
Integers and Algorithms

Find the GCD by prime factorization is time

consuming.

The Euclidean Algorithm

Let a = bq + r, all are integers, then:

GCD(a, b) = GCD(b, r)

If we apply this repeatedly then:

GCD(a, b) = .... = GCD(rn,0) = rn
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Details

Lemma: If a, b are integers not both zero then

GCD(a, b) =

{
GCD(b, a mod b) : b 6= 0

a : b = 0

Proof. Let c be a common divisor of a and b.
Since by Division algorithm a = q · b + a mod b

then a mod b = a− q · b and thus c|(a mod b),
so c is a common divisor of b and a mod b.

Euclidean Algorithm

Let r0 = a, r1 = b and assume that a ≥ b. By
repeated application of the Division algorithm
we get

r0 = q1r1 + r2, 0 ≤ r2 < r1
r1 = q2r2 + r3, 0 ≤ r3 < r2

.

.

rn−2 = qn−1rn−1 + rn, 0 ≤ rn < rn−1

rn−1 = qnrn.
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Notation: GCD(a,b)=(a,b). Strictly decreas-

ing sequence of nonnegative integers a = r0 ≥
r1 > r2 . . . , rn ≥ 0(starting from r1) terminates

at 0 after at most a iterations. By the Lemma

(a, b) = (r0, r1)

= (r1, r2) = . . . = (rn−1, rn) = (rn,0) = rn.

Hence (a, b) is the last nonzero remainder.



Example: Find GCD(662,414)

662 = 414 · 1 + 248

414 = 248 · 1 + 166

248 = 166 · 1 + 82

166 = 82 · 2 + 2

82 = 2 · 41 + 0

Therefore GCD(662,414) = 2

Note: students should review the representa-

tions of integers using different bases.
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Applications of Number Theory

Example: use the Fundamental Theorem of

Arithmetic to show that log23 is an irrational

number.

Proof (by contradiction). Assume log23 = a
b

therefore 3 = 2
a
b or 2a = 3b but this is impos-

sible following the Fundamental Theorem of

Arithmetic. Therefore log23 cannot be written

as a
b or log23 is irrational.
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Theorem: a and b are integers then there exist

integers s and t such that:

GCD(a, b) = sa + tb

(Bezout’s identity).

Example: express GCD(662,414) = 2 as a lin-

ear combination of 662 and 414.

To express GCD(662,414) = 2 as a linear com-

bination of 662 and 414 we backtrack the steps

of the Euclidean algorithm.

2 = 166− 82 · 2
82 = 248− 166 · 1
166 = 414− 248 · 1
248 = 662− 414 · 1
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Backsubstitution gives:

GCD(662,414) = 2 = 166− 82 · 2
= 166− (248− 166) · 2
= 166 · 3− 248 · 2
= ( 414 − 248) · 3− 248 · 2
= 414 · 3− 248 · 5
= 414 · 3− ( 662 − 414 ) · 5
= ( 662 )(−5) + ( 414 )(8)

Therefore

GCD(662,414) = (662)(−5) + (414)(8)
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Lemma 1 (Euclid): If a, b, c are integers and

GCD(a, b) = 1 and a | bc, then a | c.

Proof. We have by Bezout’s identity

(a, b) = 1 = a · s + b · t.
Multiplying both sides by c we have

c = a(cs) + (bc)t.

Assumption a|bc implies that a divides the RHS

and thus it divides the LHS, i. e., a | c.
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Lemma 2: (Generalization of Lemma 1) If p

is prime and if p | a1 · a2 · · · an where ai are in-

tegers, then p | ai for some i.

Proof. To prove this Lemma use induction on

n. The case n = 1 is trivial.

Assume that the result is true for n (induction

hypothesis). Consider the product of n +1 in-

tegers (a1 · · · an)an+1 = ban+1 that is divisible

by p. By the Euclid’s lemma p|b or p|an+1. In

the latter case we are done. In the former case

by induction hypothesis p|ai for some 1 ≤ i ≤ n.
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Problem Prove that the decomposition of a

composite into primes is unique. This is part

of the Fundamental Theorem of Arithmetic.

Proof. We prove this by contradiction and

Lemma 2. Assume that there are two different

prime factorizations of n:

n = p1p2 · · · ps = q1q2 · · · qt

where p1 ≤ . . . ≤ ps and q1 ≤ . . . ≤ qt are all

primes. Remove all common primes from the

two factorizations to obtain

pi1pi2 · · · piu = qj1qj2 · · · qjv

where the primes on the LHS differ from the

primes on the RHS, u ≥ 1, v ≥ 1 (because

original factorizations were presumed to differ).

