
Advanced Counting Techniques

Many counting problems cannot be solved by the pre-

vious counting techniques.

Example: How many bit strings of length n do not

contain 2 consecutive 0’s?

Answer: an = an−1 + an−2, a1 = 2, a2 = 3.

The answer is a recurrence relation.

Example: Compound interest at 7%.

Pn = Pn−1 + 0.07Pn−1 = 1.07Pn−1

Pn = (1.07)nP0
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The Tower of Hanoi: The problem of moving n disks
from one peg to another peg, one at a time, via a
third peg in such a way that no disk is on top of a
smaller one. Let Hn be a minimum number of moves
needed to solve the problem.
We can summarize the solution as follows:

move n− 1 top disks from peg 1 to 2
move the largest disk from peg 1 to peg 3
move n− 1 disks from peg 2 to 3

Thus we have

Hn = Hn−1 + 1 + Hn−1
Hn = 2Hn−1 + 1
Hn = 2(2Hn−2 + 1) + 1 = 22Hn−2 + 2 + 1

...........

Hn = 2n−1H1 + 2n−2 + 2n−3 + .... + 1
Hn =

∑n−1
i=0 2i = 2n − 1

Example: How many bit strings of length n do not
contain 2 consecutive 0’s?

Answer: Denote by an the number of such strings.
We will try to relate an with an−1 and an−2.
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Case 1: If the string begins with a 1 then it can be

followed by an−1 strings that do not contain 2 con-

secutive 0’s.

Case 2: If the string begins with a 0 then the next

bit must be 1, and it can be followed by an−2 strings

that do not contain 2 consecutive 0’s.

Therefore: an = an−1+an−2, the initial conditions are

easily found: a1 = 2 and a2 = 3.

Example: How many strings of n decimal digits (0-9)

contain an even number of 0’s?
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Answer: Let an denote the number of such strings.

Hence

a1 = 9.

a2 = 9 · 9 + 1 = 82

Case 1: Take a valid string length n − 1 and append

a digit 6= 0 (there are 9):

There are: 9an−1 such strings.

Case 2: Take a non-valid string length n− 1 and ap-

pend a 0:

There are: (10n−1 − an−1) such strings.

The total is: an = 10n−1 − an−1 + 9an−1 = 8an−1 +

10n−1.

4



Problems:

1. How many bit strings of length n do not contain

00?

2. How many bit strings of length n contain 00?

3. How many bit strings of length 7 either begin with

00 or (inclusive or) end with 111?

4. How many bit strings of length 10 either have 5

consecutive 0′s or 5 consecutive 1′s?
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Solving Linear Recurrences

Linear homogeneous recurrences

Linear homogeneous recurrence relation of degree k

with constant coefficients:

an = c1an−1 + . . . + ckan−k

where c1, . . . , ck are real numbers with ck 6= 0.

Characteristic equation:

rk − c1rk−1 − . . .− ck−1r − ck = 0.

For example, solve an−5an−1 +8an−2−4an−3 = 0

with proper initial conditions.
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Method:

1. Find the characteristic equation for the homoge-

neous recurrence.

2. Solve the characteristic equation for the roots

r1, r2, ..., rk.
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There are two cases:

Case 1 If all the roots are distinct, then the solution

is of the form:

C1rn
1 + C2rn

2 + ..... + Ckrn
k

Case 2 If some roots are the same,

for example, three roots with r1 = r2 = r3 = r

then the solution is C1rn + C2nrn + C3n2rn.

If the three roots are r1, r2 = r3 = r

then the solution is C1rn
1 + C2rn + C3nrn.

If the three roots are r1 = r2 = r, r3
then the solution is C1rn + C2nrn + C3rn

3.
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Examples

Example 1. Solve an − 3an−1 − 4an−2 = 0, n ≥ 2,

a0 = 0, a1 = 1

Solution. The characteristic equation is r2−3r−4 = 0

which has roots r1 = −1, r2 = 4 which are distinct, so

use Case 1:

an = C1(−1)n + C2(4)n.

