$. Since (a, m) = 1 Euclid's lemma implies $b-\bar{a} \equiv 0$ $(\bmod m)$ or $b \equiv \bar{a} \quad(\bmod m)$.

Example: Find the inverse of 5 modulo 9.
$\operatorname{GCD}(5,9)=1$ therefore inverse of 5 modulo 9 exists.
The Euclidean algorithm gives:

$$
\begin{aligned}
& 9=5 \cdot 1+\underline{4} \\
& 5=\underline{4} \cdot 1+1
\end{aligned}
$$

Hence: $1=5-4=5-(9-5)=2 \cdot 5-9$
Or: $1 \equiv 2 \cdot 5(\bmod 9)$
Therefore 2 is the inverse of 5 modulo 9 .

Theorem: The solution to the linear congruence $a x \equiv b(\bmod m)$ exists if $G C D(a, m)=1$.

If $G C D(a, m)=1$ then \bar{a} exists. Multiply both sides of the congruence by \bar{a} to obtain

$$
x \equiv \bar{a} \cdot b(\bmod m) .
$$

Problem: Solve the linear congruence $5 x \equiv 3(\bmod 9)$.

Since 2 is an inverse of 5 modulo 9 , multiply both sides of $5 x \equiv 3(\bmod 9)$ by 2 we obtain:
$x \equiv 2 \cdot 3=6(\bmod 9)$

Chinese Remainder Theorem

Let $m_{1}, m_{2}, \ldots, m_{n}$ be pairwise relatively prime positive integers. The system:

$$
\begin{aligned}
& x \equiv a_{1}\left(\bmod m_{1}\right) \\
& x \equiv a_{2}\left(\bmod m_{2}\right)
\end{aligned}
$$

.

$$
x \equiv a_{n}\left(\bmod m_{n}\right)
$$

has unique solution modulo $m=m_{1} \cdot m_{2} \cdots m_{n}$ (i . e., there is a solution x with $0 \leq x<m$ and all other solutions are congruent to $x(\bmod m)$.)

Proof. Existence.

Take $M_{k}=\frac{m}{m_{k}}, k=1, \ldots, n$, so $M_{k}=\prod_{i=1, i \neq k}^{n} m_{i}$.
Since $\left(m_{i}, m_{k}\right)=1$ for $i \neq k$ then $\left(m_{k}, M_{k}\right)=1$ and
$\exists y_{k}: y_{k} \equiv \bar{M}_{k} \quad\left(\bmod m_{k}\right) \Longrightarrow M_{k} y_{k} \equiv 1 \quad\left(\bmod m_{k}\right)$.
We show that the solution is

$$
x \equiv a_{1} y_{1} M_{1}+\ldots+a_{n} y_{n} M_{n} \quad(\bmod m)
$$

Since $M_{j} \equiv 0 \quad\left(\bmod m_{k}\right), j \neq k$ and $M_{k} y_{k} \equiv 1 \quad\left(\bmod m_{k}\right)$ we have

$$
\begin{aligned}
& x \equiv a_{1} y_{1} M_{1}+\ldots+a_{n} y_{n} M_{n} \\
& \equiv a_{k} M_{k} y_{k} \equiv a_{k} \quad\left(\bmod m_{k}\right) \quad k=1, \ldots, n .
\end{aligned}
$$

Uniqueness.

Let $y=a_{1} z_{1} M_{1}+\ldots+a_{n} z_{n} M_{n}$ be a solution to the system of congruences, where $z_{k} \equiv \bar{M}_{k}$ $\left(\bmod m_{k}\right)$. Then

$$
y \equiv a_{k} M_{k} z_{k} \equiv a_{k} \quad\left(\bmod m_{k}\right) .
$$

Hence

$$
x-y \equiv 0 \quad\left(\bmod m_{k}\right) \Longleftrightarrow x \equiv y \quad(\bmod m)
$$

Example: solve the system of congruences

$$
\begin{aligned}
& x \equiv 2(\bmod 3) \\
& x \equiv 3(\bmod 5) \\
& x \equiv 2(\bmod 7)
\end{aligned}
$$

$$
\begin{aligned}
& M_{1}=35, \quad M_{2}=21, \quad M_{3}=15 \\
& y_{1}=2, \quad y_{2}=1, \quad y_{3}=1
\end{aligned}
$$

$$
x \equiv 2 \cdot 2 \cdot 35+3 \cdot 1 \cdot 21+2 \cdot 1 \cdot 15(\bmod 105)
$$

$$
x \equiv 233=23(\bmod 105)
$$

Computing with Large Integers

Very large integers can be represented by a set of small integers. For example we can represent large integers by using moduli of 95, 97, 98, 99. These numbers are pairwise relatively prime integers.

Example: 123684 can be represented by

$$
\begin{aligned}
& 123684 \bmod 99=33 \\
& 123684 \bmod 98=8 \\
& 123684 \bmod 97=9 \\
& 123684 \bmod 95=89
\end{aligned}
$$

Therefore 123684 is represented by (33, 8, 9, 89).

Similarly

413456 is represented by $(32,92,42,16)$.

