Graphs

$$
\mathbf{G}=(\mathbf{V}, \mathbf{E})
$$

V - set of vertices, E - set of edges

Undirected graphs

Simple graph: V - nonempty set of vertices, E set of unordered pairs of distinct vertices (no multiple edges or loops)
Multigraph: multiple edges allowed, loops not allowed
Pseudograph: multiple edges and loops allowed

Directed graphs

Directed graph: V - set of vertices, E - set of ordered pairs of vertices (loops allowed, multiple edges in the same direction not allowed)
Directed multigraph: loops and multiple directed edges allowed

Terminology: In undirected graphs vertex u and vertex v are called adjacent in undirected G iff $\{u, v\}$ is an edge in G. We say $\{u, v\}$ is incident on vertices u and v. The degree $d(v)$ of a vertex v is the number of edges incident on v.

Handshaking Theorem: For an undirected graph $G=$ (V, E):

$$
2 e=\sum_{v \in V} d(v)
$$

(true even for graphs with multiple edges and loops) Proof: It follows from the fact that each edge contributes 2 to the sum of degrees of vertices since it's incident to exactly 2 (possibly equal, i. e., loop) vertices.

Theorem: An undirected graph has an even number of vertices of odd degree.
Proof:
$2 e=\sum_{v \in V} d(v)=\sum_{v \in V_{1}} d(v)+\sum_{v \in V_{2}} d(v)$
$V_{1}=$ set of odd degree vertices
$V_{2}=$ set of even degree vertices
The second term of the RHS is even, hence $\sum_{v \in V_{1}} d(v)$ must also be even. But $d(v)$ in this sum is odd, hence the number of terms in this sum, i.e. $\left|V_{1}\right|$ must be even.

In a directed graph: (u, v) is an edge, u is the initial vertex (adjacent to v), and v is the terminal vertex (adjacent from u).
$d^{-}(v)$ is in-degree of vertex v
(i. e., \# of edges terminating at v).
$d^{+}(v)$ is out-degree of vertex v
(i. e., \# of edges originating at at v).

Theorem: Let G be a directed graph. Then:

$$
\sum_{v \in V} d^{-}(v)=\sum_{v \in V} d^{+}(v)=|E|
$$

More terminology:

- Complete graphs on n vertices K_{n} : a simple graph with exactly one edge between any pair of distinct vertices.
- Cycles $C_{n}, n \geq 3$: simple graph with vertices v_{1}, \ldots, v_{n} and edges $\left\{v_{1}, v_{2}\right\}, \ldots,\left\{v_{n}, v_{1}\right\}$.
- Wheels $W_{n}, n \geq 3$: add ($n+1$)-st vertex to C_{n} and connect it to each of n vertices in C_{n}.
- n-Cubes Q_{n} : simple graph with vertices representing 2^{n} bit strings of length $n, n \geq 1$ such that adjacent vertices have bit strings differing in exactly one bit position.
- Bipartite graphs: simple graphs such that V can be partitioned into 2 disjoint subsets V_{1} and V_{2} such that each edge connects a vertex in V_{1} and a vertex in V_{2}, and no edges connect 2 vertices that are both in V_{1} or in V_{2}.
- Complete bipartite graphs $K_{m, n}:\left|V_{1}\right|=m,\left|V_{2}\right|=$ n, there is an edge between two vertices iff one vertex is in V_{1} and the other in V_{2}.
- Local area networks.

Representing Graphs

Adjacency matrix: for simple graph $G=(V, E),|V|=$ n, is an nxn matrix A of $0^{\prime} s$ and $1^{\prime} s$, such that:

$$
a_{i j}= \begin{cases}1 & \text { if }\left(v_{i}, v_{j}\right) \in E \\ 0 & \text { otherwise }\end{cases}
$$

Incident matrix:

$$
m_{i j}= \begin{cases}1 & \text { if edge } e_{j} \text { is incident on } v_{i} \\ 0 & \text { otherwise }\end{cases}
$$

Examples: in class.

