
An Open Source Approach

Brian C. Vermeire
Carlos A. Pereira

Hamidreza Karbasian

Fluid Dynamics
Computational



An Open Source Approach

Fluid Dynamics
Computational



Copyright c© 2020 Brian C. Vermeire

PUBLISHED BY CONCORDIA UNIVERSITY

BOOK-WEBSITE.COM

Licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License (the
“License”). You may not use this file except in compliance with the License. You may obtain
a copy of the License at http://creativecommons.org/licenses/by-nc/3.0. Un-
less required by applicable law or agreed to in writing, software distributed under the License is
distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

First printing, October 2020

http://creativecommons.org/licenses/by-nc/3.0


Foreword
This book evolved out of my lecture notes for the undergraduate and graduate computational fluid
dynamics courses that I teach at Concordia University. In combination with an open-educational
resources grant from the library, it is provided to you completely free of charge. It uses entirely
open-source tools including Python, Jupyter Notebooks, SU2, Gmsh, Paraview, LATEX, and many
others. This means that all of the examples and applications can be run on your computer using any
common operating system and without purchasing any licenses - CFD for free!

The book itself is even open-source, available as a public repository on Gitlab. As such, you
may want to think of this book more as a software development project, rather than a conventional
hard cover textbook. All of the content needed to run the chapter examples and final applications
are stored in the repository, and you can even contribute to the book and its examples via a pull
request if you think of a useful addition. Just like any software development project, this book may
contain a few “bugs”, mostly in the form of minor typos. If you find one of these please feel free to
give back and submit a pull request to correct them.

In terms of content, the book is designed with enough material to cover an advanced under-
graduate course, or an introductory course for graduate students. For an undergraduate course I
recommend a more hands-on computer lab experience, focusing on Part 1, some of Part 2, and Part
3. In Part 2 I find it useful to cover finite difference methods, consistency, stability, convergence,
time stepping, iterative methods, and then return to introduce finite volume methods. Part 3 is
designed as a bi-weekly computer lab, where students get hands-on experience with practical CFD
simulations. For a graduate course I recommend focusing on Parts 1 and 2, with a final project to
write a two-dimensional compressible solver for lid driven cavity flow. If you are studying CFD on
your own then I recommend covering the whole book.

Finally, I would like to thank my undergraduate and graduate students over the years for
their useful discussions and contributions to the core ideas in this book. In particular, I need to
acknowledge my co-authors Carlos and Hamid for their hard work in developing the first version. I
also thank the students in my classes for using the first “experimental” editions and their useful
feedback. Finally, I would like to thank you the reader for your interest in this project and for
learning CFD.

Dr. Brian C. Vermeire



Contents

I Part 1: Physics

1 Conservation Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1 Reynolds Transport Theorem 13

2 The Navier Stokes Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Integral Form 15
2.1.1 Conservation of Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 Conservation of Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.3 Conservation of Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.4 Compact Integral Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Divergence Form 18
2.2.1 Conservation of Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Conservation of Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Conservation of Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.4 Compact Divergence Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Simplified Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Euler Equations 21
3.2 Linear Advection 21
3.3 Burgers Equation 22
3.4 Linear Diffusion 23
3.5 PDE Classification 25
3.5.1 First Order Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5.2 Second Order Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25



4 Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Turbulence Theory 26
4.1.1 Introduction to Chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.2 Chaos and Navier-Stokes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.3 The Energy Cascade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Reynolds Averaging 32
4.2.1 The Reynolds Averaged Navier-Stokes Equations . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.2 The Reynolds Stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.3 The RANS Closure Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Turbulence Modelling 42
4.3.1 The Boussinesq Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.2 The Mixing Length Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.3 The Spalart-Allmaras Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.4 The k-ε Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.5 The k-ω Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.6 Summary of Turbulence Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1 Wall Boundaries 49
5.1.1 Wall-Bounded Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

II Part 2: Numerics

6 Taylor-Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7 Finite Difference Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.1 The First Derivative 56
7.2 A General Approach 58
7.2.1 Step 1: Generate the Taylor Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.2.2 Step 2: Rearrange the Taylor Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.2.3 Step 3: Determine a Suitable Combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.2.4 Step 3: Combine the Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.3 The Second Derivative 59
7.4 Example Applications 60
7.4.1 Linear Advection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.4.2 Burgers Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.4.3 Linear Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

8 Finite Volume Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8.1 Derivation 66
8.2 The Riemann Problem 67
8.3 Example Applications 68
8.3.1 Linear Advection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.3.2 Burgers Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
8.3.3 Linear Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



8.4 Linear Hyperbolic Problems 72
8.4.1 Linear Hyperbolic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.4.2 The Riemann Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.5 Nonlinear Hyperbolic Problems 80
8.5.1 Nonlinear Hyperbolic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.5.2 The Riemann Problem for the Euler equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.5.3 A Riemann Solver for the Euler Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8.6 MUSCL Schemes 88
8.6.1 Second-Order Upwind Scheme for Linear Advection . . . . . . . . . . . . . . . . . . . . . . . 89
8.6.2 Total Variation Diminishing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.6.3 Limiters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.6.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

9 Consistency, Stability, Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

9.1 Consistency 95
9.2 Stability 96
9.2.1 Explicit Linear Advection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
9.2.2 Implicit Linear Advection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
9.2.3 Explicit Linear Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
9.2.4 Implicit Linear Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

9.3 Convergence 103

10 Spectral Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

10.1 Dissipation Error 105
10.2 Dispersion Error 107

11 Modified Equation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

11.1 Linear Advection 111
11.2 General Observations 112

12 Time-Stepping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

12.1 Explicit 113
12.1.1 Forward Euler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
12.1.2 Heun’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
12.1.3 Midpoint Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
12.1.4 Runge-Kutta Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

12.2 Implicit 117
12.2.1 Implicit Linear Advection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
12.2.2 Implicit Linear Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
12.2.3 Implicit Burgers Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

13 Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

13.1 Gaussian Elimination 121
13.2 Jacobi Iteration 122
13.3 Gauss Seidel Iteration 124
13.4 Successive Over-Relaxation 126



13.5 Assessing Convergence 126
13.6 Multigrid 127

14 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

14.1 An Euler Solver 130
14.2 A Navier-Stokes Solver 132

III Part 3: Applications

15 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

16 Inviscid NACA 0012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
16.0.1 Load the Solution File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
16.0.2 Visualize the Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
16.0.3 Visualize Pressure Contours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
16.0.4 Visualize the Pressure Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
16.0.5 Aerodynamic Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

17 Supersonic Wedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
17.0.1 Load the Solution File: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
17.0.2 Visualize the Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
17.0.3 Visualize Pressure and Mach Contours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
17.0.4 Plotting a variable over an arbitrary line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

18 Inviscid ONERA M6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
18.0.1 Load the Solution File: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
18.0.2 Visualize the Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
18.0.3 Pressure Coefficient and Mach Number Contours . . . . . . . . . . . . . . . . . . . . . . . . 163
18.0.4 Comparison of Convergence Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

19 Laminar Cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
19.0.1 Load the Solution File: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
19.0.2 Visualize the Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
19.0.3 Visualize Pressure Contour and Much Number Contour . . . . . . . . . . . . . . . . . . . . 172
19.0.4 Streamlines and Separation Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
19.0.5 Shedding Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

20 Turbulent ONERA M6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
20.0.1 Load the Solution File: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
20.0.2 Visualize the Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
20.0.3 Visualize Pressure Coefficient at Different Stations . . . . . . . . . . . . . . . . . . . . . . . 185
20.0.4 Visualize Pressure Coefficient (Alternative Method) Exporting .csv file at Different Stations

191

21 Mesh Generation Using Gmsh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

22 Shock Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
22.0.1 Load the Solution File: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207



22.0.2 Visualize the Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
22.0.3 Visualize Pressure, Temperature and Mach Contours . . . . . . . . . . . . . . . . . . . . . . 208
22.0.4 Plotting non-dimensional variables along the centerline . . . . . . . . . . . . . . . . . . . . 210

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

Articles 214
Books 215





I
1 Conservation Laws . . . . . . . . . . . . . . . . . . 13
1.1 Reynolds Transport Theorem

2 The Navier Stokes Equations . . . . . . . . . 15
2.1 Integral Form
2.2 Divergence Form

3 Simplified Systems . . . . . . . . . . . . . . . . . . 20
3.1 Euler Equations
3.2 Linear Advection
3.3 Burgers Equation
3.4 Linear Diffusion
3.5 PDE Classification

4 Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1 Turbulence Theory
4.2 Reynolds Averaging
4.3 Turbulence Modelling

5 Boundary Conditions . . . . . . . . . . . . . . . . 49
5.1 Wall Boundaries

Part 1: Physics





1. Conservation Laws

Some of the most powerful tools in classical mechanics, including fluid mechanics, are conservation
laws. Arising from the profound physical insights of Newton, Leibniz, and others, these laws ensure
that the total amount of certain physical quantities within a volume are conserved. For example,
conservation of mass ensures that the total mass of a system remains constant, conservation of
momentum ensures that the total momentum of a system remains constant, and conservation of
energy ensures that the total energy of a system remains constant. While these concepts can be
applied by a high-school student for simple systems, such as elastic/inelastic collisions between
particles, their application to fluid mechanics is less trivial. Nevertheless, the fundamental concepts
of conservation of mass, momentum, and energy still apply to fluids just as well as they do to
individual particles, it is only the mathematics that becomes more complex. It is expected that
students reading this book have already taken an undergraduate course in fluid mechanics and are
familiar with conservation laws. Nevertheless, this chapter reviews these concepts for completeness,
and to establish the notation used in the rest of the book. Some other useful references include [7,
14, 24].

1.1 Reynolds Transport Theorem
Before tackling conservation of mass, momentum, and energy in their entirety, we will first consider
an arbitrary conserved extensive quantity USystem =USystem(t) of a moving system of fluid, which
has a related quantity per unit volume u = u(~x, t), where~x and t are the spatial coordinate and time,
respectively. For example, if the extensive property is mass, then the volumetric property is mass
per unit volume, or density. We start by imagining a stationary control volume (CV) such as the
one in Figure 1.1, denoted by Ω, that is the same shape as the fluid system at some time t. We also
denote the surface of this volume by S and the outward pointing normal vector on this surface by
n̂. After some amount of time dt, we can imagine that the initial system of fluid embedded within
the control volume will move to a deformed position and shape at t +dt, while the control volume
remains fixed by definition. In this manner, the fluid contained by the system will be equal to that
of the control volume at time t, plus any incoming or outgoing fluid due to the motion of the system
boundaries as it travels with the flow.



14 Chapter 1. Conservation Laws

S

Ω

t = 0

t + dt

~V(x,
t)

n̂

Figure 1.1: Arbitrary flow pattern on an arbitrary volume

Looking at Figure 1.1, there are two ways that USystem will change with time. Either via a
change of UCV within the control volume it overlaps with, or by some amount of the conserved
quantity crossing the boundary of the system as it moves. We start by getting the total amount
within the control volume UCV (t) by simply adding up, or integrating, u over it. This can be written
as

UCV (t) =
∫

Ω

ud~x, (1.1)

noticing that the dependence on space is lost after integration. The time derivative of this is
associated with the rate of change of the conserved variable within the control volume itself

dUCV

dt
=

d
dt

∫
Ω

ud~x. (1.2)

The second term to be addressed is the change in USystem due to the fluid crossing its boundaries.
As noted previously, the second way for USystem to change with time is by fluid crossing the

surface S as the fluid system advances to t +dt. In order for fluid to cross the surface, it must be
moving normal to it, otherwise, it will just move along the surface and not enter the control volume.
Hence, we can get the velocity component normal to the surface at any point via the normal vector.
Then we can get the total amount of u crossing the surface S by adding up, or integrating, the
normal flux at every point on the surface

F(t) =
∮

S
u(~v · n̂)ds, (1.3)

where F = F(t) is the total rate the conserved quantity U enters/leaves the control volume across
the surface.

To create our conservation law, we combine the concepts in Equations 1.2 and 1.3. We note
that the rate of change of the total amount of the conserved variable within the system USystem is
equal to the rate at which the conserved variable changes within the control volume and the rate it
enters/leaves across the surface of the system. Mathematically, this can be written as

dUSystem

dt
=

d
dt

∫
Ω

ud~x+
∮

S
u(~v · n̂)ds, (1.4)

noting that the positive in front of the surface term is due to our normal vector being outward
pointing. Known as Reynolds Transport Theorem, this will be the foundation for deriving our
conservation of mass, momentum, and energy equations for fluid flows.



2. The Navier Stokes Equations

2.1 Integral Form

2.1.1 Conservation of Mass
When considering the mass m = m(t) of our system, the mass per unit volume is the density,
denoted by ρ = ρ(~x, t). Since the total mass must be conserved, the internal change within the
control volume must equal the rate it leaves/enters over S. Hence,

dm
dt

=
d
dt

∫
Ω

ρd~x+
∮

S
ρ~v · n̂ds = 0, (2.1)

and conservation of mass can be written as

d
dt

∫
Ω

ρd~x+
∮

S
ρ~v · n̂ds = 0. (2.2)

2.1.2 Conservation of Momentum
From Newton’s second-law, we know that the time rate of change of the total momentum of the
system is equal to the sum of all forces acting on it. Hence

∑~F =
d(m~v)

dt
, (2.3)

where the product m~v is the total momentum of the system. Noting that the momentum per unit
volume is ρ~v, and using Reynolds transport theorem, we obtain

d
dt

∫
Ω

ρ~vd~x+
∮

S
ρ~v(~v · n̂)ds = ∑~F , (2.4)

which requires knowledge of the forces that will act on the system at any given time, which can
be split into surface and body terms. In the current context, only surface terms are considered and
body terms, such as gravitational forces, are neglected.



16 Chapter 2. The Navier Stokes Equations

The first of the surface forces is due to the pressure surrounding the system. Since pressure acts
normal to a surface, the total pressure force ~FP can be obtained via integration along the surface.
Hence,

~FP =
∮

S
−pn̂ds, (2.5)

where p is the pressure and the negative is included since pressure exerts a force inwards, but
our normal vector is defined as outwards. The second set of surface terms is due to the effects of
viscosity. To account for these we introduce the Cauchy stress tensor τ , which for Newtonian fluids
is [7]

τ = µ

(
∇~v+(∇~v)T

)
− 2

3
µ (∇ ·~v)I, (2.6)

where µ is the dynamic viscosity and I is an identity matrix. Whereas pressure acts normal to the
control volume surface, viscous effects act parallel to it. Hence, the total viscous force ~Fv can be
obtained via integration

~Fv =
∮

S
τ · n̂ds. (2.7)

With the inviscid and viscous forces determined, conservation of momentum can be written as

d
dt

∫
Ω

ρ~vd~x+
∮

S
ρ~v(~v · n̂)ds =

∮
S
−Pn̂ds+

∮
S

τ · n̂ds, (2.8)

which is commonly written by grouping all of the surface integral terms

d
dt

∫
Ω

ρ~vd~x+
∮

S
[ρ~v⊗~v−σ ] · n̂ds = 0, (2.9)

where

σ =−pI+ τ. (2.10)

2.1.3 Conservation of Energy
From conservation of energy, the rate of change of energy within the system is equal to the rate of
heat added to the system less the rate work done by the system on its surroundings. Hence,

dE
dt

= Q̇−Ẇ , (2.11)

where E is the energy in the system, Q̇ is heat rate, and Ẇ is work rate. In this case, the energy per
unit volume is ρe where

e = cvT +
1
2
~v ·~v, (2.12)

is the specific energy, cv is the specific heat at constant volume, and T is the temperature. Using
Reynolds transport theorem, we have

d
dt

∫
Ω

ρed~x+
∮

S
ρe(~v · n̂)ds = Q̇−Ẇ . (2.13)

Since body forces have been neglected, the work done by the system on its surroundings is due
to only surface forces. The work done by pressure Ẇp is due to the product of the pressure force,



2.1 Integral Form 17

which acts normal to the boundary, and the velocity of the boundary in the normal direction. Hence,

Ẇp =
∮

S
p(~v · n̂)ds. (2.14)

Similarly, the work done by viscous forces, Ẇv, is due to the product of the viscous stresses and the
velocity on the surface. Hence,

Ẇv =−
∮

S
τ ·~vds. (2.15)

In the above equations, note that, by convention, work is defined as from the system to the
surroundings.

The second way that energy can be transferred to the system across the surfaces is thermal
diffusion via conduction, denoted by Q̇. From Fourier’s law, the heat diffused at any point in the
fluid is

~q =−k∇T, (2.16)

where k is the thermal conductivity of the fluid. Again, only the component of heat that is diffused
normal to the surface of the control volume will actually enter it. Hence, the heat added to the
system is

Q̇ =
∮

S
k∇T · n̂ds, (2.17)

again noting that heat transfer is defined as from the surroundings to the system.
From the work and heat transfer terms, we can now write an expression for conservation of

energy
d
dt

∫
Ω

ρed~x+
∮

S
ρe(~v · n̂)ds =

∮
S

k∇T · n̂ds−
∮

S
p(~v · n̂)ds+

∮
S
(τ ·~v) · n̂ds. (2.18)

Similar to the momentum equation, this is often written more compactly as

d
dt

∫
Ω

ρed~x+
∮

S
[ρe~v+ p~v− τ ·~v− k∇T ] · n̂ds = 0. (2.19)

2.1.4 Compact Integral Form
One might notice that the conservation of mass, momentum, and energy equations derived in the
previous sections all have a similar form. They include a time derivative of the conserved variable
integrated over the control volume, and a surface integral term of fluxes across the control volume
surface. Commonly these equations are compacted into a vector of conserved quantities

~w =

 ρ

ρ~v
ρe

 , (2.20)

a vector of inviscid fluxes

~Finv =

 ρ~v
ρ~v⊗~v+ pI
ρe~v+ p~v

 , (2.21)

and viscous fluxes

~Fvis =

 0
τ

τ ·~v−~q

 . (2.22)

This allows the integral form of the Navier-Stokes equations to be written compactly as



18 Chapter 2. The Navier Stokes Equations

d
dt

∫
Ω

~wd~x+
∮

S

[
~Finv−~Fvis

]
· n̂ds = 0. (2.23)

2.2 Divergence Form
Looking back at the previous section, we note that Equation 1.2 is a general conservation law for
a finite control volume. In some contexts, specifically when using the finite-volume method that
will be introduced later, this integral form of the governing equations is used. However, other
approaches in CFD use a nearly equivalent divergence form of Equation 1.2. To derive this form,
we rely on the divergence theorem, also known as Gauss theorem.

Theorem 2.2.1 — Divergence Theorem. The divergence theorem states that integrals of the
following form are equivalent for a continuously differentiable vector field ~F∫

Ω

∇ ·~Fd~x =
∮

S
~F · n̂ds, (2.24)

which allows us to transform volume integrals into surface integrals, or the reverse.

