Advanced Counting Techniques

Many counting problems cannot be solved by the previous counting techniques.

Example: How many bit strings of length n do not contain 2 consecutive 0's?

Answer: $a_{n}=a_{n-1}+a_{n-2}, a_{1}=2, \quad a_{2}=3$.

The answer is a recurrence relation.

Example: Compound interest at 7\%.

$$
\begin{aligned}
& P_{n}=P_{n-1}+0.07 P_{n-1}=1.07 P_{n-1} \\
& P_{n}=(1.07)^{n} P_{0}
\end{aligned}
$$

The Tower of Hanoi: The problem of moving n disks from one peg to another peg, one at a time, via a third peg in such a way that no disk is on top of a smaller one. Let H_{n} be a minimum number of moves needed to solve the problem.
We can summarize the solution as follows:
move $n-1$ top disks from peg 1 to 2 move the largest disk from peg 1 to peg 3 move $n-1$ disks from peg 2 to 3

Thus we have

$$
\begin{aligned}
& H_{n}=H_{n-1}+1+H_{n-1} \\
& H_{n}=2 H_{n-1}+1 \\
& H_{n}=2\left(2 H_{n-2}+1\right)+1=2^{2} H_{n-2}+2+1 \\
& \quad \ldots \ldots \ldots . \\
& H_{n}=2^{n-1} H_{1}+2^{n-2}+2^{n-3}+\ldots+1 \\
& H_{n}=\sum_{i=0}^{n-1} 2^{i}=2^{n}-1
\end{aligned}
$$

Example: How many bit strings of length n do not contain 2 consecutive 0's?

Answer: Denote by a_{n} the number of such strings. We will try to relate a_{n} with a_{n-1} and a_{n-2}.

Case 1: If the string begins with a 1 then it can be followed by a_{n-1} strings that do not contain 2 consecutive 0's.

Case 2: If the string begins with a 0 then the next bit must be 1, and it can be followed by a_{n-2} strings that do not contain 2 consecutive 0's.
Therefore: $a_{n}=a_{n-1}+a_{n-2}$, the initial conditions are easily found: $a_{1}=2$ and $a_{2}=3$.

Example: How many strings of n decimal digits (0-9) contain an even number of 0 's?

Answer: Let a_{n} denote the number of such strings. Hence
$a_{1}=9$.
$a_{2}=9 \cdot 9+1=82$

Case 1: Take a valid string length $n-1$ and append a digit $\neq 0$ (there are 9):
There are: $9 a_{n-1}$ such strings.
Case 2: Take a non-valid string length $n-1$ and append a 0 :
There are: $\left(10^{n-1}-a_{n-1}\right)$ such strings.

The total is: $a_{n}=10^{n-1}-a_{n-1}+9 a_{n-1}=8 a_{n-1}+$ 10^{n-1}.

Problems:

1. How many bit strings of length n do not contain 00?
2. How many bit strings of length n contain 00 ?
3. How many bit strings of length 7 either begin with 00 or (inclusive or) end with 111?
4. How many bit strings of length 10 either have 5 consecutive 0 's or 5 consecutive $1^{\prime} s$?

Solving Linear Recurrences

Linear homogeneous recurrences

Linear homogeneous recurrence relation of degree k with constant coefficients:

$$
a_{n}=c_{1} a_{n-1}+\ldots+c_{k} a_{n-k}
$$

where c_{1}, \ldots, c_{k} are real numbers with $c_{k} \neq 0$.

Characteristic equation:

$$
r^{k}-c_{1} r^{k-1}-\ldots-c_{k-1} r-c_{k}=0 .
$$

For example, solve $a_{n}-5 a_{n-1}+8 a_{n-2}-4 a_{n-3}=0$ with proper initial conditions.

Method:

1. Find the characteristic equation for the homogeneous recurrence.
2. Solve the characteristic equation for the roots $r_{1}, r_{2}, \ldots, r_{k}$.