Using the initial conditions we obtain

a0 = 0 = C1 + C2

a1 = 1 = −C1 + 4C2.

Solving the system above yields C1 = −1/5 and C2 =

1/5, thus

an =
(−1)n+1 + 4n

5
.
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Example 2. Solve

an − 5an−1 + 8an−2 − 4an−3 = 0,

n ≥ 3, a0 = 0, a1 = 1, a2 = 2.

Solution. Characteristic equation: r3−5r2+8r−4 = 0.

We find one root r = 1. We factor the equation

r3− 5r2 + 8r− 4 = 0 by dividing the left side by r− 1

⇒ (r − 1)(r − 2)2 = 0⇒ r1 = 1(multiplicity = 1), r2 =

2(multiplicity = 2). It’s Case 2.

Therefore, an = C11
n + C22

n + C3n2n.

With initial conditions a0 = 0, a1 = 1, a2 = 2

we find C1 = −2, C2 = 2, C3 = −1/2

Therefore

an = −2 + 2(2n)− 1

2
n(2n).
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Linear nonhomogeneous recurrences

Linear nonhomogeneous recurrence relation of degree

k with constant coefficients:

an = c1an−1 + . . . + ckan−k + F (n)

where c1, . . . , ck are real numbers with ck 6= 0 and F (n)

is the function not identically zero depending only on

n.

For example, solve an−5an−1+6an−2 = 7n with proper

initial conditions. Denote F (n) = the nonhomoge-

neous part, i.e. F (n) = 7n in this example.

1. Find the solution a
(h)
n of the associated homoge-

neous recurrence (see above).

2. Find a particular solution a
(p)
n of the nonhomo-

geneous equation. A particular solution can be

found by using a trial solution. The trial solution

depends on the nonhomogeneous term F (n).
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Case 1 If F (n) has the form p(n)sn where p(n) is a

polynomial in n of degree k, s is a constant, and if s

is not a root of the characteristic equation, then the

trial solution has the same form as q(n)sn, where q(n)

is a polynomial of degree k (see example below).

Case 2 If F (n) has the form p(n)sn where p(n) is a

polynomial in n of degree k and s is a root of the

characteristic equation with multiplicity m, then the

trial solution has the form nmq(n)sn, where q(n) has

the same degree as p(n).

3. The solution to the nonhomogenous equation is

an = a
(h)
n + a

(p)
n .
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Examples

Example. Solve an − 5an−1 + 6an−2 = 7n

Solution. The characteristic equation: r2−5r+6 = 0

Therefore r1 = 3, r2 = 2 ⇒ a
(h)
n = C13

n + C22
n.
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Since 7 is not a root of the characteristic equation

(the roots are 3 and 2) hence the trial solution is C7n

(Case 1).

Substituting the trial solution into the nonhomoge-

neous equation we have:

C7n − 5C7n−1 + 6C7n−2 = 7n

C72 − 5 · 7C + 6C = 72

49C − 35C + 6C = 49

or C = 49
20 ⇒ a

(p)
n = 49

207
n.

Combining a
(h)
n and a

(p)
n to get

an = C13
n + C22

n + 49
207

n.

You can find C1 and C2 from the initial conditions

(whatever they may be).
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Big-O notation: Let f(x) and g(x) be two functions

from the set of integers, we say

f(x) = O(g(x)) if there are constants C and k such

that:

|f(x)| ≤ C|g(x)|, for x > k.

Example: f(x) = 2x2 +3x−12, and g(x) = x2 we say

f(x) = O(x2).

Example: logn! = O(nlogn).
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Divide-and-Conquer relations

T (n) = aT (n
b) + c.

Assume: n = bk or k = logbn.

T (n
b) = aT ( n

b2
) + c.

T (n) = a[aT ( n
b2

) + c] + c

T (n) = a2T ( n
b2

) + ac + c.

T (n) = akT ( n
bk) + (ak−1 + ....... + a + 1)c.