2.2.1 Conservation of Mass
Starting from the integral form of conservation of mass and applying the divergence theorem to the
surface term, we obtain

d
dt

∫
Ω

ρd~x+
∫

Ω

∇ · (ρ~v)d~x = 0. (2.25)

Since integration and differentiation commute, we can bring the time derivative inside of the first
integral∫

Ω

∂ρ

∂ t
d~x+

∫
Ω

∇ · (ρ~v)d~x = 0. (2.26)

and noticing that the bounds of both integrals are the same∫
Ω

(
∂ρ

∂ t
+∇ · (ρ~v)

)
d~x = 0. (2.27)

In order for this equation to be valid, other than in trivial cases, we require that the integrand be
identically zero. Hence, conservation of mass in divergence form can be written as

∂ρ

∂ t
+∇ · (ρ~v) = 0. (2.28)

It is interesting to note that we have effectively converted a problem involving surface and volume
integrals, into a differential form that requires computing derivatives.

R A subtle difference between the two forms of conservation laws is that the integral form
applies to control volumes and the divergence form applies at points. This will become
important in choosing what form to use for CFD, and will be explored later.

2.2.2 Conservation of Momentum
Applying the same sets of operations to the integral form of the momentum equation, we can obtain
its divergence form



2.2 Divergence Form 19

∂ρ~v
∂ t

+∇ · [ρ~v⊗~v−σ ] = 0. (2.29)

2.2.3 Conservation of Energy
Applying the same sets of operations to the integral form of the energy equation, we can obtain its
divergence form

∂ρe
∂ t

+∇ · [ρe~v+ p~v− τ ·~v− k∇T ] = 0. (2.30)

2.2.4 Compact Divergence Form
Considering the compact integral form given in Equation 2.23, we notice that the divergence
theorem can also be applied. Hence, a compact differential form of the Navier-Stokes equations
can be obtained

∂~w
∂ t

+∇ ·
[
~Finv−~Fvis

]
= 0. (2.31)



3. Simplified Systems

One might notice that the Navier-Stokes equations derived in the previous chapter are a complex
system of coupled non-linear partial differential equations. This is not something that sounds
particularly easy to solve! Hence, in CFD we often consider simplified systems of equations first,
neglecting or decoupling some of the physical mechanisms that are involved in the full Navier-
Stokes equations. This allows us to play with different ideas quickly and with relative ease. Then,
once we understand how to solve different parts of these simplified equations, we will combine
these ideas later to solve the full Navier-Stokes equations.



3.1 Euler Equations 21

3.1 Euler Equations

The Euler equations, although they were actually derived prior to Navier-Stokes, can be obtained by
simply neglecting viscous effects. Hence, we can ignore physical viscosity and thermal diffusion.
While historically the Euler equations were the state-of-the-art in CFD, their lack of viscosity means
they are unsuitable for predicting boundary layers. Nevertheless, they are still useful for predicting
many flow phenomena, such as shockwaves.

In integral form the Euler equations are

d
dt

∫
Ω

ρd~x+
∮

S
ρ~v · n̂ds = 0, (3.1)

d
dt

∫
Ω

ρ~vd~x+
∮

S
[ρ~v⊗~v+ pI] · n̂ds = 0, (3.2)

d
dt

∫
Ω

ρed~x+
∮

S
[ρe~v+ p~v] · n̂ds = 0, (3.3)

for conservation of mass, momentum, and energy, respectively. Similarly, in divergence form the
Euler equations are

∂ρ

∂ t
+∇ · (ρ~v) = 0, (3.4)

∂ρ~v
∂ t

+∇ · [ρ~v⊗~v+ pI] = 0, (3.5)

∂ρe
∂ t

+∇ · [ρe~v+ p~v] = 0, (3.6)

for conservation of mass, momentum, and energy.

3.2 Linear Advection

Even if we consider the Euler equations, we notice that they are still relatively complex and difficult
to solve. In what follows, we will use a set of thought experiments to generate a set of three much
simpler equations that will be a starting point for our initial exploration of CFD. To start, we will
derive the so-called linear advection equation. We begin our thought experiment by considering
a fluid flow that has uniform velocity throughout the domain. Furthermore, we will decouple
conservation of mass from the other two conservation laws.

Now we can imagine that our fluid flow, with constant velocity everywhere such that~v(~x, t) =~α ,
has some blob of fluid that is dense relative to the rest of the fluid around it. For example, it could
be slightly colder, increasing its density. What should happen to this blob of fluid over time? Well,
since the fluid is all moving at the same velocity ~α , we would expect the blob of dense fluid to
simply move along with the rest of the flow and, hence, the blob should move at velocity ~α , as
shown in Figure 3.1.

Mathematically, this yields the following integral and differential forms for the linear advection
equation by using conservation of mass and replacing the velocity by a constant velocity field ~α



22 Chapter 3. Simplified Systems

and the density by a general scalar u we obtain,

d
dt

∫
Ω

ud~x+
∮

S
(~αu) · n̂ds = 0, (3.7)

and

∂u
∂ t

+∇ · (~αu) = 0. (3.8)

Furthermore, if we restrict ourselves to one-dimensional problems, we obtain the following integral
and differential forms for linear advection

d
dt

∫
Ω

udx+α

∮
S

u · n̂ds = 0, (3.9)

and

∂u
∂ t

+α
∂u
∂x

= 0. (3.10)

x

u(
x,

t)

α
t = 0.00
t = 0.05
t = 0.10
t = 0.15
t = 0.20

Figure 3.1: Evolution of a gaussian bump u(x,0)= exp
[
−40

(
x− 1

2

)2
]

using the advection equation
on x ∈ [0,1] with velocity α = 1, and periodic boundary conditions.

3.3 Burgers Equation
Our second simplified system, known as Burgers equation, is useful as a simplified model for
compressible flow features such as shocks and expansion fans. To derive Burgers equation, we start
with the momentum equation, decoupled from conservation of mass and conservation of energy.
Then, neglecting the effects of viscosity and pressure, we replace the momentum with an arbitrary
conserved variable u, and restrict ourselves to one physical dimension.

This yields the following integral and differential forms of the Burgers equation



3.4 Linear Diffusion 23

d
dt

∫
Ω

udx+
1
2

∮
S

u2 · n̂ds = 0, (3.11)

and

∂u
∂ t

+
1
2

∂u2

∂x
= 0, (3.12)

noting that the factor of one half is added to the spatial term by convention.
If we consider the divergence form of Burgers’ equation, applying the chain rule to the spatial

derivative operator yields

∂u
∂ t

+u
∂u
∂x

= 0. (3.13)

We note that this looks remarkably similar to the divergence form of the linear advection equation,
also in one dimension. However, the advection velocity α , which appears in front of the spatial
derivative for linear advection, has instead been replaced by u, the value of the solution. Hence,
Burgers equation has similar behaviour to linear advection, except the velocity at any point in space
is equal to the value of the solution at that point, rather than being a constant value throughout the
domain. An example of this is shown in Figure 3.2, where the solution at any point moves at a
speed equal to its value. This causes the bump to deform, with the forward-moving peak catching
up with the slower moving fluid in front of it. This causes the formation of a discontinuity, or
shockwave, in the solution on the right hand side of the domain.

x

u(
x,

t)

t = 0.0
t = 0.1
t = 0.2
t = 0.3
t = 0.4
t = 0.5

Figure 3.2: Evolution of a gaussian bump u(x,0) = exp
[
−40

(
x− 1

2

)2
]

using Burgers equation on
x ∈ [0,1].

3.4 Linear Diffusion
Our third and final simplified equation, known as linear diffusion, starts again from a simple thought
experiment. First, we will consider only the energy equation decoupled from conservation of mass
and momentum. We will now imagine that we have a stationary fluid with zero velocity everywhere
in the domain. Similar to linear advection, we will consider a flow with some blob of fluid with



24 Chapter 3. Simplified Systems

more energy than the fluid around it. Since all of the fluid is stationary, this extra energy must
come in the form of heat. As time goes on, we would expect that this local region of hot fluid
would diffuse some of its heat over time to the cold fluid that is adjacent to it. Hence, over time an
initially concentrated blob of heat would spread out, until eventually all of the fluid is at the same
temperature.

Mathematically, the equation describing this can be obtained by taking β = k/ρcv as a constant
scalar and replacing e with a generic scalar u. We can then rewrite the energy equation in multiple
dimensions as

d
dt

∫
Ω

ud~x+
∮

S
[−β∇u] · n̂ds = 0. (3.14)

and

∂u
∂ t
−∇ · (β∇u) = 0, (3.15)

in integral and divergence form, respectively. Furthermore, if we restrict ourselves to one dimension
we obtain

d
dt

∫
Ω

udx+
∮

S

[
−β

∂u
x

]
· n̂ds = 0. (3.16)

and

∂u
∂ t
−β

∂ 2u
∂x2 = 0. (3.17)

At this point, it is worth noting that the form of the linear diffusion equation is similar to the linear
advection equation, except we are taking the second derivative rather than the first. An example of
the evolution of the diffusion equation is shown in Figure 3.3, demonstrated that as the solution
evolves the concentrated energy is spread out to the surrounding fluid.

x

u(
x,

t)

t = 0.0
t = 1.0
t = 2.0
t = 3.0
t = 4.0

Figure 3.3: Evolution of a gaussian bump u(x,0) = exp
[
−40

(
x− 1

2

)2
]

using the linear diffusion
equation on x ∈ [0,1].



3.5 PDE Classification 25

3.5 PDE Classification
In the previous sections, we have introduced several different partial differential equations. From
the context of the Navier-Stokes equations, these include conservation of mass, momentum, and
energy, which we have then simplified into the Euler, linear advection, Burgers, and linear diffusion
equations. As we will see in later sections, not all numerical approaches work well for all partial
differential equations, and it is often useful to classify them based on their properties and behaviour.

3.5.1 First Order Equations
First order partial differential equations take the form

A
∂u
∂x

+B
∂u
∂y

= F(x,y,u). (3.18)

Note that the x and y dimensions here need not be only space, this is just a general form. Hence,
the linear advection equation is also of this form, since both of its derivatives are first order in
both space and time. These are always hyperbolic in nature, and as a result, they exhibit wavelike
solutions. This means that information travels in a particular defined direction, as was demonstrated
for the linear advection and Burgers equations.

3.5.2 Second Order Equations
Second order partial differential equations take the form

A
∂ 2u
∂x2 +B

∂ 2u
∂x∂y

+C
∂ 2u
∂y2 = F(x,y,u,

∂u
∂x

,
∂u
∂y

). (3.19)

Depending on the values of A, B, and C, these type of equations will exhibit different behaviour.

B2−4AC > 0
These are also hyperbolic in nature, and exhibit wave-like solutions.

B2−4AC = 0
These are parabolic in nature, and are typically transient diffusion processes.

B2−4AC < 0
These are elliptic in nature, and are typically steady-state diffusion processes.

If we look at linear advection, it is first order and, therefore hyperbolic. If we look at the linear
diffusion equation, we find that it is parabolic. Hence, we expect that the numerical behaviour of
these two different problems will be quite different. A few other examples include the classical
wave equation

∂ 2u
∂ t2 −α

∂ 2u
∂ t2 = 0, (3.20)

which is hyperbolic and should have similar behaviour to the linear advection equation. Also, a
steady-state two dimensional diffusion problem has the form

∂ 2u
∂x2 +

∂ 2u
∂ t2 = 0, (3.21)

which is elliptic, and will typically require a different solution strategy.
The above is a relatively simple classification, but when confronted with a new type of partial

differential equation, it is very useful to identify its classification to see if its behaviour is similar
to another well-known system. In addition, in many applications the A, B, and C coefficients can
be a function of space, time, or a non-linear function of the solution. Hence, the behaviour of the
system can change from one type to another as the solution evolves. In this case, a particularly
robust numerical approach is required.



4. Turbulence

One of the most challenging aspects of CFD is the prevalence of turbulent flows. While it may
not be immediately apparent from the Navier-Stokes equations defined earlier, they can encode
solutions with chaotic, unsteady, three-dimensional flow features. In this section, we will discuss
what is meant by turbulent flow, the nature of chaos, how it arises in the governing equations, and
consequences for how we handle turbulent flows in CFD. Then, we will introduce an approach
for approximating the effects of turbulence, and several popular models for doing so. Some other
useful references for this section include [4, 15].

4.1 Turbulence Theory
The fundamental characteristic of turbulence is that it is chaotic. Hence, it encodes unsteady
three-dimensional fluid flow with chaotic fluctuations in velocity, density, and pressure. These
fluctuations typically exist over a wide range of length and time scales. Another important feature
of turbulence, and a fundamental property of chaotic systems, is that it is highly sensitive to initial
conditions. Furthermore, it is well known that chaotic behaviour only arises in non-linear systems.
In our exploration of turbulence we will first start with a simple chaotic system, and then we will
extrapolate some of the properties of these systems to the types of behaviour we observe in fluid
flows.



4.1 Turbulence Theory 27

4.1.1 Introduction to Chaos
As an introduction to chaos, we will consider the relatively simple logistic map, which is built from
the non-linear logistic function [21]

xn+1 = axn(1− xn), (4.1)

where xn is the current value, xn+1 is the next value, and a is a scalar that governs the behaviour of
the system. A relatively simple analogy/application of the logistic equation is the growth/decay
of a population of animals. In this case xn would be the current population, xn+1 is next years
population, and a is responsible for controlling the birth/death rate of the animals in any given year
based on the current population. The first thing to notice is that this equation is incredibly simple,
yet under certain conditions it encodes infinitely complex chaotic behaviour, and the behaviour of
the system is governed by the choice of a.

a≤ 3
In this case, regardless of the initial value x0, the solution converges to one of two fixed points,
either x = 0, or x = (a−1)/a. In the context of a population prediction, this means that either all
of the animals die, or the population converges to a constant value.

3 < a≤ 1+
√

6
In this case, the system rapidly flips back and forth between two different values, referred to as
a two-cycle. Regardless of the initial condition, the system will converge to one of these values,
and then flip alternating back and forth between them. The transition from the initial fixed-point
solution to this two-cycle is referred to as a bifurcation. From a population perspective, this means
alternating years of famine, where many animals die, and feast, where many animals are born.

1+
√

6 < a≤ 3.54 . . .
In this case, a second bifurcation occurs, and the solution oscillates between four possible solutions.
This is referred to as a period doubling. As a consequence, the population will be a more complex
cycle of feast and famine.

≤ 3.54 . . . < a≤ 3.57 . . .
Beyond a = 3.54 . . ., additional bifurcations and period doublings occur, with the population now
oscillating between an ever-growing number of possible values. By a = 3.57 . . ., an infinite number
of bifurcations occurs.

3.57 . . . < a
Beyond a = 3.57 . . ., the entire concept of a cycle breaks down, and all possible solution can be
found within the range. The solution traverses chaotically and little structure is observed in its
behaviour.

The complete behaviour of Equation 4.1 can be observed in Figure 4.1 for a range of values
of a in the range a ∈ [1,4]. An interesting thought experiment is to consider what happens to our
system when we start with some initial guess x0, and some perturbed initial guess x0 + ε , where
ε is a small number. In the case of small values of a both of these solution converge to the same
fixed point. However, as a gets larger, this predictability starts to break down. Eventually, with a
large value of a, and given enough iterations, the two solutions will diverge from one another, and
it will be impossible to discern that they had almost the exact same initial condition. Hence, with
certain choices of a the logistic equations is chaotic, resulting in complex behaviour and extreme
sensitivity to initial conditions. Furthermore, this implies that there is an irreversible nature to
chaotic systems, that is, given a final solution, it is not possible to determine with any certainty
what the initial condition was, because very similar initial conditions yield completely different
final solutions.



28 Chapter 4. Turbulence

1.0 1.5 2.0 2.5 3.0 3.5 4.0
a

0.0

0.2

0.4

0.6

0.8

1.0

x

Figure 4.1: Logistic map for a ∈ [1,4]

Check out the Chaos Jupyter notebook here. You can also download the files from the Gitlab
repository here.

4.1.2 Chaos and Navier-Stokes
In the above, we have demonstrated a couple of properties of chaos. It arises in non-linear systems,
and it is generally irreversible due to an extreme sensitivity to initial conditions. For simplicity,
we will explore the connection between the Navier-Stokes equations and chaos, in the form of
turbulence, via the incompressible Navier-Stokes equations. This can also be readily extended to
the compressible Navier-Stokes equations at the readers’ initiative.

In the case of incompressible flow, the Navier-Stokes equations reduce to the continuity equation

∇ ·~v = 0, (4.2)

and the momentum equation

∂~v
∂ t

+(~v ·∇)~v−ν∇
2~u = 0, (4.3)

where ν is the kinematic viscosity. Starting with conservation of mass, we note that this is a linear
equation and, hence, it cannot be responsible for the chaotic nature of turbulence, which requires
a non-linear system as previously noted. This allows us to quickly narrow in on the momentum
equation as the responsible part of the system. In this case, we note that the non-linearity arises in
the (~v ·∇)~v term, which is quadratic in the velocity components. To better understand this, we will
consider two limiting cases of inviscid and high viscosity flows.

Starting with the inviscid case, we can neglect the effects of viscosity, yielding the following
simplification of the momentum equation

∂~v
∂ t

+(~v ·∇)~v = 0, (4.4)

which is the momentum component of the incompressible Euler equations. This is obviously still a
non-linear equation, since we have not eliminated the convection term. We can now ask ourselves

https://tinyurl.com/cfd-binder
https://gitlab.com/bvermeir/book-cfd


4.1 Turbulence Theory 29

(a) Re≈ 1 (b) Re≈ 100

(c) Re≈ 104 (d) Re = ∞

Figure 4.2: Incompressible flow regimes at different Reynolds numbers

if this inviscid flow can permit chaotic solutions. Recall that our second requirement for a chaotic
system is that it should be irreversible. In order to explore this we will reverse this momentum
equation in time by setting t =−t and~v =−~v, which is equivalent to stopping a solution and then
rewinding it in time. Applying these modifications to the forward in time system yields

∂ (−~v)
∂ (−t)

+((−~v) ·∇)(−~v) = 0, (4.5)

which simply gives us back our original equation

∂~v
∂ t

+(~v ·∇)~v = 0. (4.6)

Hence, the incompressible Euler equations are completely time reversible and, hence, cannot permit
chaotic solutions. Therefore, we need viscosity to enable turbulence.

R Careful consideration should be used when extrapolating these conclusions to the compressible
Euler equations. In that case, irreversibility can arise across shockwaves, which increase
entropy. Hence, turbulence can be observed with the compressible Euler equations in some
cases.