However, by Lemma 2, pi1|qjk for some k which

is impossible, since qjk is prime that is different

from pi1.
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Theorem Let m be a positive integer, and

a, b, c be integers. If ac ≡ bc (mod m) and

GCD(c, m) = 1 then a ≡ b (mod m).

Proof.

ac ≡ bc (mod m) ⇐⇒
m|(ac− bc) ⇐⇒ m|c(a− b)

Since (c, m) = 1 we have by Euclid’s lemma

m|(a− b) ⇐⇒ a ≡ b (mod m).

Inverse of a(mod m):

If ā exists such that ā · a ≡ 1(mod m) we say ā

is an inverse of a(mod m).
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Linear Congruences

ax ≡ b (mod m)

is called a linear congruence, m is a positive in-

teger, a, b are integers, x is an integer variable.

Theorem: If a, m are relatively prime integers,

m > 1, then an inverse of a modulo m exists

and is unique modulo m.

Proof. Existence.

By Bezout’s identity there exist integers s, t

such that GCD(a, m) = 1 = sa + tm thus sa +

tm ≡ 1 (mod m). Since m|tm then tm ≡
0 (mod m) thus sa ≡ 1 (mod m) or s = ā

(mod m).
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Uniqueness.

Let ba ≡ 1 (mod m). Since āa ≡ 1 (mod m)

we have ba−āa = (b−ā)a ≡ 0 (mod m). Since

(a, m) = 1 Euclid’s lemma implies b − ā ≡ 0

(mod m) or b ≡ ā (mod m).
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Example: Find the inverse of 5 modulo 9.

GCD(5,9) = 1 therefore inverse of

5 modulo 9 exists.

The Euclidean algorithm gives:

9 = 5 · 1 + 4

5 = 4 · 1 + 1

Hence: 1 = 5− 4 = 5− (9− 5) = 2 · 5− 9

Or: 1 ≡ 2 · 5 (mod 9)

Therefore 2 is the inverse of 5 modulo 9 .
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Theorem: The solution to the linear congru-

ence ax ≡ b(mod m) exists if GCD(a, m) = 1.

If GCD(a, m) = 1 then ā exists. Multiply both

sides of the congruence by ā to obtain

x ≡ ā · b(mod m).

Problem: Solve the linear congruence

5x ≡ 3(mod 9).

Since 2 is an inverse of 5 modulo 9, multiply

both sides of 5x ≡ 3(mod 9) by 2 we obtain:

x ≡ 2 · 3 = 6(mod 9)
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Chinese Remainder Theorem

Let m1, m2, ...., mn be pairwise relatively prime

positive integers. The system:

x ≡ a1(mod m1)

x ≡ a2(mod m2)

.

.

.

x ≡ an(mod mn)

has unique solution modulo m = m1·m2···mn (i.

e., there is a solution x with 0 ≤ x < m and all

other solutions are congruent to x (mod m).)
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Proof. Existence.

Take Mk = m
mk

, k = 1, . . . , n, so Mk =
∏n

i=1,i 6=k mi.

Since (mi, mk) = 1 for i 6= k then (mk, Mk) = 1

and

∃yk : yk ≡ Mk (mod mk) =⇒ Mkyk ≡ 1 (mod mk).

We show that the solution is

x ≡ a1y1M1 + . . . + anynMn (mod m).

Since Mj ≡ 0 (mod mk), j 6= k

and Mkyk ≡ 1 (mod mk) we have

x ≡ a1y1M1 + . . . + anynMn

≡ akMkyk ≡ ak (mod mk) k = 1, . . . , n.
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Uniqueness.

Let y = a1z1M1 + . . . + anznMn be a solution

to the system of congruences, where zk ≡ Mk

(mod mk). Then

y ≡ akMkzk ≡ ak (mod mk).

Hence

x− y ≡ 0 (mod mk) ⇐⇒ x ≡ y (mod m).
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Example: solve the system of congruences

x ≡ 2(mod 3)

x ≡ 3(mod 5)

x ≡ 2(mod 7)

M1 = 35, M2 = 21, M3 = 15

y1 = 2, y2 = 1, y3 = 1

x ≡ 2 · 2 · 35 + 3 · 1 · 21 + 2 · 1 · 15(mod 105)

x ≡ 233 = 23(mod 105)
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Computing with Large Integers

Very large integers can be represented by a set

of small integers. For example we can repre-

sent large integers by using moduli of 95,97,98,99.

These numbers are pairwise relatively prime in-

tegers.

