Permutations and Combinations

Definition 1: Permutation of a set of distinct objects is an ordered arrangement of these objects. (Order matters, no repetition).

Example: $S=\{1,2,3\}$, a permutation is (3,1,2).

Definition 2: $P(n, r)$ is a number of r-permutations of a set with n objects.

Theorem: Given S with n distinct elements, then:

$$
P(n, r)=n \cdot(n-1) \cdot(n-2) \cdots(n-r+1)
$$

Proof: given in class.

Definition 3: Combinations.
An r-combination of n elements is an unordered selection of r elements from n elements.

Example: $S=\{1,2,3,4\}$ then $\{1,2,3\}$ is a 3-combination of S.

$$
\begin{gathered}
C(n, r)=\frac{n!}{r!(n-r)!} ; 0 \leq r \leq n \\
P(n, r)=C(n, r) \cdot P(r, r) \\
C(n, r)=C(n, n-r)
\end{gathered}
$$

Binomial coefficient: $C(n, r)=\binom{n}{r}$

Theorem: Pascal identity.

$$
C(n+1, k)=C(n, k-1)+C(n, k)
$$

Theorem: $\sum_{k=0}^{n} C(n, k)=2^{n}$

Proof: given in class.

Vandermonde's Identity

Let m, n, and r be nonnegative integers, and $r \leq m, n$.
Then:

$$
C(m+n, r)=\sum_{k=0}^{r} C(m, r-k) C(n, k)
$$

Proof: given in class.

The Binomial Theorem

Let x and y be variables, and n a positive integer. Then:

$$
\left.\begin{array}{rl}
(x+y)^{n}= & \binom{n}{0} x^{n}+\binom{n}{1} x^{n-1} y+\binom{n}{2} x^{n-2} y^{2}+\cdots \\
& +\binom{n}{n-1} x y^{n-1}+\binom{n}{n} y^{n}
\end{array}\right)=\begin{aligned}
& = \\
& =
\end{aligned} \sum_{j=0}^{n} C(n, j) x^{n-j} y^{j} .
$$

Proof: by induction.

Example: $(x+y)^{4}=\sum_{j=0}^{4} C(4, j) x^{4-j} y^{j}$

$$
=x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4}
$$

Example: What is the coefficient of $x^{12} y^{13}$ in the expansion of $(x+y)^{25}$
Solution given in class.

Example: What is the coefficient of $x^{12} y^{13}$ in the expansion of $(2 x-3 y)^{25}$ Solution given in class.

Theorem: Let n be a positive integer. Then:

$$
\sum_{k=0}^{n}(-1)^{k} C(n, k)=0
$$

Proof given in class.

Permutations with Repetition

Example: For $\{1,2,3,4\},(2,2,1)$ and $(2,2,3)$ are permutations with repetition allowed.

The number of r -permutations of n objects with repetition is:

$$
n^{r}=\underbrace{n \cdot n \cdots \cdot n}_{r \text { times }}
$$

Combinations with Repetition

Theorem: There are $C(n+r-1, r) r$-combinations from a set with n elements when repetition is allowed.

Example: How many ways to select 5 bills from a bag containing $1 \$, 2 \$, 5 \$, 10 \$, 20 \$, 50 \$$, and $100 \$$ bills? Assuming that the order in which the bills are chosen does not matter.

Example: How many solutions does the equation: $x_{1}+x_{2}+x_{3}+x_{4}=11 \quad$ have, where $x_{1}, x_{2}, x_{3}, x_{4}$ are nonnegative integers?

Combinations and Permutations with or without Repetition

Type
Repetition Allowed?
Formula
r-permutations
No

$$
\frac{n!}{(n-r)!}
$$

r-combitations
No

$$
\frac{n!}{r!(n-r)!}
$$

r-permutations
Yes
n^{r}
r-combitations
Yes
$\frac{(n+r-1)!}{r!(n-1)!}$

Note: $C(n+r-1, r)=\frac{(n+r-1)!}{r!(n-1)!}$

Permutations of Sets with Indistinguishable Objects

Example: How many different strings can be made by reordering the letters of the word SUCCESS?

Theorem: The number of different permutations of n objects, where there are n_{1} indistinguishable objects of type $1, n_{2}$ indistinguishable objects of type $2, \ldots$. . , and n_{k} indistinguishable objects of type k , is:
$\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!}$

Distributing Objects into Boxes

Example: How many ways are there to distribute 5 cards to each of four players from a deck of 52 cards?

Theorem: The number of ways to distribute n distinguishable objects into k distinguishable boxes so that n_{i} objects are placed into box $i, i=1,2, \ldots, k$ equals:

$$
\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!}
$$