Now, let’s explore the alternative of a purely viscous flow, which is the limit that viscosity goes
to extremely large values. This yields the following simplification of the momentum equation

∂~v
∂ t
−ν∇

2~u = 0, (4.7)

which is a linear equation in velocity. Hence, in the limit of large viscosities, the system of equations
becomes linear and can no longer permit chaotic solutions. From the above discussion, it is clear
that the momentum equations in the incompressible Navier-Stokes equation are non-linear with
respect to the velocity. Furthermore, viscosity is key in determining whether chaotic solutions exist.
If there is not enough, the system becomes reversible. In contrast, if there is too much, the system
becomes linear. The relative strength of the viscosity is given by the Reynolds number

Re =
UL
ν

, (4.8)



30 Chapter 4. Turbulence

log κ

lo
g

E
(κ

)

l

η

Viscous
dissipation

Figure 4.3: Turbulent kinetic energy cascade

where U and L are the velocity and length scales of the flow, and ν is the viscosity. Examples
of different Reynolds numbers can be observed in Figure 4.2. We can note here the similarity of
dependence of turbulence on the Reynolds number to the behaviour of the logistic equation on
a. Typically, turbulent flow is observed for Reynolds numbers of Re & O(103). It is important to
note that this encompasses the vast majority of flows of engineering interest. Hence, scientists and
engineers must routinely deal which turbulence and its chaotic nature.

4.1.3 The Energy Cascade

A common misconception is that turbulence is random in nature, which would imply that it has no
pattern and is inherently unpredictable in a deterministic sense. However, the very fact that one
can derive the Navier-Stokes equations, which are a deterministic model for fluid flow, implies
that turbulence is not a random process. Hence, in the lack of detailed measurement techniques,
turbulence is often modelled as random process, but its evolution is truly deterministic in nature.
Furthermore, turbulent flows clearly have coherent structures, such as turbulent vortices, that
demonstrate and underlying structure within the chaos.

R We will revisit how to model turbulence stochastically when we introduce the Reynolds
Averaged Navier-Stokes (RANS) equations and turbulence models.

One of the most powerful observations of turbulent flow has to do with the distribution of
kinetic energy across different physical scales. When considering turbulent flows, there is typically
a wide distribution of length scales and time scale with the largest vortices have a size similar to the
physical length scale of the problem of interest, such as an airfoils chord length or the size of a
bluff body such as a cylinder. In contrast, the smallest physical scales can be much smaller than
the physical length scale of the problem, and there is then a wide range of scales between these
two extremes. A fundamental observation related to this is that these turbulent structures, over
time, tend to break up into multiple smaller structures. A consequence of this is that kinetic energy
gradually gets transferred from large-scale structures down to smaller-scale structures and so on,
referred to as the turbulent kinetic energy cascade, which can be observed in Figure 4.3.

To better understand this, we will define l as the length scale of the largest scale vortices, and u
as their velocity scale. Similarly, we will define η as the length scale of the smallest scale vortices
and v as their velocity scale. For the large scale vortical structures, they will complete a revolution,



4.1 Turbulence Theory 31

or turnover time, in approximately

t ∼ l
u
. (4.9)

In experiments, it is observed that a turbulent structure tends to break up within a small number of
eddy turnover times, regardless of its size. Hence, the rate at which kinetic energy gets transferred
from the largest scales is

Π∼ u2

t
, (4.10)

which expands to

Π∼ u3

l
. (4.11)

Hence, if we know the approximate size and velocity of the largest scale turbulent structures, we
can estimate the rate at which they transfer energy down to the smaller scales.

Similarly, if we consider the small scale structures, it can be shown via the Navier-Stokes
equations that they dissipate their energy via viscous effects into heat at a rate of [4]

ε ∼ νSi jSi j ∼ ν
v2

η2 , (4.12)

where ε is the rate of kinetic energy dissipation into heat and Si j is the strain rate tensor. Hence, we
can also approximate the rate at which kinetic energy ultimately gets turned into heat.

If we consider a quasi steady system, where the rate at which kinetic energy gets introduced to
the flow at the large scales has stabilized, then it must balance with the rate at which kinetic energy
gets dissipated by the smalles scales. Hence, under these conditions

Π = ε, (4.13)

which yields

u3

l
∼ ν

v2

η2 . (4.14)

Considering again the smallest scale structures, we would expect the dissipation due to viscous
effects to start to dominate when they are about the same strength as the intertial effects. Hence, at
the smallest scales, the kinetic energy is expected to diffuse into heat when

Re =
vη

ν
≈ 1. (4.15)

In conjunction with Equation 4.14, this yields

l
η
∼ Re3/4. (4.16)

Hence, if we know the Reynolds number of the flow, we can estimate the approximate size of the
largest scales relative to the smallest scales, referred to as the scale separation. A similar procedure
for the velocity components yields



32 Chapter 4. Turbulence

v
u
∼ Re−1/4, (4.17)

which can be used to estimate the relative difference in the velocity magnitudes at the largest and
smallest scales as well.

Now, let’s consider what this means in the context of CFD. If we have an object that we want to
simulate flow over, the domain size needs to be at least as large as the object, which would be l.
Furthermore, if we want to resolve the smallest scale turbulent structures, then the grid resolution
must be approximately the same size as the structures, η . Furthermore, this mesh must be three
dimensional. Hence, we can estimate the total number of grid points that would be required from

N ∼
(

Re3/4
)3

, (4.18)

which expands to

N ∼ Re9/4, (4.19)

where N is the total number of grid points. Hence, as the Reynolds number goes up, the required
number of grid points scales extremely rapidly with the Reynolds number. For practical Reynolds
numbers above Re∼ 105, this rapidly becomes intractable on modern high-performance computers.
Therefore, if we want to simulate turbulent flows above Re∼ 105, we simply cannot resolve the
large-scale structures and the small-scale structures in their entirety at the same time. The most
common solution to this, which will be explored in the following section, is to resolve only the
large scale structures and introduce a model for the effect the small scale structures will have on the
large scale structures. This model will not be able to exactly mimic the effects of the small scale
structures and, hence, it will introduce some error into our solution of the largest scales.

4.2 Reynolds Averaging
Now that we have briefly introduced chaos and how it relates to the Navier-Stokes equations,
it is clear that the study of turbulent flows is indeed challenging. Small changes in the initial
conditions may substantially deviate the results. Furthermore, we have demonstrated that the
scale separation between the largest and smallest turbulent structures rapidly becomes intractable
as the Reynolds number increases. Hence, we commonly require the use of statistical tools to
understand its behaviour, which includes averaging operations. One of the most widely used, known
as Reynolds decomposition, was introduced by Osborne Reynolds [17] in 1895. This concept relies
on representing any flow property u(~x, t) as the sum of its mean and fluctuating components, such
that

u(x, t) = u(~x)+u(~x, t)′, (4.20)

where · denotes the averaged term and ′ the fluctuation. Turbulent flows can be considered stationary
if, after averaging, they do not vary in time. Even though the instantaneous fluctuating components
will vary, we gain some reproducibility by considering the mean quantities instead. An example
could be a wing of an airplane flying at cruise. It is clear that if we measure the velocity at a
given point where the flow is turbulent, we will observe fluctuations in the results. However, if
these results are time-averaged, we will expect to obtain the same value should the experiment be
repeated. This type of averaging is defined in an integral sense as

uT (~x) = lim
τ→∞

1
τ

∫ t0+τ

t0
u(~x, t)dt, (4.21)



4.2 Reynolds Averaging 33

where τ is the length of the averaging. For large values of τ , uT is independent of the initial
conditions. A schematic representation can be observed in Figure 4.4. We observe a constant value
given the stationary characteristic of the flow.

t

u

ui(~x, t)
uT (~x)

Figure 4.4: Time averaging of a stationary flow quantity u(~x, t).

Homogeneous flows are those whose properties do not vary in any direction. In this case, a
spatial averaging procedure may be convenient

uΩ(t) = lim
Ω→∞

1
Ω

∫
Ω

u(~x, t)dV, (4.22)

where Ω is the volume of the domain. Finally, ensemble averaging can be used to obtain mean
values using N identical experiments, even if initial and boundary conditions include infinitesimal
perturbations. In this type of averaging, the variation on both the spatial and temporal coordinates
is maintained. For N experiments, where N is large, we can calculate

uN(~x, t) = lim
N→∞

1
N

N

∑
i=1

ui(~x, t), (4.23)

where ui(~x, t) is the result obtained in the i-th experiment. An example of ensemble averaging can
be seen in Figure 4.5 for non-stationary flows, where we discover a smooth sinusoidal behaviour
after N experiments have been performed.

t

u

ui(~x, t)
uE(~x, t)

Figure 4.5: Ensemble averaging results of a non-stationary flow quantity u(~x, t).



34 Chapter 4. Turbulence

In the following section, we will derive the Reynolds Averaged Navier-Stokes equations using
the time-averaging operation. Before we dive into the derivation, we will discuss some Reynolds
Averaging properties. For a complete explanation of these properties, refer to Wilcox [25].

Properties of Reynolds Averaging
Consider a statistically-steady state flow scenario, two flow quantities u and v, and constants α and
β .
• Since the time-averaging process deals with definite integrals, it is a linear operation. Hence,

αu+βv = αu+βv. (4.24)

• The time averaging of integrals and derivatives commute∫
udy =

∫
udy,

∂u
∂ t

=
∂u
∂ t

. (4.25)

• Any time-averaged fluctuation vanishes, i.e.

u′ = 0. (4.26)

• The average of the product of two instantaneous quantities is given by

uv = ūv̄+u′v′. (4.27)

• From the aforementioned properties, it can also be shown that

u = u, u′v = 0. (4.28)

4.2.1 The Reynolds Averaged Navier-Stokes Equations
The Reynolds-Averaged Navier-Stokes (RANS) equations are especially useful for analysis of
time-marching numerical methods involving statistically steady flow problems. These equations
have been widely used in the aerospace industry for decades. The idea is to split each of the
flow variables into mean and fluctuating components, and then perform time averaging on the
governing equations. As a consequence, high-frequency information is removed from the flow via
the averaging procedure. The resulting conservation laws describe only the evolution of the mean
flow quantities, which are typically sufficient to determine terms of engineering interest, such as
the lift and drag coefficients.

In this section, we will derive the RANS equations for incompressible flow, and later for the
compressible case. We will then discuss the appearance of the Reynolds stresses as a consequence
of time-averaging the non-linear convective terms from the Navier-Stokes equations.

Incompressible flow
Consider the incompressible mass conservation law

∇ ·~v = 0, (4.29)

which we rewrite using tensor notation

∂vi

∂xi
= 0, (4.30)

where index i indicates summation over all considered directions. We decompose the velocity
variable as the sum of mean and fluctuation components

∂

∂xi
(vi + v′i) = 0. (4.31)



4.2 Reynolds Averaging 35

Since the time-averaging procedure commutes with derivative operators (Equation 4.25),

∂

∂xi
(vi + v′i) = 0. (4.32)

Using Equations 4.24 and 4.26,

∂vi

∂xi
= 0, (4.33)

where the fluctuating term has vanished. This means that the divergence of each of the terms in
Equation 4.32 must equal zero. Hence

∂v′i
∂xi

= 0. (4.34)

Next, we consider the momentum equation. Similarly, we split the variables using Reynolds
decomposition and then time-average both sides of the equation. The momentum equations can be
written using tensor notation

ρ
∂vi

∂ t
+ρv j

∂vi

∂x j
=− ∂ p

∂xi
+µ

∂ 2vi

∂x2
j
, (4.35)

where µ is the dynamic viscosity and ρ = ρ is constant due to the incompressible condition. We
will simplify the derivation beforehand by considering

∂ (v jvi)

∂x j
= v j

∂vi

∂x j
+ vi

∂v j

∂x j
, (4.36)

where the second term ∂v j/∂x j vanishes according to continuity. Hence, we write

∂ (v jvi)

∂x j
= v j

∂vi

∂x j
, (4.37)

which we use to replace the convective term in Equation 4.35, such that

ρ
∂vi

∂ t
+ρ

∂v jvi

∂x j
=− ∂ p

∂xi
+µ

∂ 2vi

∂x2
j
. (4.38)

Decomposing the flow variables and time-averaging the resulting equation, we have

ρ
∂ (vi + v′i)

∂ t
+ρ

∂

(
v j + v′j

)
(vi + v′i)

∂x j
=−∂ (p+ p′)

∂xi
+µ

∂ 2 (vi + v′i)
∂x2

j
. (4.39)

By first resolving multiplications and then applying the Reynolds averaging properties, we obtain
the RANS equations for incompressible flow

ρ
∂vi

∂ t
+ρ

∂

∂x j

(
v jvi + v′jv

′
i

)
=− ∂ p

∂xi
+µ

∂ 2vi

∂x2
j
. (4.40)

Recall the stress tensor τi j from Chapter 4, which we now rewrite in tensor notation

τi j = 2µSi j, (4.41)

where Si j is the strain-rate tensor

Si j =
1
2

(
∂vi

∂x j
+

∂v j

∂xi

)
. (4.42)

We may now rewrite the RANS momentum equation in terms of the stresses and rearrange some
terms, such that



36 Chapter 4. Turbulence

ρ
∂vi

∂ t
+ρ

∂

∂x j
(v jvi) =−

∂ p
∂xi

+
∂

∂x j

(
τ ji−ρv′jv

′
i

)
, (4.43)

where ρv′jv
′
i is known as the Reynolds stress, which we can define as the Reynolds stress tensor

ρτ̂i j, such that

τ̂i j =−v′iv
′
j. (4.44)

Note that the Reynolds stress tensor is symmetric sinceτ̂i j = τ̂ ji. This means that three diagonal
components and three off-diagonal components make a total of six independent variables only
in τ̂i j. This number of unknowns rises to ten if we consider the conserved properties of three-
dimensional flow, with density as well as one momentum equation in each direction. Clearly, we
have an underdetermined system and require additional equations. Later in this chapter, we derive
an equation for the Reynolds stresses and discuss some of the consequences that arise from the
averaging of the Navier-Stoke equations. We now look at the RANS equations for compressible
flow.

Compressible flow
In the previous section, we derived the incompressible form of the RANS equations, where the
density variations are negligible, i.e ρ = ρ . In the case of compressible flow, these variations must
be taken into account. However, the equations can become very lengthy and complicated if the
conventional averaging procedure is used. To visualize this, let us decompose the mass conservation
law using the conventional Reynolds decomposition

∂

∂ t

(
ρ +ρ

′)+ ∂

∂xi

[(
ρ +ρ

′)(vi + v′i
)]

= 0, (4.45)

which will introduce correlations involving density fluctuations and may complicate the turbulence
modelling, i.e.

∂ρ

∂ t
+

∂

∂xi

(
ρvi +ρ ′v′

)
= 0. (4.46)

By performing a density-weighted time-averaging, introduced by Alexandre Favre in 1969, the
equations become simpler and the presence of ρ ′ can be avoided. It is defined by

ũ =
1
ρ

lim
n→∞

1
n

ν=n

∑
ν=1

(ρu)(ν) =
ρu
ρ
, (4.47)

where · represents the conventional time-averaging. Similar to Reynolds decomposition, we
consider the flow properties to be the sum of a mean and fluctuating component

u = ũ+u′′, (4.48)

where ũ is the Favre mean and u′′ is the Favre fluctuation. Some properties of the Favre averaging
are

ũ = ũ, (4.49)

ρu′′ = 0, (4.50)

u′′ =−ρ ′u′/ρ, (4.51)

ρuv = ρ ũṽ+ρu′′v′′. (4.52)



4.2 Reynolds Averaging 37

We note that ρ is the instantaneous density and that the Favre average differs from the Reynolds
averaging properties. For instance, u′ = 0, whereas u′′ 6= 0. In addition, the conventional Reynolds
and Favre averaging are related by

ũ = u+
ρ ′u′

ρ
, (4.53)

u′′ = u′− ρ ′u′

ρ
. (4.54)

We now derive the compressible RANS equations, also known as Favre-Averaged Navier-Stokes
Equations (FANS). Starting with conservation of mass, by performing time averaging, we have

∂ρ

∂ t
+

∂ρvi

∂xi
= 0. (4.55)

Since the time-averaging procedure commutes with the derivatives,

∂ρ

∂ t
+

∂ρvi

∂xi
= 0. (4.56)

The first term can then be Favre decomposed and time averaged

∂

∂ t
(ρ̃ +ρ ′′) =

∂ρ

∂ t
, (4.57)

and the proof is left as a simple exercise to the reader. The second term ρvi can be computed using
the Favre definition in Equation 4.47. The averaged mass conservation equation for compressible
flows can then be written

∂ρ

∂ t
+

∂ρ ṽi

∂xi
= 0. (4.58)

Next, we derive the compressible time-averaged momentum equations. Initially, these are given by

∂

∂ t
(ρvi)+

∂

∂x j
(ρv jvi) =−

∂ p
∂xi

+µ
∂ 2

∂x2
j
(vi) . (4.59)

The unsteady term can be computed using Equation 4.47. We pay special attention to the convective
term, which we expand according to Equation 4.52

ρv jvi = ρ ṽ jṽi +ρv′′j v
′′
i . (4.60)

The time-averaged compressible momentum equations can be written

∂

∂ t
(ρ ṽi)+

∂

∂x j

(
ρ ṽ jṽi +ρv′′i v′′j

)
=− ∂ p

∂xi
+µ

∂ 2

∂x2
j
(vi) . (4.61)

where single-variable terms such as the pressure and diffusive components follow the same proce-
dure described in Equation 4.57. Similar to the incompressible case, we rearrange some terms in
the equation, such that

∂

∂ t
(ρ ṽi)+

∂

∂x j
(ρ ṽ jṽi) =−

∂ p
∂xi

+µ
∂

∂x j

(
τ ji−ρv′′i v′′j

)
. (4.62)



38 Chapter 4. Turbulence

where −ρv′′i v′′j is the Reynolds stress, which includes the instantaneous density ρ , and τi j is
the viscous stress tensor. As explained in the incompressible section, the resulting system of
equations remains underdetermined due to the Reynolds stresses. Obtaining an equation for these
stresses turns out to introduce additional unknowns. We now discuss and derive equations for the
Reynolds-stress tensor for incompressible flow.

4.2.2 The Reynolds Stresses

The Reynolds stresses for the incompressible case are given by

τ̂i j =−ρv′iv
′
j. (4.63)

We will show in the next section that we can’t solve for them directly. However, for now we can
understand their influence on the mean flow. Recall the integral form of the Navier-Stokes equations
from Chapter 2, which we rewrite

d
dt

∫
Ω

ρvidΩ+
∮

S
ρvi~v ·ds =

∮
S
−Pds+

∮
S

τi jds. (4.64)

The term on the LHS represents the rate of change of momentum. On the right-hand side of
Equation 4.64, the first term is responsible for the convection of momentum in and out of the
system, followed by the pressure term, and finally the viscous diffusion of momentum. When we
apply our time-averaging to this equation, we obtain

d
dt

∫
Ω

ρvidΩ+
∮

S
ρvi~v ·ds =

∮
S
−Pds+

∮
S

(
τ i j−ρv′iv

′
j

)
ds. (4.65)

Equation 4.65 is similar to the time-averaged systems we have derived in the previous section in
differential form, such as Equations 4.43 and 4.62. Note that the new Reynolds stress term naturally
lumps together with the viscous stresses. In fact, the Reynolds stresses are the turbulent diffusion
of momentum into Ω.