Example: 123684 can be represented by

123684 mod 99 = 33

123684 mod 98 = 8

123684 mod 97 = 9

123684 mod 95 = 89

Therefore 123684 is represented by (33,8,9,89).
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Similarly

413456 is represented by (32,92,42,16).

Arithmetic on large integers can be done using

these representations.

123684 + 413456 is equivalent to

(33,8,9,89) + (32,92,42,16) =

(65 mod 99,100 mod 98,51 mod 97,105 mod

95)

= (65,2,51,10)

To find the sum solve

x ≡ 65(mod 99)

x ≡ 2(mod 98)

x ≡ 51(mod 97)

x ≡ 10(mod 95)
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Fermat Little Theorem

If p is a prime, a is an integer not divisible by

p. Then

ap−1 ≡ 1(mod p).

Furthermore for any a ∈ Z

ap ≡ a(mod p).

There are integers which satisfy the FLT but

are not prime. For example 341 = 11 · 31, but

2341−1 ≡ 1 (mod 341).
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Proof of Fermat Little Theorem

Define

R = {1,2, . . . , p− 1}
S = {ar mod p : r ∈ R}

= {a · 1 mod p, a · 2 mod p, . . . , a(p− 1) mod p}.
If r ∈ R and ar mod p = 0 then r mod p = 0, a

contradiction. Therefore 0 /∈ S, and it follows

that S ⊆ R. Let r1, r2 ∈ R. If ar1 mod p =

ar2 mod p then ar1 ≡ ar2 (mod p) and so

r1 ≡ r2 (mod p). It follows that r1 = r2, since

no two distinct members of R are congruent

modulo p. Therefore |S| = p − 1 = |R|, and

it follows that S = R. The product of the

elements of R and the product of the elements

of S must therefore be equal, so that
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(p− 1)! =
p−1∏

r=1

(ar mod p)

≡
p−1∏

r=1

ar ≡ ap−1(p− 1)! (mod p).

Because p is prime we have p 6 |(p − 1)!, hence

gcd(p, (p− 1)!) = 1. Therefore

ap−1(p− 1)! ≡ (p− 1)! (mod p),

ap−1 ≡ 1 (mod p).
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RSA Public Key Cryptosystem

(Rivest, Shamir, Adleman)

Step 1:

Translate text into large blocks of integers

Example: STOP → 1819 1415

each block is denoted by M .

Therefore a long text is translated into several

blocks of integers denoted by M ′s.

Step 2: Encryption

Use two large primes p and q, n = p · q, and an

exponent e which is relatively prime to

(p− 1)(q − 1).

The encryption formula is:

C = Me mod n

Each block of integers in Step 1 is encrypted

by this formula.
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Example: use p = 43, q = 59, n = p · q = 2537

e = 13. Note that:

GCD(e, (p− 1)(q − 1)) = GCD(13,2436) = 1

Therefore block 1 is encrypted as:

C1 ≡ 181913 mod 2537 = 2081

Block 2 is encrypted as:

C2 ≡ 141513 mod 2537 = 2182

The encrypted message is: 2081 2182

Step 3: Decryption

Knowing p, q, e we find d the inverse of e mod-

ulo (p− 1)(q − 1)

The decryption formula is:

P = Cd mod n.

Each encrypted block is decrypted by this for-

mula.
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Example: Continuing the example above we

first calculate d using the table method.

n qn rn sn tn
0 2436 1 0
2 187 5 1 −187
3 2 3 −2 375
4 1 2 3 −562

5 1 1 −5 937
6 2 0 13 −2436

Thus we get d = 937, therefore the decrypted

message for block 1 is:

P1 = 2081937 mod 2537 = 1819 → ST

P2 = 2182937 mod 2537 = 1415 → OP

Next we give the proof that RSA encryption

method works.
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Proof of RSA Scheme

Decryption key:

d ≡ ē (mod (p− 1)(q − 1))

exists since (e, (p− 1)(q − 1)) = 1. Hence

de ≡ 1 (mod (p− 1)(q − 1))

or

de = 1 + k(p− 1)(q − 1), k ∈ Z.

Since C = Me mod n then C ≡ Me (mod n).

Thus

Cd ≡ (Me)d = Mde = M1+k(p−1)(q−1)

= M ·Mk(p−1)(q−1).

By Fermat’s little theorem and assuming (M, p) =

(M, q) = 1

Mp−1 ≡ 1 (mod p)

Mq−1 ≡ 1 (mod q).
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Hence

Cd ≡ M · (Mp−1)k(q−1) ≡ M · 1 ≡ M (mod p)

Cd ≡ M · (Mq−1)k(p−1) ≡ M · 1 ≡ M (mod q).

Then since (p, q) = 1 it follows from CRT

M = Cd mod pq.


