Advanced Counting Techniques

Many counting problems cannot be solved by the pre-
vious counting techniques.

Example: How many bit strings of length n do not
contain 2 consecutive 0's?

Answer: anp = ap_1 + ap_o, a1 =2, ap = 3.

The answer is a recurrence relation.

Example: Compound interest at 7%.

Ph=P, _1+007P,_1=1.07P,_;



The Tower of Hanoi: The problem of moving n disks
from one peg to another peg, one at a time, via a
third peg in such a way that no disk is on top of a
smaller one. Let H,, be a minimum number of moves
needed to solve the problem.

We can summarize the solution as follows:

move n — 1 top disks from peg 1 to 2
move the largest disk from peg 1 to peg 3
move n — 1 disks from peg 2 to 3

Thus we have

Hp=Hp, 1+1+Hyp 1

H,=2H, 1+1

Hp=2(2H, 2+ 1)+1=22H, »+2+1
Hp,=2"1g 4224 on=34 41
Hy=Y"g2=2" -1

Example: How many bit strings of length n do not
contain 2 consecutive 0’'s?

Answer:. Denote by a, the number of such strings.
We will try to relate an with a,_1 and a,,_».




Case 1: If the string begins with a 1 then it can be
followed by a,,_1 strings that do not contain 2 con-
secutive O’s.

Case 2: If the string begins with a 0 then the next
bit must be 1, and it can be followed by a,,_o strings
that do not contain 2 consecutive O's.

T herefore: an, = a,_1+a,_o, the initial conditions are
easily found: a1 = 2 and ap = 3.

Example: How many strings of n decimal digits (0-9)
contain an even number of 0's?




Answer:. Let a, denote the number of such strings.
Hence

a1 = 9.

a>b=9-94+1 = 82

Case 1: Take a valid string length n — 1 and append
a digit #= 0 (there are 9):

There are: 9a,_1 such strings.

Case 2: Take a non-valid string length n — 1 and ap-
pend a O:

There are: (10"~ 1 —q,,_1) such strings.

The total is; an = 10" —a, 14+ 9a, 1 = 8a,_1 +
10n— 1,



Problems:

1. How many bit strings of length n do not contain
007

2. How many bit strings of length n contain 007

3. How many bit strings of length 7 either begin with
00 or (inclusive or) end with 1117

4. How many bit strings of length 10 either have 5
consecutive 0’s or 5 consecutive 1/s?



Solving Linear Recurrences

Linear homogeneous recurrences

Linear homogeneous recurrence relation of degree k
with constant coefficients:

an = C1anp_1+ ...+ Cra,_p

where cq,...,c, are real numbers with ¢ #= O.

Characteristic equation:

rk—clrk_l —...—Cp_1r —c. = 0.

For example, solve an —5a,_1+8a,_o>—4a,_3 =20
with proper initial conditions.



Method:

1. Find the characteristic equation for the homoge-
Neous recurrence.

2. Solve the characteristic equation for the roots

r1,7ro, ...,’I“k.



T here are two cases:

Case 1 If all the roots are distinct, then the solution
is of the form:

Cir1 + Cors + ... + Cyry

Case 2 If some roots are the same,

for example, three roots with r{ =ro =r3=r
then the solution is C1r™ 4+ Conr™ + C3n2rm.

If the three roots are r{,ro =rz3=r

then the solution is Cyry + Cor™ + Canr™.

If the three roots are r{ = ro = r,r3

then the solution is Ci1r™ + Conr™ + C3r§.



Examples

Example 1. Solve ay, — 3a,,_1 —4a,,_> =0,n > 2,

ag = 0,a1 =1

Solution. The characteristic equation is r2—3r—4 =0
which has roots r1 = —1,r, = 4 which are distinct, so
use Case 1:

an = C1(=1)" + Co(4)"™.

Using the initial conditions we obtain

ag =0=C1 4+ C
a; =1 =-C1+ 4C5.
Solving the system above yields C; = —1/5 and Cy =
1/5, thus
_ (CnmHt 4 an
5

an,



Example 2. Solve

an — 5a,_1 + 8a,,—_> —4a,,_3 =0,

n>3,a0 =0,a1 = 1,ap = 2.