Example

Consider laminar and turbulent flow over a plate that is heated, such as that shown in Figure 4.6.
By taking the average of the turbulent case, the resulting profile will resemble that in Figure 4.7. If
we now compare the heat transfer between the time-averaged turbulent case and the laminar profile,
we will observe much more heat transfer in the time-averaged profile. The reason is due to the
energy transported by the turbulent eddies, which after time-averaging looks like extra diffusion.

cold

δ

hot

Viscous
diffusion

cold

δ

hot

cold down

hot up

Figure 4.6: Reynolds stresses example



4.2 Reynolds Averaging 39

cold

δ

hot

Viscous
diffusion+

Turbulent
diffusion

Figure 4.7: Reynolds stresses example

4.2.3 The RANS Closure Problem
As we have previously shown, the Reynolds stresses stem from averaging the convective terms
of the Navier-Stokes equations. We now need to find additional equations to solve our system of
time-averaged conservation laws. Specifically, we would like to define equations that describe the
rate of change of these stresses as we have done for other flow quantities. In this section, we derive
the expressions for incompressible flow, however, the derivation can be readily performed for the
compressible case considering the Favre averaging procedure.

Consider the incompressible momentum equation in the i-th direction, which we conveniently
rewrite

P(vi) = ρ
∂vi

∂ t
+ρvk

∂vi

∂xk
+

∂ p
∂xi
−µ

∂ 2vi

∂xk∂xk
= 0. (4.66)

Since we are looking for a time-averaged symmetric tensor for the Reynolds stresses, we perform
the following operation

v′iP(v j)+ v′jP(vi) = 0. (4.67)

Here, v′i and v′j are fluctuation components in the i-th and j-th direction, respectively. We can
compactly rewrite Equation 4.67 using

Ai j +Bi j +Ci j +Di j = 0, (4.68)

where Ai j, Bi j, Ci j, Di j are the unsteady, convective, pressure and viscous stress tensors from the
momentum equations, respectively. For the sake of clarity, we expand each of these terms

Ai j = v′iρ
∂v j

∂ t
+ v′jρ

∂vi

∂ t
, (4.69)

Bi j = v′iρvk
∂v j

∂xk
+ v′jρvk

∂vi

∂xk
, (4.70)

Ci j = v′j
∂ p
∂xi

+ v′i
∂ p
∂x j

, (4.71)

Di j =−v′iµ
∂ 2v j

∂xk∂xk
− v′jµ

∂ 2vi

∂xk∂xk
. (4.72)

We will now time-average and derive an expression for the Reynolds-stress tensor. Initially, we
want to split the instantaneous variables using Reynolds decomposition. Starting with the unsteady
term

Ai j = ρv′i
∂

∂ t

(
v j + v′j

)
+ρv′j

∂

∂ t

(
vi + v′i

)
, (4.73)



40 Chapter 4. Turbulence

which we rewrite after solving the products

Ai j = ρv′i
∂v j

∂ t
+ρv′i

∂v′j
∂ t

+ρv′j
∂vi

∂ t
+ρv′j

∂v′i
∂ t

. (4.74)

Recall from the Reynolds averaging properties in Equation 4.28 that the average of the product
of a mean and a fluctuating quantity is zero. Hence, we eliminate the first and third terms in
Equation 4.74. Furthermore, we apply the product rule to bring fluctuation quantities into the
temporal derivative. This yields the time-averaged convective term

Ai j = ρv′i
∂v′j
∂ t

+ρv′j
∂v′i
∂ t

= ρ
∂

∂ t

(
v′iv
′
j

)
. (4.75)

Next, we decompose the variables in the convective term

Bi j = ρv′i
(

vk + v′k
)

∂

∂xk

(
v j + v′j

)
+ρv′j

(
vk + v′k

)
∂

∂xk

(
vi + v′i

)
, (4.76)

whereby solving the products, we obtain

Bi j = v′ivk
∂v j

∂xk
+ v′ivk

∂v′j
∂xk

+ v′iv
′
k

∂v j

∂xk
+ v′iv

′
k

∂v′j
∂xk

+ v′jvk
∂vi

∂xk
+ v′jvk

∂v′i
∂xk

+ v′jv
′
k

∂vi

∂xk
+ v′jv

′
k

∂v′i
∂xk

.

(4.77)

Note that u′vw = u′vw = 0 as a consequence of Equation 4.28. This way we can clean up Equa-
tion 4.77 by eliminating the first and fifth terms. In addition, using the product rule for the second
and fourth term, we have

v′ivk
∂v′j
∂xk

+ v′jvk
∂v′i
∂xk

= vk
∂

∂xk

(
v′iv
′
j

)
, (4.78)

where vk is a constant. This yields

Bi j = ρ

[
vk

∂

∂xk

(
v′iv
′
j

)
+ v′iv

′
k
∂v j

∂xk
+ v′k

∂

∂xk

(
v′iv
′
j

)
+ v′jv

′
k

∂vi

∂xk

]
. (4.79)

We can use the chain rule on the third term of Equation 4.79, such that

∂

∂xk

(
v′iv
′
jv
′
k

)
= v′iv

′
j
∂v′k
∂xk

+ v′k
∂

∂xk

(
v′iv
′
j

)
= v′k

∂

∂xk

(
v′iv
′
j

)
, (4.80)

where the first term is zero due to continuity (see Equation 4.34). We can now write the time-
averaged convective term of the Reynolds stress equation

Bi j = vk
∂

∂xk

(
ρv′iv

′
j

)
+ρv′iv

′
k
∂v j

∂xk
+

∂

∂xk

(
ρv′iv

′
jv
′
k

)
+ρv′jv

′
k

∂vi

∂xk
. (4.81)

Now, we move on to the pressure term. By splitting the instantaneous quantities, we obtain

Ci j = v′i
∂

∂x j
(p+ p′)+ v′j

∂

∂xi
(p+ p′), (4.82)

which after solving the products and cancelling the linear terms yields



4.2 Reynolds Averaging 41

Ci j = v′i
∂ p′

∂x j
+ v′j

∂ p′

∂xi
. (4.83)

Finally, we decompose the viscous term

Di j =−µ

[
v′i

∂ 2

∂xk∂xk

(
v j + v′j

)
+ v′j

∂ 2

∂xk∂xk

(
vi + v′i

)]
, (4.84)

whereby solving the products and cancelling corresponding terms yields

Di j =−µ

[
v′i

∂ 2v′j
∂xk∂xk

+ v′j
∂ 2v′i

∂xk∂xk

]
. (4.85)

From the chain rule, we can write

∂ 2

∂xk∂xk

(
v′iv
′
j

)
= 2

∂v′i
∂xk

∂v′j
∂xk

+ v′i
∂ 2v′j

∂xk∂xk
+ v′j

∂ 2v′i
∂xk∂xk

, (4.86)

which yields the time-averaged viscous term

Di j =−µ
∂ 2

∂xk∂xk

(
v′iv
′
j

)
+2µ

∂v′i
∂xk

∂v′j
∂xk

. (4.87)

The resulting equation for the evolution of the Reynolds stresses can be written as

∂

∂ t

(
ρv′iv

′
j

)
+ vk

∂

∂xk

(
ρv′iv

′
j

)
=−ρv′iv

′
k
∂v j

∂xk
−ρv′jv

′
k

∂vi

∂xk
− v′i

∂ p′

∂x j
− v′j

∂ p′

∂xi

+
∂ 2

∂xk

[
µ

∂

∂xk

(
v′iv
′
j

)
−
(

ρv′iv
′
jv
′
k

)]
−2µ

∂v′i
∂xk

∂v′j
∂xk

.

(4.88)

By inspecting Equation 4.88, it is clear that we have added six equations, but the number of
unknowns also increased. The high-order correlation v′iv

′
jv
′
k is responsible for ten additional

unknowns, in addition to other twelve that result from the new pressure and viscosity terms. This is
known as the closure problem of turbulence. Interestingly, if we decided to further find equations
by taking additional moments, new higher-order correlations would appear. This is a consequence
of the initial averaging of the Navier-Stokes equations. By multiplying Equation 4.88 by −ρ−1 and
using the following definitions

τ̂i j =−v′iv
′
j, (4.89)

Πi j =
p′

ρ

(
∂v′i
∂x j

+
∂v′j
∂x j

)
, (4.90)

εi j = 2ν
∂v′i
∂xk

∂v′j
∂xk

, (4.91)

ρCi jk = ρv′iv
′
jv
′
k + p′v′iδ jk + p′v′jδik, (4.92)

we can compactly write the Reynolds-stress equation in its common form

∂ τ̂i j

∂ t
+ vk

∂ τ̂i j

∂xk
=−τ̂i j

∂v j

∂xk
− τ̂ jk

∂vi

∂xk
+ εi j−Πi j +

∂

∂xk

(
ν

∂ τ̂i j

∂xk
+Ci jk

)
. (4.93)



42 Chapter 4. Turbulence

We are still left with a system of equations that remains to be closed. Hence, we have shown that the
Reynolds stresses cannot be found without solving the full unsteady Navier-Stokes equations. In
the quest of solving turbulent flows using the RANS equations, we dedicate the rest of this chapter
to the derivation of common empirical models that have been devised to estimate τ̂i j.

4.3 Turbulence Modelling
In the previous section, we derived the RANS equations. This time-averaged system of conservation
laws is widely used in the aerospace industry, in particular, due to its relatively low computational
cost when compared to unsteady simulations of the Navier-Stokes equations. We have also stated
that their use is limited to obtaining mean flow properties due to the averaging of the turbulent
scales. In addition, we have shown that we require additional mathematical equations to give
closure to the system. This is done by introducing approximations that model features of the
Reynolds stress tensor. We will observe that none of these models is applicable to all types of flow.
Indeed, each of these turbulence models has its own typical applications and known limitations.
We begin by presenting the Boussinesq approximation, where a new apparent viscous parameter
known as the eddy viscosity is introduced. Later, it will be shown that the majority of popular
RANS models devise different strategies to model this parameter, which is accomplished in part by
tuning parameters after comparison with experimental data.

We categorize these models according to the number of additional partial differential equations
required for turbulence closure. We present zero-equation, also known as algebraic, one-equation
and two-equation models. Note that models with a larger number of PDEs exist; however, this also
implies a decrease in computational efficiency. A second feature that categorizes these models,
according to Wilcox [25] is whether the model can be considered complete or incomplete. A
complete model does not require previously known information about the turbulence properties
of the flow to simulate, whereas incomplete models do. We also note that generally, one must be
careful when choosing a turbulence model. While some may be used to predict turbulence mean
properties, others require previous calibration and are rarely used for unknown flows. We note that
this section includes some of the most known turbulence models, and it is by no means a turbulence
modelling reference by itself.

4.3.1 The Boussinesq Hypothesis
In 1877, Boussinesq presented an approximation for the turbulent transfer of momentum in relation
to molecular motion. Boussinesq observed that the effect of turbulence, when time-averaged, is
similar to the effects of viscosity. Turbulent fluctuations transport conserved quantities, such as
mass, momentum, and energy, by physically moving it around. When this is time-averaged, the
effect of turbulence is to spread things out, similar to the diffusive terms in the Navier-Stokes
equations. Hence, Boussinesq proposed, based on the transfer of momentum in kinetic theory
of gases, replacing the Reynolds stress tensor τ̂i j by simply adding extra turbulent viscosity. His
hypothesis can be written for three-dimensional flows as

−ρv′iv
′
j = ρτ̂i j = 2µτ

(
Si j−

1
3

∂vk

∂xk
δi j

)
− 2

3
kδi j, (4.94)

where

Si j =
∂vi

∂x j
+

∂v j

∂xi
, (4.95)

k is the kinetic energy 1
2 v′iv

′
i, δi j is the Kronecker delta and µτ is an isotropic scalar quantity, known

as the eddy viscosity. This value is a function of the local flow, and not of the fluid itself. Note



4.3 Turbulence Modelling 43

that for incompressible flows, ∂vk
∂xk
≡ 0 due to continuity. This closing approximation of the RANS

equations is the basis of the turbulence models presented hereafter. Now, the remaining task is
to define the value of µτ , which has reduced all of the unknown Reynolds stress terms down to a
single scalar unknown.

Observe that the resulting Reynolds stresses are now represented as additional viscous terms.
This is, in fact, contradictory since we are neglecting the convective effects of these stresses. Is this
a real contradiction? Indeed, the assumption that the Reynolds stress tensor behaves linearly with
the rate of strain is incorrect for most flows and is the result of incorrectly associating the behaviour
of gas molecules from the kinetic theory of gases to that of the turbulent structures. In fact, turbulent
transfer of momentum cannot be associated with the molecular transfer of momentum in gases.
One reason is that eddies cannot be assumed to be rigid bodies. Furthermore, recall that the size
of turbulent structures ranges from the characteristic length of the domain to a tiny number that
cubically decreases with the Reynolds number. Hence the relation between eddy sizes and their
"mean free-path" cannot be associated with that of the molecules. These discrepancies show a lack
of theoretical justification for the Boussinesq assumption. However, most turbulence models have
been devised under this premise, and yield relatively good results. Beware, however, that models
based on this assumption generally fail for highly anisotropic flows, such as boundary layers.

We will present a limited selection of popular turbulence models that leverage the eddy viscosity
approximation presented by Boussinesq, commonly known as eddy-viscosity models.

4.3.2 The Mixing Length Model
Rather than defining a constant value of viscosity dependent on the velocity field, Prandtl proposed
a rough approach for the calculation of the kinematic eddy viscosity ντ = µτ/ρ [16]. Recall the
mean-free-path in a gas is the distance travelled by a molecule before it collides with another. When
this collision happens, momentum transfer occurs. Analogous to this distance, Prandtl considered
a mixing length `m, which is equivalent to the path travelled by a structure in the flow, such as a
vortex, before losing momentum due to mixing with a neighbouring structure. This length was
typically taken to be constant and corresponds to the size of the dominant turbulent eddies in the
flow. In one dimension, we note that ντ has SI units m2/s. Hence, by performing a dimensional
analysis, it seems a natural fit to use

ντ = `mv∗, (4.96)

where v∗ is the corresponding characteristic velocity. We can determine the value of v∗, which
Prandtl proposed to be

v∗ ∝ `m

∣∣∣∣∂vx

∂y

∣∣∣∣ . (4.97)

Hence, the characteristic velocity and `m could be related to the eddy viscosity by

ντ = `2
m

∣∣∣∣∂vx

∂y

∣∣∣∣ , (4.98)

where `m is empirically determined and is known for only certain types of flows. Prandtl postulated
that near solid walls, the velocity of the flow is proportional to the distance from the surface. This is
consistent with the observed behaviour of flows within ≈ 10% of their height. A profile of a typical
boundary layer is shown in Figure 4.8.

We have now algebraically defined Boussinesq’s viscosity µτ with another empirical parameter
`m. The specification of this mixing length typically relies on previous experimental data and is
dependent on whether it is a jet, wake, wall boundary layer or another type of flow [1]. Therefore,
this model is considered to be incomplete, since it requires a previous understanding of the turbulent
structures that are expected to be in the flow.



44 Chapter 4. Turbulence

100 101 102 103

y+

0

5

10

15

20

25

30

u+

Viscous
sub-layer

u+ = y+

Buffer
layer

Log-law
region

1
κ

ln y+ + B

Figure 4.8: Behaviour of the mean velocity profile in wall-bounded turbulent flows

4.3.3 The Spalart-Allmaras Model

Spalart and Allmaras [20] (SA) took an empirical approach, using arguments from dimensional
analysis to develop a new model, which includes the resolution of an ad-hoc transport equation for
a turbulence variable ν̃ . The model was initially developed for aerodynamics applications such as
transonic flow over airfoils. Several nested versions are included in the original publication, which
range from simple models for free shear flows to more complex derivations that can be applied to
boundary layer flows. The general model is given by

∂ ν̃

∂ t
+vi

∂ ν̃

∂xi
= cb1(1− ft2)S̃ν̃+

1
σ

[
∂

∂x j
·
(
(ν + ν̃)

∂ ν̃

∂x j

)
+ cb2

(
∂ ν̃

∂x j

)2
]
−
[
cw1 fw−

cb1

κ2 ft2
]
,

(4.99)

where c and f are empirical constants and functions of the turbulence model, which will be defined
shortly along with the rest of the variables. Upon solving Equation 4.99, we can compute the eddy
viscosity µτ from

µτ = ρν̃ fv1, χ =
ν̃

ν
, (4.100)

where ν is the molecular kinematic viscosity. In addition,

S̃≡ S+
ν̃

κ2d2 fv2 , fv1 =
χ3

χ3 + c3
v1
, fv2 = 1− χ

1+χ fv1
, (4.101)

with S the magnitude of the vorticity and d the distance to the closest wall [20].

fw = g
[

1+ c6
w3

g6 + c6
w3

]1/6

, r ≡min
(

ν̃

S̃κ2d2
,10
)
. (4.102)

ft2 = ct3 exp
[
−ct4χ

2] g =
[
r+ cw2

(
r6− r

)]
. (4.103)



4.3 Turbulence Modelling 45

Finally, the constants are given by

cb1 = 0.1355, cb2 = 0.622, σ = 2/3, κ = 0.41, (4.104)

cw2 = 0.3, cw3 = 2, cv1 = 7.1, ct3 = 1.2, (4.105)

ct4 = 0.5, cw1 =
cb1

κ2 +
1+ cb2

σ
. (4.106)

The implementation of this model allows us to remove the incomplete condition from the previously
defined models. Wall and freestream boundary conditions are [18]

ν̃wall = 0, ν̃∞ = 3ν∞ : to : 5νv∞
, (4.107)

Now, by solving Equations 4.99 and 4.100, we are able to give closure to the RANS equations.
Since only one additional equation is required, the relative computational cost of this turbulence
model makes it appealing. Given that this model was initially developed for aerospace applications,
it is a popular choice for the prediction of aerodynamic loads at low to moderate angles of attack
due to its relatively good resolution of boundary layer problems.

Furthermore, the SA model is well-suited for applications using unstructured meshes. Despite
its success in predicting aircraft performance, it has been found to unsuitable for flows that include
jet-like free-shear regions and flows involving complex recirculation.