There are two cases:

Case 1 If all the roots are distinct, then the solution is of the form:

$$
C_{1} r_{1}^{n}+C_{2} r_{2}^{n}+\ldots . .+C_{k} r_{k}^{n}
$$

Case 2 If some roots are the same, for example, three roots with $r_{1}=r_{2}=r_{3}=r$ then the solution is $C_{1} r^{n}+C_{2} n r^{n}+C_{3} n^{2} r^{n}$. If the three roots are $r_{1}, r_{2}=r_{3}=r$ then the solution is $C_{1} r_{1}^{n}+C_{2} r^{n}+C_{3} n r^{n}$. If the three roots are $r_{1}=r_{2}=r, r_{3}$ then the solution is $C_{1} r^{n}+C_{2} n r^{n}+C_{3} r_{3}^{n}$.

Examples

Example 1. Solve $a_{n}-3 a_{n-1}-4 a_{n-2}=0, n \geq 2$, $a_{0}=0, a_{1}=1$
Solution. The characteristic equation is $r^{2}-3 r-4=0$ which has roots $r_{1}=-1, r_{2}=4$ which are distinct, so use Case 1:
$a_{n}=C_{1}(-1)^{n}+C_{2}(4)^{n}$.
Using the initial conditions we obtain

$$
\begin{aligned}
& a_{0}=0=C_{1}+C_{2} \\
& a_{1}=1=-C_{1}+4 C_{2} .
\end{aligned}
$$

Solving the system above yields $C_{1}=-1 / 5$ and $C_{2}=$ $1 / 5$, thus

$$
a_{n}=\frac{(-1)^{n+1}+4^{n}}{5}
$$

Example 2. Solve
$a_{n}-5 a_{n-1}+8 a_{n-2}-4 a_{n-3}=0$,
$n \geq 3, a_{0}=0, a_{1}=1, a_{2}=2$.
Solution. Characteristic equation: $r^{3}-5 r^{2}+8 r-4=0$. We find one root $r=1$. We factor the equation $r^{3}-5 r^{2}+8 r-4=0$ by dividing the left side by $r-1$ $\Rightarrow(r-1)(r-2)^{2}=0 \Rightarrow r_{1}=1($ multiplicity $=1), r_{2}=$ 2(multiplicity $=2$). It's Case 2.
Therefore, $a_{n}=C_{1} 1^{n}+C_{2} 2^{n}+C_{3} n 2^{n}$.
With initial conditions $a_{0}=0, a_{1}=1, a_{2}=2$
we find $C_{1}=-2, C_{2}=2, C_{3}=-1 / 2$
Therefore

$$
a_{n}=-2+2\left(2^{n}\right)-\frac{1}{2} n\left(2^{n}\right) .
$$

Linear nonhomogeneous recurrences

Linear nonhomogeneous recurrence relation of degree k with constant coefficients:

$$
a_{n}=c_{1} a_{n-1}+\ldots+c_{k} a_{n-k}+F(n)
$$

where c_{1}, \ldots, c_{k} are real numbers with $c_{k} \neq 0$ and $F(n)$ is the function not identically zero depending only on n.

For example, solve $a_{n}-5 a_{n-1}+6 a_{n-2}=7^{n}$ with proper initial conditions. Denote $F(n)=$ the nonhomogeneous part, i.e. $F(n)=7^{n}$ in this example.

1. Find the solution $a_{n}^{(h)}$ of the associated homogeneous recurrence (see above).
2. Find a particular solution $a_{n}^{(p)}$ of the nonhomogeneous equation. A particular solution can be found by using a trial solution. The trial solution depends on the nonhomogeneous term $F(n)$.

Case 1 If $F(n)$ has the form $p(n) s^{n}$ where $p(n)$ is a polynomial in n of degree $k, \mathrm{~s}$ is a constant, and if s is not a root of the characteristic equation, then the trial solution has the same form as $q(n) s^{n}$, where $q(n)$ is a polynomial of degree k (see example below).

Case 2 If $F(n)$ has the form $p(n) s^{n}$ where $p(n)$ is a polynomial in n of degree k and s is a root of the characteristic equation with multiplicity m, then the trial solution has the form $n^{m} q(n) s^{n}$, where $q(n)$ has the same degree as $p(n)$.
3. The solution to the nonhomogenous equation is $a_{n}=a_{n}^{(h)}+a_{n}^{(p)}$.