Solution. Characteristic equation: r3—5r248r—4 = 0.
We find one root r = 1. We factor the equation
r3 —5r2 4+ 8r — 4 = 0 by dividing the left side by r —1
= (r — 1)(r — 2)2 = 0= r; = 1(multiplicity = 1),ro =
2(multiplicity = 2). It's Case 2.

Therefore, anp, = C11™ 4+ C52™ 4 C'3n22™.

With initial conditions ag = 0,a1 = 1,ap = 2

we find ('{ = —2,Cr = 2,3 = —1/2

T herefore

an = —2 4 2(2") — %n(zn).
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Linear nonhomogeneous recurrences

Linear nonhomogeneous recurrence relation of degree
k with constant coefficients:

an =c10p—-1+ ...+ cra,_r. + F(n)

where ¢, ..., ¢, are real numbers with ¢, 7% 0 and F'(n)
is the function not identically zero depending only on

n.

For example, solve ap—5a,_1+6a,_> = 7™ with proper
initial conditions. Denote F(n) = the nonhomoge-
neous part, i.e. F'(n) = 7" in this example.

1. Find the solution aq(zh) of the associated homoge-
neous recurrence (see above).

2. Find a particular solution aq(q,p) of the nonhomo-
geneous equation. A particular solution can be
found by using a trial solution. The trial solution
depends on the nonhomogeneous term F(n).
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Case 1 If F(n) has the form p(n)s™ where p(n) is a
polynomial in n of degree k, s is a constant, and if s
IS not a root of the characteristic equation, then the
trial solution has the same form as q(n)s", where ¢(n)
is @ polynomial of degree k (see example below).

Case 2 If F(n) has the form p(n)s™ where p(n) is a
polynomial in n of degree k£ and s is a root of the
characteristic equation with multiplicity m, then the
trial solution has the form n™g(n)s"™, where g(n) has
the same degree as p(n).

3. The solution to the nonhomogenous equation is

an = ay? +alf.
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Examples

Example. Solve ap — 5a,,_1 + 6a,_>=T7"
Solution. The characteristic equation: r2—5r+6 =0
Therefore r{ = 3,70 = 2 = o\ = 3" 4+ €27,
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Since 7 is not a root of the characteristic equation
(the roots are 3 and 2) hence the trial solution is C7"
(Case 1).

Substituting the trial solution into the nonhomoge-
neous equation we have:

CT" —5C7T" L4607V 2 =77
C72 -5.7C+6C =72
49C — 35C + 6C = 49

__ 49 (p) __ 49-n

Combining a%h) and aq(q,p) to get

an = C13" + Co2" + 3277

You can find 7y and Cy from the initial conditions
(whatever they may be).
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Big-O notation: Let f(x) and g(x) be two functions

from the set of integers, we say
f(x) = O(g(x)) if there are constants C and k such

that:
1f(z)| < Clg(z)|, for = > k.

Example: f(z) = 22243z — 12, and g(z) = 22 we say
f(x) = O(z?).

Example: logn! = O(nlogn).
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Divide-and-Conquer relations

T(n) =aT(3) +ec.

Assume: n = bF or k = logyn.

T(§) = aT() +c.

T(n) = alaT (%) +cl +

T(n) = aQT(b%) + ac + c.

T(n) = akT(bﬂk) + (aF=1 4 ... +a+ 1)c.

T(n) = a*T(1) + e F2% o
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Assume T'(1) = 1.
If a =1 then

T(n)=T(1)4+c-k=1+4 c-logyn = O(logn)

If a > 1 then
k—1
T(n)zak—l—cZaz.
i=0
Since
kil i k1
= a-1
We have
C C
T(n) = d"[1 + ] — .
a— 1 a—1

Therefore

T(n) = 0(a*) = 0(a'?%™) = O(n'o%%).



More details on Divide-and-Conquer relations
We first derive solution in general case and then infer
particular cases.

Theorem 1 Let f(n) be an increasing function satis-
fying

f(n) =af(n/b) +g(n)

whenever n is divisible by b, wherea > 1, b is an integer
greater than 1, and g(n) is the positive sequence of
real numbers. Then

Fm) = abf () + k;: a'g (1)
when n = b* and

k ' n
f(n) S fOMTH =a" L) + 3 o'y <_>

1
1=0 b

when n # bF.
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Proof. Assume n = bF. We have by iterative approach

f(n) =af(n/b) +g(n)

= alaf (b%) +g (%)] + g(n)
= a?f (1) +ag (%) + 9(m)
—az[af( )-I—g< )]-I—ag( )-I—g(n)

= a®f (15) +a% (15) n+ag (5) +9(m)

s+ R (1)

When n # b* then b* < n < bFT1 for some positive
integer k. Since f is an increasing function

Fn) < FOFH) = (1) 4 3 dly (%),

7
1=0 b
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Special cases.