4.3.4 The k-ε Model
One of the most commonly used RANS models for the computation of turbulent flows is the k− ε

model. It was originally developed to overcome the deficiencies of the mixing length model, such
that no specification of flow-dependent properties are required. Instead, closure is achieved by
resolving two transport equations for the turbulent kinetic energy k and its rate of dissipation ε .
Hence this model is complete. Different versions of this model have been provided [9, 12]. We
describe the standard k− ε model, as shown by [2]. The relation between the eddy-viscosity and
the two aforementioned turbulent quantities is given by

µτ = cµρk2/ε, (4.108)

where cµ is a constant, which we define at the end of this section. Define the instantaneous kinetic
energy to be the sum of the mean and the fluctuation component, such that

k(t) = k+ k′,

=
1
2

d

∑
i=1

vi +
1
2

d

∑
i=1

v′iv
′
i. (4.109)

Hence, by multiplying each velocity component with their corresponding momentum equation in
the appropriate direction, a PDE for the turbulent kinetic energy can be obtained. After performing
Reynolds averaging and several algebraic operations, we can write

ρ
∂k
∂ t

+ρv j
∂k
∂x j

= ρτ̂i j
∂vi

∂x j
−ρε +

∂

∂x j

[
(µ +µτ/σk)

∂k
∂x j

]
. (4.110)

The second component of this model is the dissipation rate ε , for which the following transport
equation was derived

ρ
∂ε

∂ t
+ρv j

∂ε

∂x j
= cε1

ε

k
ρτ̂i j

∂vi

∂x j
−ρcε2

ε2

k
+

∂

∂x j

[
(µ +µτ/σε)

∂ε

∂x j

]
, (4.111)



46 Chapter 4. Turbulence

where the terms on the right-hand side refer to the diffusion, production and dissipation rates of
ε [1]. The constants are given by

cµ = 0.09, cε1 = 1.44, cε2 = 1.92, (4.112)

σk = 1.0, σε = 1.3. (4.113)

The computational cost that comes from the computation of two transport equations can be
significant. However, as previously mentioned, this model is one of the most commonly used in
the CFD field, mostly for the modelling of free-shear layer flows with small to moderate pressure
gradients. One of the pitfalls of this model, however, lies in the prediction of flows with large
adverse pressure gradients, which cause the model to predict results inaccurately. This means that
this model is often inaccurate for turbulent wall-bounded flows. Additional modifications, such as
the introduction of wall functions, are necessary for such applications. Nevertheless, this model
remains one of the simplest and most popular complete models.

4.3.5 The k-ω Model
The k−ω model is also a two-equation model, and along with the k−ε model, it is one of the most
commonly used turbulence RANS models. Here, the equation for the turbulent kinetic energy is the
same as in the k− ε . The second transport equation, however, is derived for the specific dissipation
rate, ω ≡ ε/k. The eddy viscosity is defined to be

µτ = ρ
k
ω̃
, ω̃ = max

[
ω,

7
8

√
2Si jSi j/β ∗

]
. (4.114)

For the sake of completeness, we rewrite the PDE for the kinetic energy, now in terms of ω

ρ
∂k
∂ t

+ρv j
∂k
∂x j

= ρτ̂i j
∂vi

∂x j
−ρβ

∗kω +
∂

∂x j

[(
µ +ρσ

∗ k
ω

)
∂k
∂x j

]
. (4.115)

The specific dissipation rate ω can be computed through [25]

ρ
∂ω

∂ t
+ρv j

∂ω

∂x j
=α

ω

κ
ρτ̂i j

∂vi

∂x j
−ρβω

2+ρ
σd

ω

∂k
∂x j

∂ω

∂x j
+

∂

∂x j

[(
µ +ρσ

k
ω

)
∂ω

∂x j

]
. (4.116)

The closure coefficients and auxiliary relations are given by

α =
13
25

, β = βo fβ , β
∗ =

9
100

, (4.117)

σ =
1
2
, σ

∗ =
3
5
, σdo =

1
8
, (4.118)

σd =


0,

∂k
∂x j

∂ω

∂x j
≤ 0,

σdo,
∂k
∂x j

∂ω

∂x j
> 0.

β0 = 0.0708, fβ =
1+85χω

1+100χω

, χω ≡

∣∣∣∣∣Ωi jΩ jkSki

(β ∗ω)3

∣∣∣∣∣ , (4.119)

ε = β
∗
ωk, (4.120)



4.3 Turbulence Modelling 47

where Ωi j is the mean-rotation tensor

Ωi j =
1
2

(
∂vi

∂x j
−

∂v j

∂xi

)
, (4.121)

and Si j is the mean strain rate tensor, as described in Equation 4.95.
An advantage of this model is the relatively accurate resolution of near-wall interaction, and for

flows with the presence of strong vorticity. This makes the k−ω approach suitable for applications
such as turbomachinery. However, it was found to overpredict flow separation and to be highly
sensitive to the freestream conditions. In addition, compared to the k− ε model, it is not an
appropriate choice for free-shear flows. Further improvements to this model have been made to
accommodate its shortcomings [25]. Taking advantage of the relative accuracy of both the k− ε

and k−ω models, combinations of these have been derived, such as the Shear Stress Transport
(SST) model. We refer the reader to NASA’s Turbulence Resource website for further details and
additional turbulence models [18].

4.3.6 Summary of Turbulence Models
We have introduced the basis of turbulence modelling using the RANS equations. As previ-
ously stated, these models are initially based on the Boussinesq approximation, where a constant
coefficient referred to as the eddy viscosity, is used to model the behaviour of turbulence in a
time-averaged sense. Further improvements, from the definition of a mixing length distance to
the resolution of transport equations for turbulent quantities, have allowed the development of
turbulence models to become applicable for real-world industrial applications. These models have
been devised for specific applications and can also result in inaccurate results if not chosen appro-
priately. It is important to remember that these models are primarily limited by two approximations.
First, the time-averaging of the Navier-Stokes equations removed the wide range of actual length
scales characteristic of turbulent flows, which introduced the Reynolds stresses. Then, under the
Boussinesq approximation, it was assumed that these Reynolds stresses could be reduced to a single
unknown eddy viscosity, which is not always accurate. Then, this eddy viscosity is itself modelled
using a turbulence model, which approximates the eddy viscosity to varying levels of realism.

To summarize the previous models, we present a table where we display the characteristic
variables that define the model, the complete or incomplete condition according to [25], the number
of equations to solve, and a general description including some common applications of each
model. More complex models can be found in the literature. These include not only additional
eddy-viscosity models but also other types of models such as Large Eddy Simulation (LES), which
do not require a time-averaged RANS system of equations. For further references, refer to the
NASA Turbulence Resource database [18].



48 Chapter 4. Turbulence

Table 4.1: Summary of popular turbulence models.

Model Variable(s) Classification Description
ML A mixing length

`m

Incomplete, al-
gebraic model

An empirical mixing length is
used to compute the eddy viscos-
ity. This model was developed in
a "rough" sense. Value of `m de-
pends on the type of flow.

SA Turbulent quan-
tity proportional
to the viscosity ν̃

Complete,
one-equation
model

Resolution of a transport equation
for a turbulent quantity, specif-
ically a viscosity-like parameter.
Computationally efficient since
only a single transport equation is
added. Applicable to determine
aerodynamic loads at moderate an-
gles of attack.

k− ε Kinetic energy
and rate of dissi-
pation, k, ε

Complete,
two-equation
model

Two transport equations are added,
one for the turbulent kinetic energy
and the other for its rate of dissipa-
tion. Applicable to free-shear layer
flows. Gives inaccurate results for
flows with large adverse pressure
gradients.

k−ω Kinetic energy
and specific dis-
sipation k, ω

Complete,
two-equation
model

Requires the computation of the
kinetic energy and specific dis-
sipation rate transport equations.
The model works well across the
boundary layer of wall turbulent
flows, hence widely used in the
aerospace field. Inaccurate for free-
shear flows.



5. Boundary Conditions

5.1 Wall Boundaries
5.1.1 Wall-Bounded Turbulence

In order to properly enforce the wall boundary conditions, it is necessary to have a computational
mesh that is sufficiently fine in this region. To better understand the physics of the flow in this
region, we will reconsider the incompressible RANS momentum equations of the form

ρ
∂vi

∂ t
+ρ

∂

∂x j
(v jvi) =−

∂ p
∂xi

+
∂

∂x j

(
τ ji−ρv′jv

′
i

)
. (5.1)

Assuming that a full time average has been computed, the temporal derivative can be ommitted

ρ
∂

∂x j
(v jvi) =−

∂ p
∂xi

+
∂

∂x j

(
τ ji−ρv′jv

′
i

)
. (5.2)

Furthermore, if we assume that the pressure gradient term is negligible and that the streamwise
velocity varies primarily in the vertical direction, then the vertical momentum equation yields

ν
∂u
∂y
−u′v′ = ν

∂u
∂y

∣∣∣∣
y=0

, (5.3)

after integration. This implies that the rate of streamwise momentum transport away from the
wall is constant through the boundary layer, and that it is equal to the viscous stress that the wall
applies to the fluid. Furthermore, there are two mechanisms that are responsible for transporting
this momentum in the boundary layer. The first term, ν∂u/∂y, is simply the steady viscous stress
that applies due to the shear in the fluid moving up the boundary layer. In contrast, −u′v′, are the
Reynolds stresses. These are responsible for transporting momentum through the boundary layer by
physically moving it. Upward velocity fluctuations tend to move slow-moving fluid near the wall
up in the boundary layer. In contrast, downward velocity fluctuations tend to move fast-moving
fluid near the free stream down in the boundary layer, transporting momentum. Based on physical
observations, the boundary layer is typically divided into three distinct regions.



50 Chapter 5. Boundary Conditions

The Inner Layer
The inner layer is the region very close to the wall boundary. The no-slip boundary condition that
forces the velocity towards zero and, as previously discussed, the fluctuating velocity components
also vanish here. Hence, in the inner layer, Equation 5.5 reduces to

ν
∂u
∂y

= ν
∂u
∂y

∣∣∣∣
y=0

. (5.4)

In this region of the boundary layer, momentum is transported almost entirely by viscous effects.

The Outer Layer
In the outer regions of the boundary layer, the mean velocity gradient becomes negligible. Hence,
the viscous effects can be omitted and Equation 5.5 reduces to

−u′v′ = ν
∂u
∂y

∣∣∣∣
y=0

, (5.5)

Hence, in this region of the boundary layer, momentum is transported almost entirely by turbulent
fluctuations. Classical experiments have shown this is well-approximated via a log-law, as shown
in Figure 4.8.

The Buffer Layer
The buffer layer is simply the region between the inner and outer layers. Neither the viscous nor
the Reynolds stress terms dominate here, and hence Equation 5.5 remains unchanged.

In order to better understand the behaviour of a boundary layer, we will first non-dimensionalize
it using parameters from within the boundary layer, resulting in the dimensionless wall-units.
Starting with the shear stress at the wall and the density, we obtain the friction velocity

uτ =

√
τw

ρ
. (5.6)

From this, we can now define a dimensionless height

y+ =
yuτ

ν
, (5.7)

typically called “y plus”, and a dimensionless velocity

u+ = u/uτ , (5.8)

typically called “u plus”. A plot of a standard boundary layer profile, including these three regions,
is given in Figure 4.8. This shows that, interestingly, the velocity profile far from the wall boundary
can be well-approximated using a logarithmic profile.



II 6 Taylor-Series . . . . . . . . . . . . . . . . . . . . . . . . 53

7 Finite Difference Methods . . . . . . . . . . . . 56
7.1 The First Derivative
7.2 A General Approach
7.3 The Second Derivative
7.4 Example Applications

8 Finite Volume Methods . . . . . . . . . . . . . . . 65
8.1 Derivation
8.2 The Riemann Problem
8.3 Example Applications
8.4 Linear Hyperbolic Problems
8.5 Nonlinear Hyperbolic Problems
8.6 MUSCL Schemes

9 Consistency, Stability, Convergence . . 95
9.1 Consistency
9.2 Stability
9.3 Convergence

10 Spectral Properties . . . . . . . . . . . . . . . . . 105
10.1 Dissipation Error
10.2 Dispersion Error

11 Modified Equation Analysis . . . . . . . . . 110
11.1 Linear Advection
11.2 General Observations

12 Time-Stepping . . . . . . . . . . . . . . . . . . . . . . 113
12.1 Explicit
12.2 Implicit

13 Iterative Methods . . . . . . . . . . . . . . . . . . . 121
13.1 Gaussian Elimination
13.2 Jacobi Iteration
13.3 Gauss Seidel Iteration
13.4 Successive Over-Relaxation
13.5 Assessing Convergence
13.6 Multigrid

14 Applications . . . . . . . . . . . . . . . . . . . . . . . 130
14.1 An Euler Solver
14.2 A Navier-Stokes Solver

Part 2: Numerics





6. Taylor-Series

In the previous sections, we introduced the governing conservation laws that need to be solved to
accurately predict the behaviour of fluids. These included the Navier-Stokes equations and the
time-averaged RANS equations, with their associated turbulence models. However, to start, we
will consider the simplified conservation laws we derived earlier, which were the linear advection,
Burgers, and linear diffusion equations, and move on from there to the full Navier-Stokes equations.
Starting with the simplified systems of equations

∂u
∂ t

+α
∂u
∂x

= 0, (6.1)

∂u
∂ t

+
1
2

∂u2

∂x
= 0, (6.2)

∂u
∂ t
−β

∂ 2u
∂x2 = 0. (6.3)

We notice that the form of all of these equations is very similar. All three involve a time derivative
combined with a coefficient multiplied by a spatial derivative. The Finite Difference Method
(FDM) uses well-known concepts from applied mathematics, specifically Taylor-Series. Hence,
before deriving the Finite Difference Method, we will start by reviewing some concepts from
Taylor-Series.

Arising from Taylors’ theorem, Taylor Series allows the value of a sufficiently smooth function
at some point x+∆x to be predicted by using the value of the solution at the point x along with
knowledge of all derivatives at the point x.

Theorem 6.0.1 — Taylor’s Theorem. Let k ≥ 1 and letting f (x) be smooth and differentiable
k times then

f (x+∆x) = f (x)+
∂ f
∂x

∆x1

1!
+

∂ 2 f
∂x2

∆x2

2!
+ . . .+

∂ k f
∂xk

∆xk

k!
, (6.4)



54 Chapter 6. Taylor-Series

which can be written compactly for an expansion truncated to k terms as

f (x+∆x) =
k

∑
i=0

∂ i f
∂xi

∆xi

i!
. (6.5)

While there are some limitations, particularly around the smoothness of the function and its
derivatives, it is worth taking a moment to consider just how powerful Taylor series can be. It allows
us to represent the entirety of a smooth function using the value of the solution and its derivatives
at only one point in the domain. In addition, similar to Fourier series, we often find that a truncated
expansion, which omits higher-order terms in the summation, is sufficient for many applications.

We will demonstrate the utility of Taylor series via example. Consider a simple sine wave

f (x) = sin(x), (6.6)

which is periodic on the interval [−π,π]. We first note that sine functions are sufficiently smooth
for Taylor series to be applied up to an infinite number of derivatives. Now, we will explore the
behaviour of the Taylor series as we add more terms. When we use a finite number of terms in the
expansion, we are truncating all of the higher-order terms. We will form our expansion about the
point x = 0. If we include just the first term and truncate all others, we obtain

f0(∆x) = 0, (6.7)

which is not a particularly accurate approximation of a sine wave except very close to the origin.
However, as we start to add more terms we obtain the following expressions,

f1(∆x) = ∆x, (6.8)

f3(∆x) = ∆x− ∆x3

6
, (6.9)

f5(∆x) = ∆x− ∆x3

6
+

∆x5

120
, (6.10)

f7(∆x) = ∆x− ∆x3

6
+

∆x5

120
− ∆x7

5040
, (6.11)

f9(∆x) = ∆x− ∆x3

6
+

∆x5

120
− ∆x7

5040
+

∆x9

362880
, (6.12)

where the subscript denotes the power of the highest degree expansion term included in the
approximation. Each of these is a polynomial approximation of a sine wave about the point x = 0,
and are plotted in Figure 6.1. We can make a few observations about the behaviour of Taylor
series in general. First, when we are close to the expansion point x = 0, even approximations
with a small number of terms are close to the true function. For example, the f1 expansion is
the well-known small-angle approximation of a sine wave. Then, as we add more terms, the
accuracy of the expansion improves rapidly. For example, by ten terms, the approximation is nearly
indistinguishable from the true function on the entire interval. Hence, we note that Taylor series
becomes more accurate as we get closer to the expansion point and/or as we increase the number of
terms.

To understand the behaviour of these truncated expansions, we note that their error arises from
truncating the higher-order terms of the expansion. Furthermore, when ∆x is relatively small, the
error is dominated by the first truncated term since the higher-order terms rapidly approximate zero
as ∆x decreases. Hence, if we consider an infinite expansion

f (∆x) = ∆x− ∆x3

6
+

∆x5

120
− ∆x7

5040
+

∆x9

362880
− ∆x11

39916800
+ . . . , (6.13)



55

−π −π2 0 π
2 π

−1.0

−0.5

0.0

0.5

1.0 sin(x)
f0(x)
f1(x)
f3(x)
f5(x)
f7(x)
f9(x)

Figure 6.1: Taylor series expansion of sin(x) about x = 0

we note that the leading term omitted from the f1(∆x) approximation behaves like ∆x3, the leading
error term of the f1(∆x) approximation behaves like ∆x5, and so on. Hence, as we get closer to the
expansion point x = 0, we expect that the error shrinks, and that the rate at which the error shrinks
will be proportional to the exponent of the leading truncated term of the expansion.

Check out the Burgers Jupyter notebook here. You can also download the files from the Gitlab
repository here.

https://tinyurl.com/cfd-binder
https://gitlab.com/bvermeir/book-cfd


7. Finite Difference Methods

7.1 The First Derivative

xi−2 xi−1 xi xi+1 xi+2

u(
x)

∆x

Figure 7.1: One-dimensional discretization using Finite Difference methods

To introduce the finite difference method, we start with a general function u(x). In general,
this function can be in any number of dimensions, but for simplicity we will first consider the
one-dimensional case. We note that a function can generally be approximated by its values at a
discrete set of points. An example of this is shown in Figure 7.1 where ∆x is the grid spacing
between the points. We now imagine that we are at some point i whose solution is ui = u(xi) where



7.1 The First Derivative 57

xi is the physical location of the point. Using Taylor series, we can approximate the value of the
solution one grid point to the left from the expansion

ui−1 = ui−∆x
∂u
∂x

∣∣∣∣
xi

+
∆x2

2
∂ 2u
∂x2

∣∣∣∣
xi

− ∆x3

6
∂ 3u
∂x3

∣∣∣∣
xi

+O(∆x4), (7.1)

where O(∆x4) denotes the order of the next highest term in the expansion. We can also use another
Taylor series to predict the value of the solution one point to the right

ui+1 = ui +∆x
∂u
∂x

∣∣∣∣
xi

+
∆x2

2
∂ 2u
∂x2

∣∣∣∣
xi

+
∆x3

6
∂ 3u
∂x3

∣∣∣∣
xi

+O(∆x4). (7.2)

So far, we have just applied Taylor series to try to determine the solution at points around our
initial point ui. However, if we look at Equation 7.1 we can use it in a different way. Rearranging
we get

∂u
∂x

∣∣∣∣
xi

=
ui−ui−1

∆x
+

∆x
2

∂ 2u
∂x2

∣∣∣∣
xi

− ∆x2

6
∂ 3u
∂x3

∣∣∣∣
xi

+O(∆x3). (7.3)

We note that as the grid spacing gets smaller, the terms with leading ∆x, ∆x2, and so on will tend to
zero and the approximation

∂u
∂x

∣∣∣∣
xi

=
ui−ui−1

∆x
+O(∆x), (7.4)

will converge to the true value of the derivative at the point xi as ∆x tends to zero. We can also do
the same trick with Equation 7.2. Rearranging, we get

∂u
∂x

∣∣∣∣
xi

=
ui+1−ui

∆x
− ∆x

2
∂ 2u
∂x2

∣∣∣∣
xi

− ∆x2

6
∂ 3u
∂x3

∣∣∣∣
xi

+O(∆x3), (7.5)

and again if the grid spacing is small, then the higher-order terms tend to zero and we are left
with

∂u
∂x

∣∣∣∣
xi

=
ui+1−ui

∆x
+O(∆x), (7.6)

which also allows us to approximate the derivative at xi. Hence, if we know that value of the
solution at xi and either xi−1 or xi+1 we can approximate the derivative at xi. We note that for both
of these approximations, the error in the derivative approximation will decrease proportional to the
grid spacing since the leading term in the truncation error is of O(∆x). We refer to a scheme of this
form as a first-order finite difference method.