Examples

Example. Solve $a_{n}-5 a_{n-1}+6 a_{n-2}=7^{n}$ Solution. The characteristic equation: $r^{2}-5 r+6=0$ Therefore $r_{1}=3, r_{2}=2 \Rightarrow a_{n}^{(h)}=C_{1} 3^{n}+C_{2} 2^{n}$.

Since 7 is not a root of the characteristic equation (the roots are 3 and 2) hence the trial solution is $C 7^{n}$ (Case 1).
Substituting the trial solution into the nonhomogeneous equation we have:

$$
\begin{aligned}
& C 7^{n}-5 C 7^{n-1}+6 C 7^{n-2}=7^{n} \\
& C 7^{2}-5 \cdot 7 C+6 C=7^{2} \\
& 49 C-35 C+6 C=49
\end{aligned}
$$

or $C=\frac{49}{20} \Rightarrow a_{n}^{(p)}=\frac{49}{20} 7^{n}$.
Combining $a_{n}^{(h)}$ and $a_{n}^{(p)}$ to get
$a_{n}=C_{1} 3^{n}+C_{2} 2^{n}+\frac{49}{20} 7^{n}$.
You can find C_{1} and C_{2} from the initial conditions (whatever they may be).

Big-O notation: Let $f(x)$ and $g(x)$ be two functions from the set of integers, we say
$f(x)=O(g(x))$ if there are constants C and k such that:
$|f(x)| \leq C|g(x)|$, for $x>k$.

Example: $f(x)=2 x^{2}+3 x-12$, and $g(x)=x^{2}$ we say $f(x)=O\left(x^{2}\right)$.

Example: $\operatorname{logn}!=O(n \log n)$.

Divide-and-Conquer relations

$$
T(n)=a T\left(\frac{n}{b}\right)+c .
$$

Assume: $\quad n=b^{k}$ or $k=\log _{b} n$.

$$
T\left(\frac{n}{b}\right)=a T\left(\frac{n}{b^{2}}\right)+c .
$$

$$
T(n)=a\left[a T\left(\frac{n}{b^{2}}\right)+c\right]+c
$$

$$
T(n)=a^{2} T\left(\frac{n}{b^{2}}\right)+a c+c .
$$

$$
T(n)=a^{k} T\left(\frac{n}{b^{k}}\right)+\left(a^{k-1}+\ldots \ldots+a+1\right) c .
$$

$$
T(n)=a^{k} T(1)+c \sum_{i=0}^{k-1} a^{i} .
$$

Assume $T(1)=1$.
If $a=1$ then

$$
T(n)=T(1)+c \cdot k=1+c \cdot \log _{b} n=O(\log n)
$$

If $a>1$ then

$$
T(n)=a^{k}+c \sum_{i=0}^{k-1} a^{i} .
$$

Since

$$
\sum_{i=0}^{k-1} a^{i}=\frac{a^{k}-1}{a-1} .
$$

We have

$$
T(n)=a^{k}\left[1+\frac{c}{a-1}\right]-\frac{c}{a-1} .
$$

Therefore

$$
T(n)=O\left(a^{k}\right)=O\left(a^{\log _{b} n}\right)=O\left(n^{\log _{b} a}\right)
$$

More details on Divide-and-Conquer relations We first derive solution in general case and then infer particular cases.

Theorem 1 Let $f(n)$ be an increasing function satisfying

$$
f(n)=a f(n / b)+g(n)
$$

whenever n is divisible by b, where $a \geq 1, b$ is an integer greater than 1 , and $g(n)$ is the positive sequence of real numbers. Then

$$
f(n)=a^{k} f\left(\frac{n}{b^{k}}\right)+\sum_{i=0}^{k-1} a^{i} g\left(\frac{n}{b^{i}}\right)
$$

when $n=b^{k}$ and

$$
f(n) \leq f\left(b^{k+1}\right)=a^{k+1} f(1)+\sum_{i=0}^{k} a^{i} g\left(\frac{n}{b^{i}}\right)
$$

when $n \neq b^{k}$.