1. g(n) =c.

i) a=1. Let n =b%. Then

_k it
f(n) =a f(l)-l-C_Za

1 =0
thus

f(n) = f(1) + ck.

But n = b* = k = log,n. Hence

f(n) = f(1) + clogyn = O(logn).
When n # b*, we have

fn)=f(1)+c(k+1)
= f(1) + c+ clogyn = O(logn).

i) a > 1. Let n = b*. Using formula for the sum
of geometric progression

koo k1o
Zfr?’:r , r7#0
=0 r—1

we have
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k—1
f(n) =fA)+c) a
i=0

k _
zakf(l)—l—ca L
a

a®[f(1) +

a c
a—1]+(_a—1

a

— Iogba .
(1) + ) nloma 4 (
— C«lnlogba _I_ 02 — O(nlogba)

)

C
a— 1

)

where we have used the identity a/°9% " = plodya

When n # bF then

f(n) < (Cra)n'°% 4+ Cy = O(n'0%9).

We have thus proved



Theorem 2 Let f(n) be an increasing function
satisfying

f(n) =af(n/b) +c

whenever n is divisible by b, where a > 1, b is

an integer greater than 1, and c is a positive real
number. Then

f(n):{ O(logn) if a=1

O(n!°%a) jf a> 1.



. g(n) = cn®, where d is a positive real number.

Let n = b*. By Theorem 1 we have

f(n) = a"f(n/b") + k;z a'c (%)d

= d"f(1) + cnd]:g (%)Z

When n # bF
k

F) < PO = aH L) ent Y (1)

d
1=0 b



(i) a = e

_ Kk Pl
f(n) =a"f(1)+cn 'Zl

1=0
= a" f(1) 4+ en%k
= d"£(2) —I—cndlogbn
= %% " £(1) 4+ en?logy n
= n'°9% (1) 4+ enlogy n
= n?f(1) —|—cndlogbn
= O(n%logn).



(ii) a # b%. Then
f(n)
= a*f(1) + cn® > (gy

d d
where C7 = [f(1) + caﬁbd] and Ch = deb_a- If

a > b then logya > d and the last equation
implies

f(n) = O(n'°% %)

otherwise if a < b then logya < d and we have

f(n) = O(n%).



If n # b* then
k a\l
F) < FEFY =) 4 end Y ()
1=0
[ o@°% ) if o >bd
] O(n%) if a<b?

whenever a # b% and

f(n) < FFTH

= a"T1f(1) + end(k + 1)

= O(n%logn)
when a = b%. We have thus proven the master
theorem



Theorem 3 Let f(n) be an increasing function
satisfying

f(n) = af(n/b) + cn’

whenever n is divisible by b, where a > 1, b is an

integer greater than 1, and c,d are positive real
numbers. Then

O(nl°%a) if a > b4

f(n) ={ O(n%logn) if a="b"
O(n%) if a<be.



Example. Solve

F(n) = 8£(n/2) + n?

where f is an increasing function, f(1) = 1 and show
that f(n) = O(n!°93).

Solution. Following the proof Theorem 3 we have
a=8b=2c=1,d=2, thus a > b% and

1.22 1.22
f(n) — []_ _|_ m]n|0928 _I_ 22 = 8n2
= 2n3 — n?
= 0(n°)

which agrees with Theorem 3.
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Here is the complete solution.

f(n) =8f(n/2) +n?
= 8[8f(n/2%) + (n/2)*] + n?
= 82f(n/22) + 8(n/2)? + n?
= 82[8f(n/2°) + (n/2°)°] + 8(n/2)* + n”
= 83f(n/23) +8%(n/2%)% + 8(n/2)* + n?

=8k £(1) 4+ n? 287(1)z

— 8k £(1) + n2 ;O (Z)

k
_ ok 2% —1
=8"f(1) +n 51

= 8% 4+ n2(2F - 1).

Next, k = logon, 8k =3809217 = ylo928 — ;3 Thys

f(n) — 8|092n + n2(2|092n . 1)
nI0928 + n2(nI0922 - 1)
=n3+n°(n—1)

= 2n3 — n2.