While the above examples are often useful, they converge rather slowly to the exact value of
the derivative at the point xi. However, if we take an average of Equation 7.3 and Equation 7.5, we
obtain

∂u
∂x

∣∣∣∣
xi

=
1
2

(
ui−ui−1

∆x
+

∆x
2

∂ 2u
∂x2

∣∣∣∣
xi

− ∆x2

6
∂ 3u
∂x3

∣∣∣∣
xi

)
+

1
2

(
ui+1−ui

∆x
− ∆x

2
∂ 2u
∂x2

∣∣∣∣
xi

− ∆x2

6
∂ 3u
∂x3

∣∣∣∣
xi

)
+O(∆x3)

(7.7)



58 Chapter 7. Finite Difference Methods

which simplifies to

∂u
∂x

∣∣∣∣
xi

=
ui+1−ui−1

2∆x
− ∆x2

6
∂ 3u
∂x3

∣∣∣∣
xi

+O(∆x3), (7.8)

noting that the leading truncation error terms conveniently cancelled each other out. Hence, if we
assume that ∆x is relatively small, we obtain

∂u
∂x

∣∣∣∣
xi

=
ui+1−ui−1

2∆x
+O(∆x2). (7.9)

Using this equation, we can approximate the value of the derivative of the function at xi using the
values of the solution at two neighbouring points xi−1 and xi+1. However, unlike the previous finite
difference methods, the truncation error of this approximation is O(∆x2), meaning that as the grid
spacing is reduced, the error will converge like the grid spacing squared. We refer to a scheme of
this form as a second-order finite difference method.

7.2 A General Approach
In the previous section, we derived three different finite difference methods for computing the
derivative at a point xi using the values of the solution at that point and neighbouring points. We
have shown that we can create at least two first-order schemes and one second-order scheme. In the
current section, we will demonstrate how to generalize this approach to allow us to obtain schemes
of any order and for higher-order derivatives.

To start, we will derive a second-order finite difference method to approximate the first derivative
using ui, ui−1, and ui−2. This procedure can be broken down into four basic steps.

7.2.1 Step 1: Generate the Taylor Series
The first step is to expand a Taylor series about each of the points that will be used to approximate
the derivative. The Taylor series for ui−1 was given before and is

ui−1 = ui−∆x
∂u
∂x

∣∣∣∣
xi

+
∆x2

2
∂ 2u
∂x2

∣∣∣∣
xi

− ∆x3

6
∂ 3u
∂x3

∣∣∣∣
xi

+O(∆x4). (7.10)

Similarly, since the distance between ui and ui−2 is 2∆x we get the following Taylor series for that
point

ui−2 = ui−2∆x
∂u
∂x

∣∣∣∣
xi

+
(2∆x)2

2
∂ 2u
∂x2

∣∣∣∣
xi

− (2∆x)3

6
∂ 3u
∂x3

∣∣∣∣
xi

+O(∆x4). (7.11)

7.2.2 Step 2: Rearrange the Taylor Series
The second step is to rearrange each of the Taylor series generated in Step 1 to obtain the derivative
of interest on the LHS with everything else on the RHS. Since we are interested in finding an
approximation for the first derivative, we rearrange Equation 7.10

∂u
∂x

∣∣∣∣
xi

=
ui−ui−1

∆x
+

∆x
2

∂ 2u
∂x2

∣∣∣∣
xi

− ∆x2

6
∂ 3u
∂x3

∣∣∣∣
xi

+O(∆x3), (7.12)

and rearrange Equation 7.10

∂u
∂x

∣∣∣∣
xi

=
ui−ui−2

2∆x
+

2∆x
2

∂ 2u
∂x2

∣∣∣∣
xi

− (2∆x)2

6
∂ 3u
∂x3

∣∣∣∣
xi

+O(∆x3), (7.13)

which gives two expressions for the first derivative.



7.3 The Second Derivative 59

7.2.3 Step 3: Determine a Suitable Combination
If we look at the previous two expressions for the first derivative, we will notice that they are both
first-order accurate since the leading term that will get truncated is O(∆x). However, we were
tasked with finding a second-order accurate scheme. In order to achieve this, we will try to combine
Equation 7.17 and Equation 7.13 in such a way the first-order error term cancels out.

We want to combine them is such a way that

∂u
∂x

∣∣∣∣
xi

= a(7.17)+b(7.13), (7.14)

gives a second-order approximating for the first derivative, and we need to find the coefficients a
and b to achieve this. If we look at the left-hand side, we want to keep the first derivative there.
This can be achieved if we ensure that

a+b = 1. (7.15)

The second thing we need to do is cancel out the O(∆x) term to ensure that the leading truncation
error term is O(∆x2). Looking at the O(∆x) terms, in order for them to cancel out, we require

a
2
+b = 0. (7.16)

Equations 7.15 and 7.16 are recognizable as a linear system of equations with two equations and
two unknowns. This can be readily solved using substitution yielding a = 2 and b =−1.

7.2.4 Step 3: Combine the Schemes
Now that we have determined the constants in Equation 7.14, the last step is to just go ahead and
add things together. Doing this will yield that following finite difference approximation

∂u
∂x

∣∣∣∣
xi

=
3ui−4ui−1 +ui−2

2∆x
+O(∆x2), (7.17)

which is a second-order approximation of the first derivative use three points. Hence, we have
accomplished our task.

7.3 The Second Derivative
In the previous sections, we derived four different schemes for the first derivative, two that were
first-order accurate, and two that were second-order accurate. However, if we go back and look
at the Navier-Stokes equations, we will note that we also need to approximate second-derivatives
for the diffusive terms. We will derive an example scheme here, which also demonstrates another
application of the four basic steps of creating a finite difference scheme. Our objective will be to
derive a second-order finite difference method to approximate the second derivative using ui, ui−1,
and ui+1.

We now recall that the first step was to simply expand a Taylor series about all of the points
that are not ui. We have already derived these expansions for ui−1 and ui+1, which are

ui−1 = ui−∆x
∂u
∂x

∣∣∣∣
xi

+
∆x2

2
∂ 2u
∂x2

∣∣∣∣
xi

− ∆x3

6
∂ 3u
∂x3

∣∣∣∣
xi

+O(∆x4), (7.18)

and

ui+1 = ui +∆x
∂u
∂x

∣∣∣∣
xi

+
∆x2

2
∂ 2u
∂x2

∣∣∣∣
xi

+
∆x3

6
∂ 3u
∂x3

∣∣∣∣
xi

+O(∆x4). (7.19)



60 Chapter 7. Finite Difference Methods

So that is step one done.
In step two, we needed to rearrange these equations such that the derivative of interest is on the

LHS. This yields two possible expressions for the second derivative by rearranging Equation 7.18

∂ 2u
∂x2

∣∣∣∣
xi

=
2(ui−1−ui)

∆x2 +
2

∆x
∂u
∂x

∣∣∣∣
xi

+
∆x
3

∂ 3u
∂x3

∣∣∣∣
xi

+O(∆x2), (7.20)

and Equation 7.19

∂ 2u
∂x2

∣∣∣∣
xi

=
2(ui+1−ui)

∆x2 − 2
∆x

∂u
∂x

∣∣∣∣
xi

− ∆x
3

∂ 3u
∂x3

∣∣∣∣
xi

+O(∆x2), (7.21)

noting that the O(∆x4) terms are now O(∆x2) since we had to divide the RHS by ∆x2. That marks
the end of step two.

In the third step, we have to determine a linear combination of these two equations that will
give us an expression for the second derivative with a truncation error of O(∆x2). Since we want to
keep the second derivative on the LHS, we require

a+b = 1. (7.22)

And, in order for the truncation error to be of O(∆x2), we need to cancel the second and third terms
on the RHS of the equations, which are O(∆x−1) and O(∆x), respectively. Interestingly, cancelling
out both of these terms requires

a−b = 0. (7.23)

Once again, we have a linear system with two equations and two unknowns. Solving this system
yields a = b = 1/2, which finishes part three.

Finally, in part four, we simply combine the two equations multiplied by their respective a
and b coefficients. This yields our second-order accurate expression for the second-derivative
as

∂ 2u
∂x2

∣∣∣∣
xi

=
ui−1−2ui +ui+1

∆x2 +O(∆x2). (7.24)

7.4 Example Applications

Now that we have created a few introductory finite difference methods, it is time to put them to
work on our three simplified systems.

7.4.1 Linear Advection
We recall that the one-dimensional linear advection equation in differential form was

∂u
∂ t

+α
∂u
∂x

= 0. (7.25)

In the previous sections, we derived a few options for this, but to start we will use the simple
first-order upwind scheme to approximate the spatial derivative at each grid point, such that

∂u
∂x

∣∣∣∣
xi

=
ut

i−ut
i−1

∆x
+O(∆x), (7.26)



7.4 Example Applications 61

where the superscript t denotes that we are using the solution at the current time. We will also use a
first-order finite difference approach in time to approximate the temporal derivative as well. Hence,

∂u
∂ t

∣∣∣∣
xi

=
ut+1

i −ut
i

∆t
+O(∆t), (7.27)

where ∆t is the time step size and the superscript t +1 is the solution at the next time step.
Now we simply insert these approximations into the linear advection equation, yielding

ut+1
i −ut

i

∆t
+α

ut
i−ut

i−1

∆x
+O(∆x,∆t) = 0. (7.28)

By inspecting this equation, and assuming that we know the solution at each grid point at the
current instant in time, we can rearrange this to make a prediction for the solution at the next time
step

ut+1
i = ut

i−
α∆t
∆x

(
ut

i−ut
i−1
)
+O(∆x,∆t). (7.29)

Looking at Equation 7.29, we note that, provided we know the current solution at all grid points
at time t, we can predict the solution at time t +∆t with an error term of O(∆x,∆t). Then we will
have an approximation of the solution at all grid points at time t +∆t, and we can use this to find an
approximation of the solution at time t +2∆t by applying the same equation, and so on. Hence, we
are able to advance the linear advection equation to any final time we desire, noting that each time
step we take will introduce some numerical error. A series of example solutions using different
numbers of grid points is shown in Figure 7.2 with an advection velocity of α = 1, and a final
solution time of t = 1, which allows the Gaussian bump to travel once through the domain. If the
error is measured in terms of the height of the peak of the Gaussian bump, it is apparent that it
converges linearly as the grid spacing is refined.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

u(
x,

t)

n = 10
n = 20
n = 40
n = 80
n = 160

Figure 7.2: First-order advection of a gaussian bump using different levels of grid refinement.

Check out the Advection Jupyter notebook here. You can also download the files from the
Gitlab repository here.

https://tinyurl.com/cfd-binder
https://gitlab.com/bvermeir/book-cfd


62 Chapter 7. Finite Difference Methods

7.4.2 Burgers Equation
We recall that the one-dimensional Burgers equation was

∂u
∂ t

+
1
2

∂u2

∂x
= 0. (7.30)

We can now use the exact same approach for Burgers as we used for the linear advection equation.
First, we will use a first-order upwind approach to approximate the spatial derivative of u2 at each
grid point xi, such that

∂u2

∂x

∣∣∣∣
xi

=
(ut

i)
2− (ut

i−1)
2

∆x
+O(∆x), (7.31)

where again the superscript t denotes that we are using the solution at the current time. We will
also use a first-order finite difference approach in time to approximate the temporal derivative as
well. Hence,

∂u
∂ t

∣∣∣∣
xi

=
ut+1

i −ut
i

∆t
+O(∆t). (7.32)

Now, we simply insert our finite difference approximations of these two derivatives into the
Burgers equation

ut+1
i −ut

i

∆t
+

1
2
(ut

i)
2− (ut

i−1)
2

∆x
+O(∆x,∆t) = 0, (7.33)

and, just like for linear advection, we can now find an expression for the solution at any grid point
at the next time step as

ut+1
i = ut

i−
∆t
∆x

1
2

((
ut

i
)2−

(
ut

i−1
)2
)
+O(∆x,∆t). (7.34)

Looking at this expression, we note it is remarkably similar to the expression for linear advection,
which is not particularly surprising as the two initial partial differential equations are also quite
similar. Again, if we know the solution at each grid point at some time t, we can approximate
the solution at some time t +∆t using this expression. Then, to approximate the solution at the
time t +2∆t we simply re-apply the expression. This allows us to approximate the behaviour of
Burgers equation up to any desired final time, and the error of the approximation is expected to
be first-order accurate in both space and time, with errors on the order of O(∆x,∆t). A series of
example solutions using different numbers of grid points is shown in Figure 7.3.

Check out the Burgers Jupyter notebook here. You can also download the files from the Gitlab
repository here.

7.4.3 Linear Diffusion
We recall that our third and final simplified system of equations was the linear diffusion equation

∂u
∂ t
−β

∂ 2u
∂x2 = 0, (7.35)

which described how some conserved quantity, such as heat, diffuses into the surrounding fluid. To
approximate this using the finite difference method, we follow the exact same steps as for linear

https://tinyurl.com/cfd-binder
https://gitlab.com/bvermeir/book-cfd


7.4 Example Applications 63

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

u(
x,

t)

n = 10
n = 20
n = 40
n = 80
n = 160

Figure 7.3: First-order nonlinear burgers equation with a gaussian bump using different levels of
grid refinement.

advection and Burgers equation. First, we will use our second-order accurate finite difference
approximation for the second derivative as

∂ 2u
∂x2

∣∣∣∣
xi

=
ui−1−2ui +ui+1

∆x2 +O(∆x2). (7.36)

We will also use a first-order finite difference approach in time to approximate the temporal
derivative as well. Hence,

∂u
∂ t

∣∣∣∣
xi

=
ut+1

i −ut
i

∆t
+O(∆t). (7.37)

Now we simply replace the exact derivatives in the linear diffusion equation with our finite
difference approximations, such that

ut+1
i −ut

i

∆t
−β

ui−1−2ui +ui+1

∆x2 +O(∆x2,∆t) = 0. (7.38)

Again, by simply rearranging we can arrive at an expression for the solution at any grid point i at
the next time step as

ut+1
i = ut

i +
β∆t
∆x2 (ui−1−2ui +ui+1)+O(∆x2,∆t). (7.39)

Again, this is very similar to the approximations for linear advection and Burgers equations.
However, one important thing to note is that the error in space is of O(∆x2) instead of O(∆x),
meaning that as we refine the grid the solution will converge more quickly to the exact solution of
the linear diffusion equation.

Check out the Diffusion Jupyter notebook here. You can also download the files from the
Gitlab repository here.

https://tinyurl.com/cfd-binder
https://gitlab.com/bvermeir/book-cfd


64 Chapter 7. Finite Difference Methods

0.0 0.2 0.4 0.6 0.8 1.0
x

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

u(
x,

t)

n = 10
n = 20
n = 40
n = 80
n = 160

Figure 7.4: Second-order linear diffusion of a gaussian bump using different levels of grid refinement
and α = 1×10−3.



8. Finite Volume Methods

Ωi−2 Ωi−1 Ωi Ωi+1 Ωi+2

u(
x)

∆x

Figure 8.1: One-dimensional Finite Volume discretization

In the previous chapter, we derived and characterized the finite difference method. While it
is generally simple to apply, it requires the use of structured grids. Suppose now you want to
simulate flow over an aircraft or one of its components. Generating structured meshes can become
challenging, if not impossible, for complex geometries. Hence, we need methods that are flexible
enough such that the geometry is not a fundamental limitation. Instead of evaluating the solution
in a pointwise fashion, consider subdividing a generic domain Ω into volumes or cells Ωi, as
shown in Figure 8.1. Within each cell, the value of the function u(x) can be assumed constant
and is calculated using an integral approach. This idea leads to the derivation of the finite volume
method, which is one of the most commonly used spatial discretizations in industry. It was initially
developed for its application on the general form of the conservation laws, meaning it can be
fundamentally applied to solutions that present discontinuities. In this chapter, we present the
theory required to apply the finite volume method on scalar as well as systems of conservation laws.



66 Chapter 8. Finite Volume Methods

Additional useful references include [1, 7, 13, 22].

8.1 Derivation
Consider the general conservation law applied to a volume of arbitrary shape Ω, as shown in
Figure 8.2

Ω

S

n̂
~F

Figure 8.2: Representation of an arbitrary volume of undefined shape.

∫
Ω

∂~u
∂ t

dΩ+
∫

s
~F · n̂ds = 0, (8.1)

where~u is a vector of conserved variables, such as mass, momentum, and energy. ~F = ~F(~u) is the
vector of fluxes, S is the area of Ω with outward unit normal n̂. Recall that for constant volumes,
integration and differentiation commute so we can rewrite Equation 8.1

d
dt

∫
Ω

~udΩ+
∫

s
~F · n̂ds = 0. (8.2)

Clearly, the integral of the solution represents its total amount within Ω. Hence, the rate of change
of the total amount of~u in a volume is the result of the net flux across the surface S of Ω. As we
have stated in the introduction of this chapter, we are looking for averaged values of the solution,
specifically the cell-average of~u, which is given by

~u =

∫
Ω
~udΩ

|Ω|
, (8.3)

where |Ω| is the size of the cell. After averaging the solution, it is clear that it has become constant
within each volume, i.e. ~u 6=~u(~x), so it is now only a function of time ~u =~u(t). If we combine
Equations 8.2 and 8.3, we obtain

d~u
dt

+
1
|Ω|

∫
s
~F · n̂ds = 0. (8.4)

Now, we have an equation for the rate of change of the averaged quantity~u. What remains is to
define the value of ~F . First, we note that the averaged solution~u must converge to the instantaneous
solution~u in the limit of sufficiently small volumes

lim
|Ω|→0

~u =~u, (8.5)

and hence,

lim
|Ω|→0

~F(~u) = ~F(~u). (8.6)

This leads to the general form of the finite volume method, which we write



8.2 The Riemann Problem 67

d~u
dt

=− 1
|Ω|

∫
s
~F(~u) · n̂ds = 0, (8.7)

where d/dt can be solved using an appropriate temporal discretization (see Chapter 12).
Generally, we can make relatively good approximations of arbitrary volumes using straight-

sided elements such as triangles and tetrahedra. Consider the triangular volume Ωi displayed in
Figure 8.3. The solution~u is constant within the triangular shape. In addition, each of the faces has
an area of S1, S2 and S3. Observe that since the sides of the considered volume are straight, the flux
vectors are constant across each of the faces. Hence, the surface integral in Equation 8.7 can be
trivially solved via summation. For the i-th volume, the general form of the FV method for straight
grids can be written

n̂1 n̂2

n̂3

~F1

~F2

~F3

S 1 S 2

S 3

~u

Figure 8.3: Representation of solution, fluxes and faces of a straight-sided element.

d~ui

dt
=− 1
|Ωi|

m

∑
j=1

~Fj · n̂ jS j, (8.8)

where m is the number of faces, Fi is the flux across the j-th face with outward unit normal n̂ j and
area surface S j.