Proof. Assume $n=b^{k}$. We have by iterative approach

$$
\begin{aligned}
& f(n)=a f(n / b)+g(n) \\
& =a\left[a f\left(\frac{n}{b^{2}}\right)+g\left(\frac{n}{b}\right)\right]+g(n) \\
& =a^{2} f\left(\frac{n}{b^{2}}\right)+a g\left(\frac{n}{b}\right)+g(n) \\
& =a^{2}\left[a f\left(\frac{n}{b^{3}}\right)+g\left(\frac{n}{b^{2}}\right)\right]+a g\left(\frac{n}{b}\right)+g(n) \\
& =a^{3} f\left(\frac{n}{b^{3}}\right)+a^{2} g\left(\frac{n}{b^{2}}\right) n+a g\left(\frac{n}{b}\right)+g(n) \\
& \cdots \\
& =a^{k} f(1)+\sum_{i=0}^{k-1} a^{i} g\left(\frac{n}{b^{i}}\right) .
\end{aligned}
$$

When $n \neq b^{k}$ then $b^{k}<n<b^{k+1}$ for some positive integer k. Since f is an increasing function

$$
f(n) \leq f\left(b^{k+1}\right)=a^{k+1} f(1)+\sum_{i=0}^{k} a^{i} g\left(\frac{n}{b^{i}}\right) .
$$

Special cases.

1. $g(n)=c$.
i) $a=1$. Let $n=b^{k}$. Then

$$
f(n)=a^{k} f(1)+c \sum_{i=0}^{k-1} a^{i}
$$

thus

$$
f(n)=f(1)+c k .
$$

But $n=b^{k} \Longrightarrow k=\log _{b} n$. Hence

$$
f(n)=f(1)+c \log _{b} n=O(\log n)
$$

When $n \neq b^{k}$, we have

$$
\begin{aligned}
& f(n)=f(1)+c(k+1) \\
& =f(1)+c+c \log _{b} n=O(\log n)
\end{aligned}
$$

ii) $a>1$. Let $n=b^{k}$. Using formula for the sum of geometric progression

$$
\sum_{i=0}^{k} r^{i}=\frac{r^{k+1}-1}{r-1}, \quad r \neq 0
$$

we have

$$
\begin{aligned}
f(n) & =f(1)+c \sum_{i=0}^{k-1} a^{i} \\
& =a^{k} f(1)+c \frac{a^{k}-1}{a-1} \\
& =a^{k}\left[f(1)+\frac{a}{a-1}\right]+\left(-\frac{c}{a-1}\right) \\
& =\left(f(1)+\frac{a}{a-1}\right) n^{\log _{b} a}+\left(-\frac{c}{a-1}\right) \\
& =C_{1} n^{\log _{b} a}+C_{2}=O\left(n^{\log _{b} a}\right)
\end{aligned}
$$

where we have used the identity $a^{\log _{b} n}=n^{\log _{b} a}$. When $n \neq b^{k}$ then

$$
f(n) \leq\left(C_{1} a\right) n^{\log _{b} a}+C_{2}=O\left(n^{\log _{b} a}\right) .
$$

We have thus proved

Theorem 2 Let $f(n)$ be an increasing function satisfying

$$
f(n)=a f(n / b)+c
$$

whenever n is divisible by b, where $a \geq 1, b$ is an integer greater than 1, and c is a positive real number. Then

$$
f(n)=\left\{\begin{array}{rll}
O(\log n) & \text { if } & a=1 \\
O\left(n^{\log _{b} a}\right) & \text { if } & a>1
\end{array}\right.
$$

2. $g(n)=c n^{d}$, where d is a positive real number. Let $n=b^{k}$. By Theorem 1 we have

$$
\begin{aligned}
& f(n)=a^{k} f\left(n / b^{k}\right)+\sum_{i=0}^{k-1} a^{i} c\left(\frac{n}{b^{i}}\right)^{d} \\
& =a^{k} f(1)+c n^{d} \sum_{i=0}^{k-1}\left(\frac{a}{b^{d}}\right)^{i} .
\end{aligned}
$$

When $n \neq b^{k}$

$$
f(n) \leq f\left(b^{k+1}\right)=a^{k+1} f(1)+c n^{d} \sum_{i=0}^{k}\left(\frac{a}{b^{d}}\right)^{i} .
$$

(i) $a=b^{d}$.