Arithmetic on large integers can be done using these representations.
$123684+413456$ is equivalent to
$(33,8,9,89)+(32,92,42,16)=$
(65 mod 99,100 mod $98,51 \bmod 97,105 \mathrm{mod}$ 95)

$$
=(65,2,51,10)
$$

To find the sum solve

$$
\begin{aligned}
& x \equiv 65(\bmod 99) \\
& x \equiv 2(\bmod 98) \\
& x \equiv 51(\bmod 97) \\
& x \equiv 10(\bmod 95)
\end{aligned}
$$

Fermat Little Theorem

If p is a prime, a is an integer not divisible by p. Then

$$
a^{p-1} \equiv 1(\bmod p) .
$$

Furthermore for any $a \in Z$

$$
a^{p} \equiv a(\bmod p)
$$

There are integers which satisfy the FLT but are not prime. For example $341=11 \cdot 31$, but $2^{341-1} \equiv 1 \quad(\bmod 341)$.

Proof of Fermat Little Theorem

Define

$$
\begin{aligned}
R & =\{1,2, \ldots, p-1\} \\
S & =\{a r \bmod p: r \in R\} \\
& =\{a \cdot 1 \bmod p, a \cdot 2 \bmod p, \ldots, a(p-1) \bmod p\} .
\end{aligned}
$$

If $r \in R$ and $a r \bmod p=0$ then $r \bmod p=0$, a contradiction. Therefore $0 \notin S$, and it follows that $S \subseteq R$. Let $r_{1}, r_{2} \in R$. If $a r_{1} \bmod p=$ $a r_{2} \bmod p$ then $a r_{1} \equiv a r_{2}(\bmod p)$ and so $r_{1} \equiv r_{2}(\bmod p)$. It follows that $r_{1}=r_{2}$, since no two distinct members of R are congruent modulo p. Therefore $|S|=p-1=|R|$, and it follows that $S=R$. The product of the elements of R and the product of the elements of S must therefore be equal, so that

$$
\begin{aligned}
(p-1)! & =\prod_{r=1}^{p-1}(a r \bmod p) \\
& \equiv \prod_{r=1}^{p-1} a r \equiv a^{p-1}(p-1)!\quad(\bmod p)
\end{aligned}
$$

Because p is prime we have $p \nmid(p-1)$!, hence $\operatorname{gcd}(p,(p-1)!)=1$. Therefore

$$
\begin{aligned}
a^{p-1}(p-1)! & \equiv(p-1)!\quad(\bmod p), \\
a^{p-1} & \equiv 1 \quad(\bmod p) .
\end{aligned}
$$

RSA Public Key Cryptosystem

(Rivest, Shamir, Adleman)

Step 1:
Translate text into large blocks of integers
Example: STOP $\rightarrow 18191415$
each block is denoted by M.
Therefore a long text is translated into several blocks of integers denoted by $M^{\prime} s$.

Step 2: Encryption
Use two large primes p and $q, n=p \cdot q$, and an exponent e which is relatively prime to
$(p-1)(q-1)$.
The encryption formula is:

$$
C=M^{e} \bmod n
$$

Each block of integers in Step 1 is encrypted by this formula.

Example: use $p=43, q=59, n=p \cdot q=2537$ $e=13$. Note that:
$G C D(e,(p-1)(q-1))=G C D(13,2436)=1$ Therefore block 1 is encrypted as:
$C_{1} \equiv 1819^{13} \bmod 2537=2081$
Block 2 is encrypted as:
$C_{2} \equiv 1415^{13} \bmod 2537=2182$
The encrypted message is: $\underline{2081} \underline{2182}$

Step 3: Decryption
Knowing p, q, e we find d the inverse of e modulo $(p-1)(q-1)$
The decryption formula is:

$$
P=C^{d} \bmod n
$$

Each encrypted block is decrypted by this formula.

Example: Continuing the example above we first calculate d using the table method.

n	q_{n}	r_{n}	s_{n}	t_{n}
0		2436	1	0
2	187	5	1	-187
3	2	3	-2	375
4	1	2	3	-562
5	1	1	-5	937
6	2	0	13	-2436

Thus we get $d=937$, therefore the decrypted message for block 1 is:

$$
\begin{aligned}
& P_{1}=2081^{937} \bmod 2537=1819 \rightarrow S T \\
& P_{2}=2182^{937} \bmod 2537=1415 \rightarrow O P
\end{aligned}
$$

Next we give the proof that RSA encryption method works.

Proof of RSA Scheme

Decryption key:

$$
d \equiv \bar{e} \quad(\bmod (p-1)(q-1))
$$

exists since $(e,(p-1)(q-1))=1$. Hence

$$
d e \equiv 1 \quad(\bmod (p-1)(q-1))
$$

or

$$
d e=1+k(p-1)(q-1), \quad k \in Z
$$

Since $C=M^{e} \bmod n$ then $C \equiv M^{e}(\bmod n)$.
Thus

$$
\begin{aligned}
& C^{d} \equiv\left(M^{e}\right)^{d}=M^{d e}=M^{1+k(p-1)(q-1)} \\
& =M \cdot M^{k(p-1)(q-1)}
\end{aligned}
$$

By Fermat's little theorem and assuming $(M, p)=$ $(M, q)=1$

$$
\begin{aligned}
& M^{p-1} \equiv 1 \quad(\bmod p) \\
& M^{q-1} \equiv 1 \quad(\bmod q)
\end{aligned}
$$

Hence

$$
\begin{aligned}
& C^{d} \equiv M \cdot\left(M^{p-1}\right)^{k(q-1)} \equiv M \cdot 1 \equiv M \quad(\bmod p) \\
& C^{d} \equiv M \cdot\left(M^{q-1}\right)^{k(p-1)} \equiv M \cdot 1 \equiv M \quad(\bmod q)
\end{aligned}
$$

Then since $(p, q)=1$ it follows from CRT

$$
M=C^{d} \quad \bmod \quad p q
$$