T (n) = akT (1) + c
∑k−1

i=0 ai.
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Assume T (1) = 1.

If a = 1 then

T (n) = T (1) + c · k = 1 + c · logbn = O(logn)

If a > 1 then

T (n) = ak + c
k−1∑

i=0

ai.

Since
k−1∑

i=0

ai =
ak − 1

a− 1
.

We have

T (n) = ak[1 +
c

a− 1
]− c

a− 1
.

Therefore

T (n) = O(ak) = O(alogbn) = O(nlogba).
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More details on Divide-and-Conquer relations

We first derive solution in general case and then infer

particular cases.

Theorem 1 Let f(n) be an increasing function satis-

fying

f(n) = af(n/b) + g(n)

whenever n is divisible by b, where a ≥ 1, b is an integer

greater than 1, and g(n) is the positive sequence of

real numbers. Then

f(n) = akf

(
n

bk

)
+

k−1∑

i=0

aig

(
n

bi

)

when n = bk and

f(n) ≤ f(bk+1) = ak+1f(1) +
k∑

i=0

aig

(
n

bi

)

when n 6= bk.
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Proof. Assume n = bk. We have by iterative approach

f(n) = af(n/b) + g(n)

= a[af

(
n

b2

)
+ g

(
n

b

)
] + g(n)

= a2f

(
n

b2

)
+ ag

(
n

b

)
+ g(n)

= a2[af

(
n

b3

)
+ g

(
n

b2

)
] + ag

(
n

b

)
+ g(n)

= a3f

(
n

b3

)
+ a2g

(
n

b2

)
n + ag

(
n

b

)
+ g(n)

. . .

= akf(1) +
k−1∑

i=0

aig

(
n

bi

)
.

When n 6= bk then bk < n < bk+1 for some positive

integer k. Since f is an increasing function

f(n) ≤ f(bk+1) = ak+1f(1) +
k∑

i=0

aig

(
n

bi

)
.
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Special cases.

1. g(n) = c.

i) a = 1. Let n = bk. Then

f(n) = akf(1) + c
k−1∑

i=0

ai

thus

f(n) = f(1) + ck.

But n = bk =⇒ k = logb n. Hence

f(n) = f(1) + c logb n = O(logn).

When n 6= bk, we have

f(n) = f(1) + c(k + 1)

= f(1) + c + c logb n = O(logn).

ii) a > 1. Let n = bk. Using formula for the sum

of geometric progression

k∑

i=0

ri =
rk+1 − 1

r − 1
, r 6= 0

we have
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f(n) = f(1) + c
k−1∑

i=0

ai

= akf(1) + c
ak − 1

a− 1

= ak[f(1) +
a

a− 1
] + (− c

a− 1
)

=
(
f(1) +

a

a− 1

)
nlogb a + (− c

a− 1
)

= C1nlogb a + C2 = O(nlogb a)

where we have used the identity alogb n = nlogb a.

When n 6= bk then

f(n) ≤ (C1a)nlogb a + C2 = O(nlogb a).

We have thus proved



Theorem 2 Let f(n) be an increasing function

satisfying

f(n) = af(n/b) + c

whenever n is divisible by b, where a ≥ 1, b is

an integer greater than 1, and c is a positive real

number. Then

f(n) =

{
O(logn) if a = 1

O(nlogb a) if a > 1.



2. g(n) = cnd, where d is a positive real number.

Let n = bk. By Theorem 1 we have

f(n) = akf(n/bk) +
k−1∑

i=0

aic

(
n

bi

)d

= akf(1) + cnd
k−1∑

i=0

(
a

bd

)i
.

When n 6= bk

f(n) ≤ f(bk+1) = ak+1f(1) + cnd
k∑

i=0

(
a

bd

)i
.



(i) a = bd.

f(n) = akf(1) + cnd
k−1∑

i=0

1i

= akf(1) + cndk

= akf(1) + cnd logb n

= alogb nf(1) + cnd logb n

= nlogb af(1) + cnd logb n

= ndf(1) + cnd logb n

= O(nd logn).