$$
\begin{aligned}
f(n) & =a^{k} f(1)+c n^{d} \sum_{i=0}^{k-1} 1^{i} \\
& =a^{k} f(1)+c n^{d} k \\
& =a^{k} f(1)+c n^{d} \log _{b} n \\
& =a^{\log _{b} n} f(1)+c n^{d} \log _{b} n \\
& =n^{\log _{b} a} f(1)+c n^{d} \log _{b} n \\
& =n^{d} f(1)+c n^{d} \log _{b} n \\
& =O\left(n^{d} \log n\right) .
\end{aligned}
$$

(ii) $a \neq b^{d}$. Then

$$
\begin{aligned}
& f(n) \\
& =a^{k} f(1)+c n^{d} \sum_{i=0}^{k-1}\left(\frac{a}{b^{d}}\right)^{i} \\
& =a^{k} f(1)+c n^{d} \frac{\left(\frac{a}{b^{d}}\right)^{k}-1}{\frac{a}{b^{d}}-1} \\
& =a^{k} f(1)+c n^{d} \frac{a^{k} b^{k d}}{b^{d}}-b^{d} \\
& a-b^{d} \\
& =a^{k}\left[f(1)+c \frac{n^{d} \frac{b^{d}}{b^{k d}}}{a-b^{d}}\right]-c n^{d} \frac{b^{d}}{a-b^{d}} \\
& =a^{\log _{b} n}\left[f(1)+c \frac{\left(\frac{n}{b^{k}}\right)^{d} b^{d}}{a-b^{d}}\right]-c n^{d} \frac{b^{d}}{a-b^{d}} \\
& =n^{\log _{b} a}\left[f(1)+c \frac{b^{d}}{a-b^{d}}\right]-c n^{d} \frac{b^{d}}{a-b^{d}} \\
& =C_{1} n^{\log _{b} a}+C_{2} n^{d}
\end{aligned}
$$

where $C_{1}=\left[f(1)+c \frac{b^{d}}{a-b^{d}}\right]$ and $C_{2}=c \frac{b^{d}}{b^{d}-a}$. If $a>b^{d}$ then $\log _{b} a>d$ and the last equation implies

$$
f(n)=O\left(n^{\log _{b} a}\right)
$$

otherwise if $a<b^{d}$ then $\log _{b} a<d$ and we have

$$
f(n)=O\left(n^{d}\right)
$$

If $n \neq b^{k}$ then

$$
\begin{aligned}
& f(n) \leq f\left(b^{k+1}\right)=a^{k+1} f(1)+c n^{d} \sum_{i=0}^{k}\left(\frac{a}{b^{d}}\right)^{i} \\
& =\left\{\begin{array}{lll}
O\left(n^{\log _{b} a}\right) & \text { if } & a>b^{d} \\
O\left(n^{d}\right) & \text { if } & a<b^{d}
\end{array}\right.
\end{aligned}
$$

whenever $a \neq b^{d}$ and

$$
\begin{aligned}
& f(n) \leq f\left(b^{k+1}\right) \\
& =a^{k+1} f(1)+c n^{d}(k+1) \\
& =O\left(n^{d} \log n\right)
\end{aligned}
$$

when $a=b^{d}$. We have thus proven the master theorem

Theorem 3 Let $f(n)$ be an increasing function satisfying

$$
f(n)=a f(n / b)+c n^{d}
$$

whenever n is divisible by b, where $a \geq 1, b$ is an integer greater than 1, and c, d are positive real numbers. Then

$$
f(n)=\left\{\begin{array}{lll}
O\left(n^{\log _{b} a}\right) & \text { if } & a>b^{d} \\
O\left(n^{d} \log n\right) & \text { if } & a=b^{d} \\
O\left(n^{d}\right) & \text { if } & a<b^{d}
\end{array}\right.
$$

Example. Solve

$$
f(n)=8 f(n / 2)+n^{2}
$$

where f is an increasing function, $f(1)=1$ and show that $f(n)=O\left(n^{\log 3}\right)$.

Solution. Following the proof Theorem 3 we have $a=8, b=2, c=1, d=2$, thus $a>b^{d}$ and

$$
\begin{aligned}
f(n) & =\left[1+\frac{1 \cdot 2^{2}}{8-2^{2}}\right] n^{\log _{2} 8}+\frac{1 \cdot 2^{2}}{2^{2}-8} n^{2} \\
& =2 n^{3}-n^{2} \\
& =O\left(n^{3}\right)
\end{aligned}
$$

which agrees with Theorem 3.