8.2 The Riemann Problem

~F

~uL
~uR

Figure 8.4: Representation of the Riemann problem

You may now realize that the solution is piecewise linear, i.e., we have approximated a function



68 Chapter 8. Finite Volume Methods

~u(x, t) by constant values~ui(t) at each volume Ωi. Usually, in finite difference methods, the value of
the flux can be simply computed as ~F = ~F(~u) due to the pointwise approach. In contrast, consider
the two volumes shown in Figure 8.4 as a result of a finite volume discretization. We are looking
for the value of the fluxes across each of the volume’s faces to solve Equation 8.8. However, note
that on each side of the interface, we have two values of the solution~uL, ~uR, which are expected to
yield a single value of the flux. Hence, the flux at the interface is

~F = ~F(~uL, ~uR). (8.9)

This is known as the Riemann problem. The solution to the Riemann problem depends on the
physics of the problem. For hyperbolic equations, it is said to be a similarity solution and is related
to the characteristic speed of the PDE. We now present some examples of the Riemann problem
for scalar conservation laws and the resulting finite-volume discretizations. Later in this chapter,
we will come back to this topic and derive some solutions for systems of hyperbolic equations.

8.3 Example Applications
We have now derived the finite volume method and described some of its characteristics. We have
introduced a consequence of the discretization, which is the Riemann problem. In this section, we
present finite-volume schemes applied to our simple one-dimensional scalar conservation laws, as
well as solutions to the Riemann problem for each of these equations.

8.3.1 Linear Advection
Consider the general conservation law applied to the one-dimensional advection equation. For
scalar conservation laws, we may write

~u = u, (8.10)

and hence the advection flux is given by

~F = f = αu, (8.11)

where α is the advection velocity. A finite-volume discretization for this problem can be seen in
Figure 8.5, where α > 0. Consider the cell Ωi. We need to find the value of the flux at each of the
faces of the cell. Different approaches can be considered, which result in distinct finite-volume

Ωi−1 Ωi Ωi+1

x

u

ui−1

ui

ui+1

~F1(ui−1, ui) ~F2(ui, ui+1)

n̂1 n̂2

α

∆x

Figure 8.5: Finite-volume linear advection.

schemes, each with its own characteristic error and order of accuracy. We now present three options
to compute the Riemann flux and the resulting discretizations.



8.3 Example Applications 69

Upwind

We have previously assumed α > 0, which means information travels from left to right. A natural
choice of Riemann flux is upwind. Here, the value of the flux is computed from the left-hand-side
solution value at each interface. Hence,

~F(uL,uR) = αuL, (8.12)

which can be written

~F1 = αui−1, (8.13)
~F2 = αui, (8.14)

for the left and right faces of Ωi, respectively. Recall the finite-volume discretization for straight-
sided elements in Equation 8.8, which we now rewrite for this problem considering n̂1 =−1, n̂2 = 1
and S1 = S2 = 1

dui

dt
=− 1

∆x
(αui−αui−1) , (8.15)

or simply

dui

dt
=−α

ui−ui−1

∆x
, (8.16)

which is identical to the original first-order finite-difference method. Discretizing the temporal
derivative using the forward Euler method, we have

ut+1
i = ut

i−
α∆t
∆x

(
ut

i−ut
i−1
)
. (8.17)

Hence, by comparing the above equation with Equation 7.29, we can see that they are indentical.

Central

A second choice of Riemann flux results from an averaged value of the solution at each interface.
This means

~F(uL,uR) =
1
2
(αuL +αuR) . (8.18)

Hence, the fluxes can be written

~F1 =
1
2
(αui−1 +αui) , (8.19)

~F2 =
1
2
(αui +αui+1) , (8.20)

for the left and right interface of Ωi, respectively. By substituting these fluxes into Equation 8.8, a
central finite-volume scheme can be written

dui

dt
=−α

ui+1−ui−1

2∆x
, (8.21)

which is identical to the second-order finite-difference method.



70 Chapter 8. Finite Volume Methods

Blended
Consider upwind and central fluxes given by

fu = αuL, (8.22)

fc =
α

2
(uL +uR) , (8.23)

respectively, where fu yields a low-resolution first order scheme and fc yields a second-order,
high-resolution scheme. We can combine these two approaches to obtain a blended scheme, such
that

fb = fu +φ fc, (8.24)

where φ is a weighting parameter that can recover the upwind, central or yield a blended scheme,
i.e.

f =


fu if φ = 0,
fc if φ = 1,
fb if 0 < φ < 1.

We have shown that we can recover finite-difference schemes on structured grids for the linear
advection equation considering appropriate choices for the Riemann solver. We now explore
whether this is also true for the Burgers equation.

8.3.2 Burgers Equation
We now consider the Burgers equation. As we have previously stated, for scalar conservation laws

~u = u, (8.25)

and in the case of Burgers, the flux can be written

~F = f (u) =
1
2

u2. (8.26)

Recall that solutions in Burgers equation tend to develop discontinuities at a finite time even if they
are initially smooth. Hence, a common Riemann flux choice for this problem is upwind due to its
dissipative effect. We can write the fluxes at each face of Ωi

F1 =
1
2

u2
i−1, (8.27)

F2 =
1
2

u2
i . (8.28)

By following the same procedure as with the advection equation, we obtain the semidiscrete scheme
from Equation 8.8,

dui

dt
=− 1

∆x

(
u2

i

2
−

u2
i−1

2

)
, (8.29)

which we simplify

dui

dt
=− 1

2∆x

(
(ui)

2− (ui−1)
2
)
. (8.30)

Applying the first-order forward Euler scheme to advance the solution in time yields



8.3 Example Applications 71

ut+1
i = ut

i−
∆t
∆x

1
2

((
ut

i
)2−

(
ut

i−1
)2
)
. (8.31)

Equation 8.31 is identical to the first-order upwind scheme for Burgers equation derived using finite
difference in Equation 7.34.

8.3.3 Linear Diffusion
Consider the scalar linear diffusion equation, where

~u = u, (8.32)

and the corresponding flux can be obtained from Fourier’s law

~F = f =−β
∂u
∂x

, (8.33)

where β is a constant diffusion coefficient. The resulting finite-volume discretization for this
problem can be observed in Figure 8.6. Note that at each interface, we need to compute the
derivative of the solution. Due to the behaviour of the diffusion equation, one should expect the
Riemann flux to include the effects from both sides of the element. We can compute the derivatives

Ωi−1 Ωi Ωi+1

x

u

ui−1

ui

ui+1

(
∂u
∂x

)
1

(
∂u
∂x

)
2

n̂1 n̂2

∆x

Figure 8.6: Finite-volume linear diffusion.

considering an upwind and a downwind difference approach at the left and right faces , respectively.
Hence,(

∂u
∂x

)
1
≈ ui−ui−1

∆x
, (8.34)(

∂u
∂x

)
2
≈ ui+1−ui

∆x
. (8.35)

Then the respective fluxes can be computed from

~F1 =−β

(
∂u
∂x

)
1
≈−β

ui−ui−1

∆x
, (8.36)

~F2 =−β

(
∂u
∂x

)
2
≈−β

ui+1−ui

∆x
. (8.37)

By substituting the fluxes into Equation 8.8, we obtain the finite-volume method for linear diffu-
sion



72 Chapter 8. Finite Volume Methods

dui

dt
= β

ui+1−2ui +ui−1

∆x2 , (8.38)

which is second-order accurate. The resulting scheme is central, which agrees with the physics of
diffusive processes. If we couple the spatial derivative in Equation 8.38 with the forward Euler
method, we can write the fully-discrete scheme

ut+1
i = ut

i +
β∆t
∆x2

(
ut

i+1−2ut
i +ut

i−1
)
. (8.39)

Note that Equation 8.38 is identical to the second-order finite-difference scheme we previously
derived for this problem in Equation 7.39.

8.4 Linear Hyperbolic Problems

In Chapter 2, we stated that first-order partial differential equations are naturally hyperbolic,
meaning that they exhibit wave-like solutions. The simplest case is our advection equation

∂u
∂ t

+α
∂u
∂x

= 0, (8.40)

which can model, for instance, the tracing of a dye particle in a one-dimensional geometry, such as

d = αt

t = 0

t > 0

Figure 8.7: Initial and final state of the advection of a dye particle in a one-dimensional flow.

a pipe. Suppose that you want to trace this particle. At time t = 0, the particle is located at x = 0 as
shown in Figure 8.7. After some time, we expect the particle to have translated a distance d = αt.
Hence, it can be easily checked that solutions to Equation 8.40 are given by

u(x, t) = u0(x−αt), (8.41)

where u0 is the initial solution. Note that the particle has only changed location, and no shape
changes or any diffusion effects are modelled by Equation 8.40.

Consider now the space-time plane x× t. In this space, we can find characteristic lines x(t)
along which the solution remains unchanged, that is, lines where du = 0. We can then rewrite the
solution as u(x(t), t), and by using the chain rule, we have

d
dt
(u(x(t), t) =

∂u
∂ t

+
dx
dt

∂u
∂x

= 0. (8.42)



8.4 Linear Hyperbolic Problems 73

Now, compare Equations 8.42 and 8.40. It is clear that

dx
dt

= α. (8.43)

Hence the characteristic speed of a scalar hyperbolic equation is its advection velocity. From the
above relation, we can obtain an equation for the characteristic lines of our PDE, given by

x = x0 +αt, (8.44)

where a curve can be drawn for each initial value of x0 corresponding to u(x, t = 0) = u(x0).

x

t α > 0

Figure 8.8: Characteristic lines for the linear advection equation with α > 0 for different values of
x0.

Consider α to be positive. The resulting characteristic curves are shown in Figure 8.8. Observe
that the slope of the curves is α . Hence, we can find the value of u at any point (x, t) by tracing
curves parallel to those in Figure 8.8. We have characterized the behaviour of scalar hyperbolic
equations. To analyze systems of equations, we must take into account additional considerations,
which we explore in the next section.

8.4.1 Linear Hyperbolic Systems
The advective components in our governing equations are responsible for the propagation of
information from one point to another. In general, scalar conservation laws are simplifications
of more complicated systems. Some of these systems are hyperbolic, which we can analyze as a
superposition of advection equations with their corresponding wave speed. A system of m equations

∂~u
∂ t

+A
∂~u
∂x

= 0, ~u =
[
u1 u2 . . . um

]
, (8.45)

is said to be hyperbolic if the constant m×m matrix A, which is generally dense, has m real distinct
eigenvalues λi and m linearly independent eigenvectors~qi. This can be written as the eigenvalue
problem

A~qi = λiA, i = 1,2, . . . ,m, (8.46)

or in matrix form

AQ = QΛ, (8.47)



74 Chapter 8. Finite Volume Methods

where Q is the matrix of eigenvectors

Q =
[
~q1 ~q2 . . . ~qm

]
, (8.48)

and Λ is the diagonal matrix containing the eigenvalues of A

Λ =


λ1 0 . . . 0

0
. . .

...
...

. . . 0
0 . . . 0 λm

 . (8.49)

We have shown in the previous section that the scalar linear equation simply propagates information
at a given characteristic speed, which represents the slope of the characteristic curves x(t) in a
space-time plane. In the case of a linear hyperbolic system, more than a single wave speed is
embedded in the equations. Hence, multiple slopes are associated with any given (x, t) point in
the x× t plane, which are given by the eigenvalues of A. Now, how are these characteristic speeds
related to ~u? It turns out that the solution is considered to be a superposition of these waves. To
illustrate this, the original system needs to be decoupled into m independent equations. This is done
by diagonalizing the constant matrix A.

Recall the m eigenvectors of A are linearly independent. Hence, we can transform Equation 8.45
into characteristic form by setting

A = QΛQ−1. (8.50)

Now, substituting A in Equation 8.45 using 8.50 and multiplying by Q−1 yields

Q−1 ∂~u
∂ t

+Q−1QΛQ−1 ∂~u
∂ t

= 0. (8.51)

For simplicity, define the vector of characteristic variables ~ω = Q−1~u. Hence, the characteristic
form of hyperbolic system of PDEs is

∂~ω

∂ t
+Λ

∂~ω

∂x
= 0. (8.52)

We have now decoupled our original system into m independent advection equations of the form

∂ωi

∂ t
+λi

∂ωi

∂x
= 0, i = 1, . . . ,m, (8.53)

each of which has solution

ωi = ω
0
i (x−λit), (8.54)

where the initial characteristic state can be found directly from the initial conditions by

~ω0 = Q−1~u0. (8.55)

Similar to the scalar case, we can now draw characteristic curves in the x× t plane. These can be
observed in Figure 8.9, where we have considered the eigenvalues to be sorted

λ1 < λ2 < .. . < λm. (8.56)

We have now decomposed the vector of conserved quantities ~u into characteristic variables ~ω
employing the eigenvectors~qi. Hence, the original variables can be recovered by coefficients ωi

and their corresponding eigenvector.

u(x, t) =
m

∑
i=1

ωi(x, t)~qi =
m

∑
i=1

ω
0
i (x−λit)~qi. (8.57)



8.4 Linear Hyperbolic Problems 75

λ1

λ2

.. ..

λm−1

λm

Figure 8.9: Characteristic lines for a linear hyperbolic system of equations.

8.4.2 The Riemann Problem

The Scalar Case

Consider the following initial-value problem (Figure 8.10) for the scalar advection equation

∂u
∂ t

+α
∂u
∂x

= 0, u(x,0) =

{
uL if x < 0,
uR if x > 0,

(8.58)

where uL and uR are piecewise constants and uL 6= uR. Based on our previous discussions, these

x = 0

u

uL

uR

Figure 8.10: Scalar initial condition with discontinuity

constant values simply propagate along some characteristic curve in the x× t plane along with the
discontinuity initially located at x = 0. The characteristic line with the origin at this point defines
the path of the discontinuity with equation x = αt, as shown in Figure 8.11. Hence, on the left side
of this curve, specifically where x < αt, the solution is simply uL, and on the right-hand side, where
x > αt, the solution is uR. Hence, the Riemann solution to the scalar problem is simply

u(x, t) =

{
uL if x < αt,
uR if x > αt.

(8.59)



76 Chapter 8. Finite Volume Methods

x
t

uL

uR

u(x0
=

0)

Figure 8.11: Characteristic line along which discontinuity propagates

Hyperbolic Systems
Now consider the following initial-value problem, this time for a system of m hyperbolic equations,
where multiple values of the solution exist on each side of x = 0

∂~u
∂ t

+A
∂~u
∂x

= 0, ~u(x,0) =

{
~uL if x < 0,
~uR if x > 0.

(8.60)

Recall from Section 8.4.1 that linear hyperbolic systems are driven by a superposition of multiple
waves. To reveal these underlying advection equations, we must transform the original equations
into characteristic form. From Equation 8.55, we may write

~ω(x,0) =

{
~ωL if x < 0,
~ωR if x > 0,

(8.61)

where the i-th equation has solution

ωi(x, t) =

{
ωL,i if x < λit,
ωR,i if x > λit.

(8.62)

The eigenvalues of A can be observed in Figure 8.12 for the case of m = 4 equations. Now, suppose
you have a set of coordinates (x, t) where you want to know the value of the solution. At any point
in the x× t domain, the solution only depends on u(x,0) = u(x0) = u0. Hence, we can determine
the value of ~u at any point by drawing lines parallel to the characteristic curves. On the left of
λ1, tracing parallel lines only yields initial values which correspond to the left state~uL, hence the
solution can be computed by

~uL =
m

∑
i=1

ωL,i~qi. (8.63)

Similarly, at any point on the right side of λm (λ4 in Figure 8.12) we find

~uR =
m

∑
i=1

ωR,i~qi. (8.64)

Now, what if we are interested in finding the solution at the point Pm in Figure 8.12?. Tracking
the solution back to its initial value shows that values of x−λ t are located on both the left and
right-hand sides of x = 0. Hence, we require a combination of both left and right states. Note
that at any point within the region defined by λ2 and λ3, the solution ~um depends on the linear



8.4 Linear Hyperbolic Problems 77

x − λ4t x − λ3t x − λ2t x − λ1t

λ1

λ2 λ3

λ4

Pm

P∗m,LP∗m,R

~uL ~uR

Figure 8.12: Characteristic curves for the Riemann problem with m = 4. Note the value of the
maximum sub-index changes for each point P. For P∗m,L, I = 1, for Pm, I = 2 and for P∗m,R, I = 3.
(Adapted from [13])

combination of left and right states. Moving Pm to the left or right of these characteristic lines, for
example where points P∗m,L and P∗m,R are will require a different combination ~ωL and ~ωR. Hence, to
generalize the equation for the solution at any point, define I∗ = I∗(x, t) to be the maximum index i
for which x > λit. Then, the solution can be found by

~um =
m

∑
i=I∗+1

ωL,i~qi +
I∗

∑
i=1

ωR,i~qi. (8.65)

Since the solution is constant along each characteristic line, the jump between two states is also
constant and is given for the whole system

~δ = Q−1(~uR−~uL). (8.66)

Hence the jump across the λi-characteristic is given by δi = ωR,i−ωL,i, which is known as the
strength of the i-th wave. Note that Equation 8.66 is called the Rankine-Hugoniot condition, and
will be useful for the analysis of nonlinear problems later in this chapter.