(ii) a 6= bd. Then

f(n)

= akf(1) + cnd
k−1∑

i=0

(
a

bd

)i

= akf(1) + cnd

(
a
bd

)k − 1
a
bd − 1

= akf(1) + cnd
ak

bkdb
d − bd

a− bd

= ak[f(1) + c
nd bd

bkd

a− bd
]− cnd bd

a− bd

= alogb n[f(1) + c

(
n
bk

)d
bd

a− bd
]− cnd bd

a− bd

= nlogb a[f(1) + c
bd

a− bd
]− cnd bd

a− bd

= C1nlogb a + C2nd

where C1 = [f(1) + c bd

a−bd] and C2 = c bd

bd−a
. If

a > bd then logb a > d and the last equation

implies

f(n) = O(nlogb a)

otherwise if a < bd then logb a < d and we have

f(n) = O(nd).



If n 6= bk then

f(n) ≤ f(bk+1) = ak+1f(1) + cnd
k∑

i=0

(
a

bd

)i

=

{
O(nlogb a) if a > bd

O(nd) if a < bd

whenever a 6= bd and

f(n) ≤ f(bk+1)

= ak+1f(1) + cnd(k + 1)

= O(nd logn)

when a = bd. We have thus proven the master

theorem



Theorem 3 Let f(n) be an increasing function

satisfying

f(n) = af(n/b) + cnd

whenever n is divisible by b, where a ≥ 1, b is an

integer greater than 1, and c, d are positive real

numbers. Then

f(n) =





O(nlogb a) if a > bd

O(nd logn) if a = bd

O(nd) if a < bd.



Example. Solve

f(n) = 8f(n/2) + n2

where f is an increasing function, f(1) = 1 and show

that f(n) = O(nlog 3).

Solution. Following the proof Theorem 3 we have

a = 8, b = 2, c = 1, d = 2, thus a > bd and

f(n) = [1 +
1 · 22

8− 22
]nlog2 8 +

1 · 22

22 − 8
n2

= 2n3 − n2

= O(n3)

which agrees with Theorem 3.
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Here is the complete solution.

f(n) = 8f(n/2) + n2

= 8[8f(n/22) + (n/2)2] + n2

= 82f(n/22) + 8(n/2)2 + n2

= 82[8f(n/23) + (n/22)2] + 8(n/2)2 + n2

= 83f(n/23) + 82(n/22)2 + 8(n/2)2 + n2

= 8kf(1) + n2
k−1∑

i=0

8i
(

1

22

)i

= 8kf(1) + n2
k−1∑

i=0

(
8

4

)i

= 8kf(1) + n22
k − 1

2− 1

= 8k + n2(2k − 1).

Next, k = log2 n, 8k = 8log2 n = nlog2 8 = n3. Thus

f(n) = 8log2 n + n2(2log2 n − 1)

= nlog2 8 + n2(nlog2 2 − 1)

= n3 + n2(n− 1)

= 2n3 − n2.

Hence

f(n) = 2n3 − n2 = O(n3).
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Inclusion-Exclusion

Example: How many solutions are there to the equa-

tion:

x1 + x2 + x3 + x4 + x5 + x6 = 30

where xi, i = 1,2,3,4,5,6, is nonnegative integer such

that

1. xi > 1 for i = 1,2,3,4,5,6 ?

2. x1 ≤ 5?

3. x1 ≤ 7 and x2 > 8?
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Solution.

1. We require each xi ≥ 2. This uses up 12 of the

30 total required, so the problem is the same as

finding the number of solutions to x′1 + x′2 + x′3 +

x′4+x′5+x′6 = 18 with each x′is = xi−1 a nonnega-

tive integer. The number of solutions is therefore

C(6 + 18− 1,18) = C(23,18) = 33649.

2. The number of solutions without restriction is

C(6 + 30 − 1,30) = C(35,30) = 324632. The

number of solutions violating the restriction by

having x1 ≥ 6 is C(6 + 24 − 1,24) = C(29,24) =

118755. Therefore the answer is 324632 - 118755

= 205877.