Here is the complete solution.

$$
\begin{aligned}
f(n) & =8 f(n / 2)+n^{2} \\
& =8\left[8 f\left(n / 2^{2}\right)+(n / 2)^{2}\right]+n^{2} \\
& =8^{2} f\left(n / 2^{2}\right)+8(n / 2)^{2}+n^{2} \\
& =8^{2}\left[8 f\left(n / 2^{3}\right)+\left(n / 2^{2}\right)^{2}\right]+8(n / 2)^{2}+n^{2} \\
& =8^{3} f\left(n / 2^{3}\right)+8^{2}\left(n / 2^{2}\right)^{2}+8(n / 2)^{2}+n^{2} \\
& =8^{k} f(1)+n^{2} \sum_{i=0}^{k-1} 8^{i}\left(\frac{1}{2^{2}}\right)^{i} \\
& =8^{k} f(1)+n^{2} \sum_{i=0}^{k-1}\left(\frac{8}{4}\right)^{i} \\
& =8^{k} f(1)+n^{2} \frac{2^{k}-1}{2-1} \\
& =8^{k}+n^{2}\left(2^{k}-1\right) .
\end{aligned}
$$

Next, $k=\log _{2} n, \quad 8^{k}=8^{\log _{2} n}=n^{\log _{2} 8}=n^{3}$. Thus

$$
\begin{aligned}
f(n) & =8^{\log _{2} n}+n^{2}\left(2^{\log _{2} n}-1\right) \\
& =n^{\log _{2} 8}+n^{2}\left(n^{\log _{2} 2}-1\right) \\
& =n^{3}+n^{2}(n-1) \\
& =2 n^{3}-n^{2} .
\end{aligned}
$$

Hence

$$
f(n)=2 n^{3}-n^{2}=O\left(n^{3}\right)
$$

Inclusion-Exclusion

Example: How many solutions are there to the equation:

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=30
$$

where $x_{i}, i=1,2,3,4,5,6$, is nonnegative integer such that

1. $x_{i}>1$ for $i=1,2,3,4,5,6 ?$
2. $x_{1} \leq 5$?
3. $x_{1} \leq 7$ and $x_{2}>8$?

Solution.

1. We require each $x_{i} \geq 2$. This uses up 12 of the 30 total required, so the problem is the same as finding the number of solutions to $x_{1}^{\prime}+x_{2}^{\prime}+x_{3}^{\prime}+$ $x_{4}^{\prime}+x_{5}^{\prime}+x_{6}^{\prime}=18$ with each $x_{i}^{\prime} s=x_{i}-1$ a nonnegative integer. The number of solutions is therefore $C(6+18-1,18)=C(23,18)=33649$.
2. The number of solutions without restriction is $C(6+30-1,30)=C(35,30)=324632$. The number of solutions violating the restriction by having $x_{1} \geq 6$ is $C(6+24-1,24)=C(29,24)=$ 118755. Therefore the answer is 324632-118755 $=205877$.
3. The number of solutions with $x_{2} \geq 9$ (as required) but without the restriction on x_{1} is
$C(6+21-1,21)=C(26,21)=65780$. The number of solution violating the additional restriction by having $x_{1} \geq 8$ is $C(6+13-1,13)=C(18,13)=$ 8568. Therefore the answer is $65780-8568=$ 57212.

Example: How many solutions are there to the equation:

$$
x_{1}+x_{2}+x_{3}=13
$$

where $x_{i}, i=1,2,3$ are nonnegative integer such that

$$
1 \leq x_{1} \leq 4, x_{2} \leq 6, x_{3} \leq 9 ?
$$

Solution. First we take care of the double constraint on x_{1} by substitution $x_{1}=p+1$, where $0 \leq p \leq 3$. The original problem is equivalent to finding solutions to

$$
p+d+h=12
$$

where p, d, h are nonnegative integers such that

$$
p \leq 3, d \leq 6, h \leq 9 ?
$$

Let S denote the set of all nonnegative integer solutions (p, d, h) of $p+d+h=12$;
let P denote the set of all (p, d, h) in S such that $p \geq 4$;
let D denote the set of all (p, d, h) in S such that $d \geq 7$;
let H denote the set of all (p, d, h) in S such that $h \geq 10$.