Hence

f(n) =2n3 —n? = 00>).
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Inclusion-Exclusion

Example: How many solutions are there to the equa-
tion:

1+ 2o+ x3 + x4 + 5 + 26 = 30

where x;, 1 = 1,2,3,4,5, 6, is nonnegative integer such
that

1. z; >1for:=1,2,3,4,5,6 7
2. 1 <57

3. 21 <7 and x5 > 87
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Solution.

1. We require each x; > 2. This uses up 12 of the
30 total required, so the problem is the same as
finding the number of solutions to «} + 5 + =5 +
xy + x5 +xp = 18 with each z/s = z;—1 a nonnega-
tive integer. The number of solutions is therefore
C(6+18—-1,18) = C(23,18) = 336409.

2. The number of solutions without restriction is
C(6+ 30 —1,30) = C(35,30) = 324632. The
number of solutions violating the restriction by
having z1 > 6 is C(6 +24 —1,24) = C(29,24) =
118755. Therefore the answer is 324632 - 118755
= 205877.

3. The number of solutions with z> > 9 (as required)
but without the restriction on x4 is
C(6+4+21—-1,21) = C(26,21) = 65780. The num-
ber of solution violating the additional restriction
by having z1 > 8is C(6+13—-1,13) = (C(18,13)
8568. Therefore the answer is 65780 - 8568
57212.
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Example: How many solutions are there to the equa-
tion:

x1+xo+x3 =13
where x;, ¢+ = 1,2,3 are nonnegative integer such that
1<z <420 < 67373 <97

Solution. First we take care of the double constraint
on x1 by substitution z1 = p+ 1, where 0 < p < 3.
The original problem is equivalent to finding solutions
to

p+d+h=12

where p,d, h are nonnegative integers such that

p<3,d<6,h<97

Let S denote the set of all nonnegative integer solu-
tions (p,d,h) of p+d+ h = 12;

let P denote the set of all (p,d,h) in S such that p > 4;
let D denote the set of all (p,d,h) in S such thatd > 7;

let H denote the set of all (p,d,h) in S such that
h > 10.
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By the principle of inclusion-exclusion, we have

S —(PUDUH)|

= |S| = (P|+ [D| + |H])

+(PND|+|PNH|+|DnNH|)

—(|PN"DnNH|) (1)
we also have |S| = (%) =91 and

1P| = (YY) = 45 (the number of nonnegative integer
solutions of p’ +d + h = 8),

|ID| = (£) = 21 (the number of nonnegative integer
solutions of p+d' + h = 5),
|H| = (3) = 6 (the number of nonnegative integer

solutions of p +d + h' = 2),

IPND|= (g’) = 3 (the number of nonnegative integer
solutions of p' +d' + h = 1),

and |[PNH|=|DNH|=|PNDnH|=0.

Substituting these partial results to (1) we get the
answer 22.



Example: A well-known result implies that a compos-
ite integer is divisible by a prime not exceeding its
square root. Find a number of primes not exceeding
100.

Solution.

The only primes less than 10 are 2,3,5,7, so the primes
not exceeding 100 are these four primes and all pos-
itive integers 1 < n < 100 not divisible by 2,3,5,7.
Let A; be a subset of elements that have property P,
that an integer is divisible by 7,2 = 2,3,5,7 and let
LAZ-| = N(FP;). By the principle of inclusion-exclusion
he answer Is

4 + N(PLPLPLPY)

=44 (99 — N(P2) — N(P3) — N(Ps) — N(F7)

+N(P>P3) + N(P>Ps) + N(P>Py)

+N(P3Ps) + N(P3Pr) + N(PsPr)

—~N(P2P3Ps) — N(P2P3P7) — N(P2PsP7) — N(PsPsPr)

+N(P>P3PsPr))
100 100 100 100
=4+ 9 {TJ - [T_ - [?J - [TJ
100 100 100 100 100
+ [ﬁJ + [ﬁJ + {ﬁ_ + [ﬁJ t [3—7J
100 100 100 100
a {2-3-5J Bl {2-3-7J Bl {2-5-7J Bl {3-5-7J
100
+|33e7)

=4+ (99 -50-33-20-14
+16+10+7+6+4+2-3-2-1-0+0)
= 25.
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