3. The number of solutions with x2 ≥ 9 (as required)

but without the restriction on x1 is

C(6+21−1,21) = C(26,21) = 65780. The num-

ber of solution violating the additional restriction

by having x1 ≥ 8 is C(6+13−1,13) = C(18,13) =

8568. Therefore the answer is 65780 - 8568 =

57212.
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Example: How many solutions are there to the equa-

tion:

x1 + x2 + x3 = 13

where xi, i = 1,2,3 are nonnegative integer such that

1 ≤ x1 ≤ 4, x2 ≤ 6, x3 ≤ 9?

Solution. First we take care of the double constraint

on x1 by substitution x1 = p + 1, where 0 ≤ p ≤ 3.

The original problem is equivalent to finding solutions

to

p + d + h = 12

where p, d, h are nonnegative integers such that

p ≤ 3, d ≤ 6, h ≤ 9?

Let S denote the set of all nonnegative integer solu-

tions (p, d, h) of p + d + h = 12;

let P denote the set of all (p, d, h) in S such that p ≥ 4;

let D denote the set of all (p, d, h) in S such that d ≥ 7;

let H denote the set of all (p, d, h) in S such that

h ≥ 10.
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By the principle of inclusion-exclusion, we have

|S − (P ∪D ∪H)|
= |S| − (|P |+ |D|+ |H|)
+(|P ∩D|+ |P ∩H|+ |D ∩H|)
−(|P ∩D ∩H|) (1)

we also have |S| = (14
2 ) = 91 and

|P | = (10
2 ) = 45 (the number of nonnegative integer

solutions of p′ + d + h = 8),

|D| = (72) = 21 (the number of nonnegative integer

solutions of p + d′ + h = 5),

|H| = (42) = 6 (the number of nonnegative integer

solutions of p + d + h′ = 2),

|P ∩D| = (32) = 3 (the number of nonnegative integer

solutions of p′ + d′ + h = 1),

and |P ∩H| = |D ∩H| = |P ∩D ∩H| = 0.

Substituting these partial results to (1) we get the

answer 22.



Example: A well-known result implies that a compos-
ite integer is divisible by a prime not exceeding its
square root. Find a number of primes not exceeding
100.

Solution.

The only primes less than 10 are 2,3,5,7, so the primes
not exceeding 100 are these four primes and all pos-
itive integers 1 < n ≤ 100 not divisible by 2,3,5,7.
Let Ai be a subset of elements that have property Pi
that an integer is divisible by i, i = 2,3,5,7 and let
|Ai| = N(Pi). By the principle of inclusion-exclusion
the answer is

4 + N(P ′
2P

′
3P

′
5P

′
7)

= 4 + (99−N(P2)−N(P3)−N(P5)−N(P7)
+N(P2P3) + N(P2P5) + N(P2P7)
+N(P3P5) + N(P3P7) + N(P5P7)
−N(P2P3P5)−N(P2P3P7)−N(P2P5P7)−N(P3P3P7)
+N(P2P3P5P7))

= 4 + (99−
⌊
100

2

⌋
−

⌊
100

3

⌋
−

⌊
100

5

⌋
−

⌊
100

7

⌋

+

⌊
100

2 · 3

⌋
+

⌊
100

2 · 5

⌋
+

⌊
100

2 · 7

⌋
+

⌊
100

3 · 5

⌋
+

⌊
100

3 · 7

⌋

−
⌊

100

2 · 3 · 5

⌋
−

⌊
100

2 · 3 · 7

⌋
−

⌊
100

2 · 5 · 7

⌋
−

⌊
100

3 · 5 · 7

⌋

+

⌊
100

2 · 3 · 5 · 7

⌋
)

= 4 + (99− 50− 33− 20− 14
+16 + 10 + 7 + 6 + 4 + 2− 3− 2− 1− 0 + 0)
= 25.
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