By the principle of inclusion-exclusion, we have

$$
\begin{align*}
& |S-(P \cup D \cup H)| \\
& =|S|-(|P|+|D|+|H|) \\
& +(|P \cap D|+|P \cap H|+|D \cap H|) \\
& -(|P \cap D \cap H|) \tag{1}
\end{align*}
$$

we also have $|S|=\binom{14}{2}=91$ and
$|P|=\binom{10}{2}=45$ (the number of nonnegative integer solutions of $p^{\prime}+d+h=8$),
$|D|=\binom{7}{2}=21$ (the number of nonnegative integer solutions of $p+d^{\prime}+h=5$),
$|H|=\binom{4}{2}=6$ (the number of nonnegative integer solutions of $p+d+h^{\prime}=2$),
$|P \cap D|=\binom{3}{2}=3$ (the number of nonnegative integer solutions of $p^{\prime}+d^{\prime}+h=1$),
and $|P \cap H|=|D \cap H|=|P \cap D \cap H|=0$.
Substituting these partial results to (1) we get the answer 22.

Example: A well-known result implies that a composite integer is divisible by a prime not exceeding its square root. Find a number of primes not exceeding 100.

Solution.

The only primes less than 10 are $2,3,5,7$, so the primes not exceeding 100 are these four primes and all positive integers $1<n \leq 100$ not divisible by 2,3,5,7. Let A_{i} be a subset of elements that have property P_{i} that an integer is divisible by $i, i=2,3,5,7$ and let $\left|A_{i}\right|=N\left(P_{i}\right)$. By the principle of inclusion-exclusion the answer is

$$
\begin{aligned}
& 4+N\left(P_{2}^{\prime} P_{3}^{\prime} P_{5}^{\prime} P_{7}^{\prime}\right) \\
& =4+\left(99-N\left(P_{2}\right)-N\left(P_{3}\right)-N\left(P_{5}\right)-N\left(P_{7}\right)\right. \\
& +N\left(P_{2} P_{3}\right)+N\left(P_{2} P_{5}\right)+N\left(P_{2} P_{7}\right) \\
& +N\left(P_{3} P_{5}\right)+N\left(P_{3} P_{7}\right)+N\left(P_{5} P_{7}\right) \\
& -N\left(P_{2} P_{3} P_{5}\right)-N\left(P_{2} P_{3} P_{7}\right)-N\left(P_{2} P_{5} P_{7}\right)-N\left(P_{3} P_{3} P_{7}\right) \\
& \left.+N\left(P_{2} P_{3} P_{5} P_{7}\right)\right) \\
& =4+\left(99-\left\lfloor\frac{100}{2}\right\rfloor-\left\lfloor\frac{100}{3}\right\rfloor-\left\lfloor\frac{100}{5}\right\rfloor-\left\lfloor\frac{100}{7}\right\rfloor\right. \\
& +\left\lfloor\frac{100}{2 \cdot 3}\right\rfloor+\left\lfloor\frac{100}{2 \cdot 5}\right\rfloor+\left\lfloor\frac{100}{2 \cdot 7}\right\rfloor+\left\lfloor\frac{100}{3 \cdot 5}\right\rfloor+\left\lfloor\frac{100}{3 \cdot 7}\right\rfloor \\
& -\left\lfloor\frac{100}{2 \cdot 3 \cdot 5}\right\rfloor-\left\lfloor\frac{100}{2 \cdot 3 \cdot 7}\right\rfloor-\left\lfloor\frac{100}{2 \cdot 5 \cdot 7}\right\rfloor-\left\lfloor\frac{100}{3 \cdot 5 \cdot 7}\right\rfloor \\
& \left.+\left\lfloor\frac{100}{2 \cdot 3 \cdot 5 \cdot 7}\right\rfloor\right) \\
& =4+(99-50-33-20-14 \\
& +16+10+7+6+4+2-3-2-1-0+0) \\
& =25 .
\end{aligned}
$$