Isomorphism of graphs

Graphs with the same structure.

Definition: Two simple graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are isomorphic if:
a) There is a one-to-one and onto function f from V_{1} to V_{2}; and
b) Vertices a, b are adjacent in V_{1} iff vertices $f(a), f(b)$ are adjacent in V_{2} for all a, b in V_{1}.

Examples: in class.

It is difficult to determine if 2 graphs are isomorphic. There are n ! possibilities to check! However, it is simpler to show that two graphs are not isomorphic.

For isomorphism we have some invariant properties:

1. Two graphs must have the same number of vertices and the same number of edges.
2. $d\left(v_{i}\right)$ and $d\left(u_{i}\right)$ must be the same if $f\left(u_{i}\right)=v_{i}$.
3. Other invariant properties will come later.

Examples: in class.

Graph Connectivity

Path: A path of length n from u to v in an undirected graph is a sequence of edges $e_{1}, e_{2}, \ldots ., e_{n}$ which starts at u and ends at v.

A path is simple if it does not contain the same edge twice.

Circuit: if $u=v$, the path from u to u is a circuit.

Connectedness: An undirected graph is connected if there exists a path between every pair of vertices.

Theorem: There is a simple path between every pair of vertices in a connected undirected graph.

Paths and isomorphism:

Many ways that paths and circuits can help to determine if 2 graphs are isomorphic.

Example: The existence of a simple circuit of a particular length is a useful invariant to show isomorphism.

Example: given in class.

Connectedness in directed graphs

Definition: A directed graph is strongly connected if there exists a path from a to b and from b to a, whenever $a, b \in V$.

Definition: A directed graph is weakly connected if there exists a path between any 2 vertices in the underlying undirected graph.

Theorem (Counting paths between vertices):
Let G be a graph with vertices $v_{1}, v_{2}, \ldots ., v_{n}$ and adjacency matrix A. The number of paths of length r from v_{i} to v_{j} is equal to the (i, j) element of the power matrix A^{r}.

Proof and examples to be given in class.

Euler Paths and Euler Circuits

- An Euler circuit in G is a simple circuit (that does not cross the same edge twice) containing every edge of G.
- An Euler path in G is a simple path containing every edge of G.

Example: given in class.

Necessary and sufficient conditions for Euler circuits and Euler paths.

Theorem: If a connected graph has an Euler circuit then every vertex must have even degree.

Proof: in class.

Theorem: A connected graph has an Euler path but not an Euler circuit if and only if it has exactly two vertices of odd degree.

Proof: in class.

Hamilton Paths and Circuits

- A Hamilton circuit is a (simple) circuit passing through all vertices only once.
- A Hamilton path is a (simple) path passing through all vertices only once.

Example: given in class.

There are no necessary and sufficient conditions for the existence of Hamilton paths and circuits. For sufficient conditions there are many.

Theorem: If G is a simple graph with $n \geq 3$ then G has a Hamilton circuit if the degree of each vertex is $\geq\left\lceil\frac{n}{2}\right\rceil$.

Example: Gray codes (an application of Hamilton circuit to coding).

The Shortest Path Problems

Find the shortest path between two vertices of a weighted graph.

Dijstra's algorithm: All weights are positive. G is connected and simple graph. $w(i, j)=\infty$ if $\left(v_{i}, v_{j}\right)$ is not an edge.

Input: V, W
Denote: $a=v_{0}$ (the starting vertex), and $z=v_{n}$ (the end vertex).
for $i=1$ to n

$$
\begin{aligned}
& \quad L\left(v_{i}\right)=\infty \\
& L(a)=0 \\
& S=\phi
\end{aligned}
$$

while $(z \notin S)$
$\{u=$ a vertex not in S with $L(u)$ minimal
$S=S \cup\{u\}$
for all adjacent vertices v not in S if $L(u)+w(u, v)<L(v)$ then $L(v)=L(u)+w(u, v)\}$
$L(z)=$ length of shortest path from a to z.