Example case: Linear Acoustics
Consider the propagation of sound waves in a motionless gas. Small changes in pressure and
density propagate in the surrounding air. This propagation is governed in one dimension by[

ρ

ρv

]
t
+

[
ρv

ρv2 + p(ρ)

]
x
= 0. (8.67)

These are the Euler equations, one of which is the nonlinear PDE for the conservation of momentum.
This system can be written in quasilinear form [22]

∂~u
∂ t

+~f ′(~u)
∂~u
∂x

= 0, (8.68)

where

~u =

[
ρ

ρv

]
=

[
u1
u2

]
, (8.69)

~F(~u) =
[

ρv
ρv2 + p(ρ)

]
=

[
u2

u2
2

u2
1
+ p(u1)

]
. (8.70)



78 Chapter 8. Finite Volume Methods

Then A = ~f ′(~u) is the Jacobian matrix and is given by

A = ~f ′(~u) =

[
∂ f1
∂u1

∂ f1
∂u2

∂ f2
∂u1

∂ f2
∂u2

]
=

[
0 1

−u2
2

u2
1
+ p′(u1)

2u2
u1

]
=

[
0 1

−v2 + p′(ρ) 2v

]
. (8.71)

We can analyze systems with small disturbances by linearizing about some state. This can be done
by considering the flow properties to be the sum of an initial variable plus a perturbation term

u = ũ(x, t), (8.72)

ρ = ρ0 + ρ̃(x, t), (8.73)

p = p0 + p̃(x, t), (8.74)

and since the gas is considered motionless, we have set u0 = 0. Neglecting products of small
disturbances and applying the chain rule to the momentum equations, the linear system can be
written [

ρ̃

ũ

]
t
+

[
0 ρ0
c2

ρ0
0

][
ρ̃

ũ

]
x
= 0, (8.75)

where c =
√

p′(ρ0) is the speed of sound. Now, consider the following Riemann problem

~u(x,0) =~u0 =

{
~uL if x < 0,
~uR if x > 0,

(8.76)

where ~uL =
[
ρL uL

]T and ~uR =
[
ρR uR

]T , ~uL 6=~uR. Note that the problem is linear due to the
above procedure. We can compute the eigenvalues of A in Equation 8.75 by setting

det(A− Iλ ) = 0, (8.77)

where I is the identity matrix. Solving the eigenvalue problem yields the characteristic polynomial

λ
2− c2 = 0, (8.78)

which has solutions

λ1 =−c, λ2 =+c. (8.79)

The corresponding matrix of eigenvectors can be found to be

Q =

[
ρ0 ρ0
−c c

]
, (8.80)

with inverse

Q−1 =
1

2ρ0c

[
c −ρ0
c ρ0

]
. (8.81)

As we expected, the solution consists of a superposition of left-going and right-going sound waves,
which represent the slopes of the characteristic lines shown in Figure 8.13. Now, we analyze the
characteristic form of Equation 8.75 seeking a Riemann solution~um. Note that for systems of m = 2
equations, the Riemann state only depends on the single region highlighted in Figure 8.13. We start
by finding the values of ~ωL and ~ωR by

~ωL =

[
ωL,1
ωL,2

]
= Q−1~vL =

1
2cρ0

[
c −ρ0
c ρ0

][
ρL

vL

]
. (8.82)



8.4 Linear Hyperbolic Problems 79

−c c

x = 0

ρL
vL

ρR
vR

ρm
vm

Figure 8.13: Characteristic curves for the linear acoustics example

Hence

ωL,1 =
cρL−ρ0vL

2cρ0
, (8.83)

ωL,2 =
cρL +ρ0vL

2cρ0
. (8.84)

Similarly, for the right state we can find

ωR,1 =
cρR−ρ0vR

2cρ0
, (8.85)

ωR,2 =
cρR +ρ0vR

2cρ0
. (8.86)

In Equation 8.65, I∗ = 1, hence

~um =

[
ρm

vm

]
=

2

∑
i=2

ωL,i~qi +
1

∑
i=1

ωR,i~qi = ωL,2~q2 +ωR,1~q1, (8.87)

which yields the exact Riemann solution for the linear acoustics equation

ρm =
1
2
(ρR +ρL)+

1
2

ρ0

c
(uL−uR), (8.88)

um =
1
2

c
ρ0

(ρL−ρR)+
1
2
(uR +uL). (8.89)

Similar to [22], we can define the values of ρ0 = 1, c = 1 and given the initial left and right states

~uL =

[
ρL

vL

]
=

[
0.5
0

]
, ~uR =

[
ρR

vR

]
=

[
0.25
0.0

]
, (8.90)

as shown in Figure 8.14a, we can determine the middle state from Equation 8.89. Hence ρm = 0.375
and vm = 0.125. Results can be seen in Figure 8.14b, where a symmetric wave can be seen to have
moved from x = 0 to −ct and ct for the left and right discontinuities, respectively.



80 Chapter 8. Finite Volume Methods

x = 0

~ u

ρL

ρR

vL vR

(a) Initial condition

−ct ct

~ u

ρL

ρR

vL vR

vm

ρm

(b) Solution at t > 0

Figure 8.14: Example solution with values for the linear acoustics case.

8.5 Nonlinear Hyperbolic Problems
Consider the following one-dimensional scalar conservation law

∂u
∂ t

+
∂ f (u)

∂x
= 0, (8.91)

where f (u) is the flux. In Section 8.4, we analyzed a flux function of the form f (u) = αu,
corresponding to linear advection. In this section, we consider a nonlinear flux function of the form
f (u) = 1

2 u2, which leads to the inviscid Burgers equation. For this type of problem, u is expected
not only to translate but also to deform towards the formation of shocks. Similar to Section 8.4, we
want to analyze the behaviour of this PDE via the method of characteristics. Hence, we write the
quasilinear form of Burgers’ equation

∂u
∂ t

+ f ′(u)
∂u
∂x

= 0, (8.92)

where f ′(u) = u. Recall that in the x− t plane, we look for lines along which the solution remains
unchanged. Using the chain rule for u(x(t), t), we obtain

du
dt

=
∂u
∂ t

+
dx
dt

∂u
∂ t

= 0. (8.93)

Furthermore, comparing Equations 8.93 and 8.92, we observe that

dx
dt

= u, (8.94)

which allows us to obtain an equation for the characteristic line that passes through x0

x = x0 +u0t, (8.95)

where u0 = u(x,0) is the slope of each line. This means that each characteristic line has an
inclination that depends on the initial value of the solution. Note that since u is the characteristic
speed of the problem and f (u) is an increasing function, i.e. higher values of the solution travel
faster than smaller values of u, causing the solution to deform. To illustrate this, consider the
following example shown in Figure 8.15a

u(x,0) =


1 if x < 0,
1− x if 0 < x < 1,
0 if x > 1.

(8.96)



8.5 Nonlinear Hyperbolic Problems 81

u

xx = 0 x = 1

(a) u(x,0)

u

xx = 0 x = 1

(b) u(x,1)

Figure 8.15: Solution at t = 0 and t = 1 for Equation 8.96

Since the solution is its own convective speed, we expect the region x < 1 to move towards the
right, and the region after this point to remain stationary. Then a portion of the initial solution will
meet at x = 1, where a shock will form. Let us now visualize this via the method of characteristics.
Using Equation 8.95 at different x-locations, we draw the characteristic lines in Figure 8.16.
Multiple curves can be seen to intersect for a single value of u at (x, t) = (1,1), corresponding to
the solution illustrated in Figure 8.15b at t = 1.

t

xx = 0 x = 1

Figure 8.16: Characteristic lines for Equation 8.96.

At t = 1, the method of characteristics breaks. To ensure conservation after this moment, the
discontinuity is expected only to translate at a speed s. This speed depends on the values of both
sides of the discontinuity and can be obtained via the Rankine-Hugoniot relation, which we now
derive.

Consider the integral form of the conservation law applied to a finite region in the (x, t) plane
where the shock has already formed and only translates, similar to Figure 8.11. This results in

∂

∂ t

∫ xR

xL

u(x, t)dx+[ f (uR)− f (uL)] = 0. (8.97)

Assuming constant values of u on the left and right side of the discontinuity, we can rewrite
Equation 8.97

u(xR, t)−u(xL, t)
∆t

∆x+ f (uR)− f (uL) = 0, (8.98)

which in the limit of ∆t→ 0 becomes

s =
dx
dt

=
f (uR)− f (uL)

uR−uL
, (8.99)

where s is the shock speed. This equation is known as the Rankine-Hugoniot relation. For the
Burgers equation with f (u) = u2/2, we find that the shock speed is given by

s =
1
2

(
u2

R−u2
L
)

uR−uL
=

1
2
(uL +uR) , (8.100)

which can be computed for the problem in Equation 8.96 to be s = 1
2 (0+1) = 1

2 .



82 Chapter 8. Finite Volume Methods

Weak solutions
Now, consider the following initial conditions

u(x,0) =

{
0 if x < 0,
1 if x > 0.

(8.101)

In this case, the characteristic lines do not intersect and are displayed in Figure 8.17. While these

t

xx = 0

Figure 8.17: Characteristic lines for Equation 8.101.

curves do not cross, we are missing information in the star region. One possible solution of this
problem can be written

u(x, t) =

{
0 if x < t/2,
1 if x > t/2,

(8.102)

as illustrated in Figure 8.18a. This form of the solution satisfies the Rankine-Hugoniot relation and
is known as an expansion shock, where information appears to come out of a discontinuity. From a
physical point of view, this violates the entropy condition. In a physical shock wave, characteristics
are expected to go into the discontinuity as time advances. Hence, while Equation 8.103 is a
mathematical solution, it is not an entropy or physically relevant solution.

Consider instead

u(x, t) =


0 if x≤ t/2,
x
t if 0≤ x≤ t,
1 if x≥ t,

(8.103)

which is known as a rarefaction wave, shown in Figure 8.18b. In this case, the solution consists of
a smooth transition between the left and right states, consistent with the entropy condition.

Even with smooth initial conditions, nonlinear equations can develop discontinuities. For a
general conservation law, we say a solution that satisfies a PDE of order k is a classical solution
if the first k derivatives exist and are continuous. So, how is a discontinuous solution admitted
in a PDE? It turns out that we need to expand the range of admissible solutions to include those
that may not be differentiable so that we can deal with the formation of shocks. The set of both

t

xx = 0

(a) Expansion shock

t

xx = 0

(b) Rarefaction fan

Figure 8.18: Mathematically admissible solutions to problem in Equation 8.101



8.5 Nonlinear Hyperbolic Problems 83

classical and discontinuous u is generally known as weak solutions. They are considered to satisfy
the conservation law in an integral sense, which was the approach that we used to derive the
Rankine-Hugoniot relation.

Recall our second example in Equation 8.101. We showed that weak solutions are not necessar-
ily unique, and hence we must add a constraint to single out those relevant in the physical world.
Hence, to identify physical solutions, we consider a discontinuity to be a physical shock wave only
if the following entropy condition is satisfied

f ′(uL)> s > f ′(uR), (8.104)

which is consistent with the choice of Equation 8.103 as the physically relevant solution in our
second example.

8.5.1 Nonlinear Hyperbolic Systems
Applications of engineering interest can be described by a system of conservation laws of the form

∂~u
∂ t

+
∂~F(~u)

∂x
= 0, (8.105)

where ~u is the vector of conserved variables and ~F(~u) is the vector of fluxes. Previously, we
considered constant Jacobian matrices that led to a set of linear equations. In this section, we
consider problems whose Jacobian matrices have the form

A(~u) =
∂~F(~u)

∂~u
, (8.106)

and hence both the eigenvalues and eigenvectors depend on the value of the solution, which in turn
depends on time. An example of a nonlinear hyperbolic system is given by the Euler equations,
which can be written in one dimension using Equation 8.105 with

~u =

u1
u2
u3

=

 ρ

ρv
ρE

 , ~F =

 f1
f2
f3

=

 ρv
ρv2 +P

v(ρE + p)

 . (8.107)

ρ is density, v is velocity and E is the specific energy

E = e+
1
2

v2. (8.108)

We assume ideal gas law, hence the specific internal energy e is given by

e =
p

(γ−1)ρ
, (8.109)

where γ is the ratio of specific heats. In quasilinear form, we write

∂~u
∂ t

+A(~u)
∂~u
∂x

= 0, (8.110)

where A(~u) is the Jacobian matrix given by

A(~u) =
∂~F(~u)

∂~u
=


∂ f1
∂u1

∂ f1
∂u2

∂ f1
∂u3

∂ f2
∂u1

∂ f2
∂u2

∂ f2
∂u3

∂ f3
∂u1

∂ f3
∂u2

∂ f3
∂u3

 , (8.111)



84 Chapter 8. Finite Volume Methods

To compute A(~u), we write the Euler fluxes in terms of u1, u2, u3

~F =

 f1
f2
f3

=

 u2
u2

2/u1 +(γ−1)(u3−u2
2/2u1)

u3
u2
u1

γ− u3
2

u2
1

(γ−1)
2

 . (8.112)

Hence, the Jacobian matrix for the Euler equations is given by

A(~u) =


0 1 0

1
2(3− γ)

(
u2
u1

)2
(3− γ)

(
u2
u1

)
γ−1

(γ−1)
(

u2
u1

)3
− γ

u2u3
u2

1
γ

u3
u1
− 3

2(γ−1)
(

u2
u1

)2
γ

u2
u1

 , (8.113)

or using the conserved variables

A(~u) =

 0 1 0
1
2(γ−3)v2 (3− γ)v γ−1

1
2(γ−2)v3− c2 v

γ−1
3−2γ

2 v2 + c2

γ−1 γv

 , (8.114)

where c is the speed of sound

c =
√

γ p
ρ
. (8.115)

The eigenvalues of A(~u) are

λ1 = v− c, λ2 = v, λ3 = v+ c, (8.116)

and the associated eigenvectors are

~q1 =

 1
v− c

H− vc

 , ~q2 =

 1
v
v2

2

 , ~q3 =

 1
v+ c

H + vc

 , (8.117)

where H is the total enthalpy defined as

H = E +
p
ρ
. (8.118)

The eigenvalues of the Euler system are distinct, and a complete set of eigenvectors can be found,
proving that the Euler equations are strictly hyperbolic. The eigenvalues represent the characteristic
speeds of the problem, showing that the Euler equations can be interpreted as a superposition of a
left-travelling sound wave, a momentum wave and a right-going sound wave, consistent with the
propagation of sound. The nonlinearity of these equations makes the study of the Riemann problem
much more challenging compared to the linear systems. In the next section, we briefly discuss
some important considerations when analyzing the Riemann problem for the Euler equations.

8.5.2 The Riemann Problem for the Euler equations
Consider a tube with a thin membrane at x = 0 separating two different gases, each with a given
density ρ velocity v, and pressure p as shown in Figure 8.19. Initially, both gases are considered
at rest (vL = vR = 0). Note it can also be the same gas at different pressures. At time t, the
thin membrane is ruptured, causing the fluid in the region of high pressure to move towards the



8.5 Nonlinear Hyperbolic Problems 85

ρL

vL

pL

ρR

vR

pR

Figure 8.19: Sod’s shock-tube problem

low-pressure side to reach thermodynamic equilibrium. This configuration is known as Sod’s shock
tube and is the physical equivalent to the Riemann problem in gas dynamics [22].

It can be shown that the solution to this problem consists of a contact discontinuity associated
with λ2, and a shock or a rarefaction wave associated with λ1 and λ3. Four different configurations
are then possible solutions for the Riemann problem [22], all of which need to be considered when
deriving an exact solution. These are shown in Figure 8.20.

λ1

λ2
λ3

t

x

(a)

λ3

λ2
λ1

t

x

(b)

λ1

λ2
λ3

t

x

(c)

λ1

λ2

λ3

t

x

(d)

Figure 8.20: Possible characteristic configurations for the Euler Riemann problem

Solving the exact Riemann problem for the Euler equations turns out to be very expensive and
requires the use of iterative methods to find the pressure between the left and right states. We refer
the reader to [13, 22] for a detailed derivation of the exact solution.

Example

To visualize the behaviour of the Euler equations, consider Sod’s shock tube problem with initial
conditions

~uL =

ρL

vL

pL

=

1
0
1

 , and ~uR =

ρR

vR

pR

=

 1
8
0
1
10

 . (8.119)

After t = 0.2, the exact solution can be seen in Figure 8.21. The figures are divided into five regions,
which we denote A, B, C, D, E, from left to right.
• Regions A and E contain the initial left and right states, respectively.



86 Chapter 8. Finite Volume Methods

0.0 0.5 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
ρ

A B C D E
0.0 0.5 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

v

0.0 0.5 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

p

Figure 8.21: Exact solution to Sod’s shock tube problem at t = 0.2

• Region B consists of a rarefaction wave, which is a smooth transition of quantities ρ, v, and
p.

• At the interface between regions C and D, we observe a contact discontinuity. This wave
represents the effects of the initial separation of the left and right states travelling to the
region of low pressure. Across this wave, pressure and velocity remain constant, but density
is discontinuous.
• At the interface between regions D and E, a shock wave has formed due to the nonlinearities

of the Euler equations. This shock wave travels with a speed s, which satisfies the Rankine-
Hugoniot relationship. In this case, all considered quantities ρ, v and p present discontinuous
behaviour across the wave.

8.5.3 A Riemann Solver for the Euler Equations
A more cost-effective approach is the use of approximate Riemann solvers to compute the behaviour
of the left and right states of interfaces in finite volume schemes. In this section, we discuss the
Riemann solver of Roe. Recall the quasilinear form of a conservation law

∂~u
∂ t

+A(~u)
∂~u
∂x

= 0. (8.120)

For the Euler equations, A(~u) is given by Equation 8.114. The eigenvalues of A depend on the value
of the solution and hence vary in time. Recall that for the Euler equations, three types of waves can
be expected: contact, rarefaction and shock waves. We are interested in handling the formation
of the shocks. Consider the following finite volume scheme with the forward Euler time-stepping
method

~ut+1
i =~ut

i−
∆t
∆x

[
~Fi+1/2−~Fi−1/2

]
, (8.121)

where ~Fi−1/2 and ~Fi+1/2 are interface fluxes on the left and right sides of the cell, respectively, and
are defined such that

~Fi−1/2 = ~F(~ui−1/2), (8.122)
~Fi+1/2 = ~F(~ui+1/2). (8.123)

Hence, at the interfaces, we need to solve a Riemann problem of the form

∂~u
∂ t

+
∂~F
∂x

= 0, (8.124)

~u(x,0) =

{
~uL if x < 0,
~uR if x > 0.

(8.125)



8.5 Nonlinear Hyperbolic Problems 87

Roe proposed considering instead a constant Jacobian matrix Ã with the following properties [22]
• Ã must have real eigenvalues and a complete set of eigenvectors such that the problem in

Equation 8.120 is hyperbolic.
• Ã must be consistent with the exact problem, i.e. Ã(~u,~u) = A(~u).
• The resulting system must be conservative across discontinuities, i.e. ~F(~uR)− ~F(~uL) =

Ã(~uR−~uL) must be satisfied.
Roe demonstrated that the matrix can be written

Ã =

 0 1 0
(γ−1)H̃− ṽ2− c̃2 (3− γ)ṽ γ−1

1
2

[
(γ−3)H̃− c̃

]
H̃− (γ−1)ṽ2 γ ṽ

 , (8.126)

which is equivalent to the original matrix we derived in Equation 8.114 when evaluated at the Roe
average states given by

ṽ =
√

ρLuL +
√

ρRuR√
ρL +

√
ρR

, (8.127)

H̃ =

√
ρLHL +

√
ρRHR√

ρL +
√

ρR
, (8.128)

c̃ =

√
(γ−1)(H̃− 1

2
ṽ2). (8.129)

The eigenvalues of Ã are

λ̃1 = ṽ− c̃, λ̃2 = ṽ, λ̃3 = ṽ+ c̃, (8.130)

and the matrix of eigenvectors Q̃ = [~̃q1,~̃q2,~̃q3] is given by

Q̃ =

 1 1 1
ṽ− c̃ ṽ ṽ+ c̃

H̃− ṽc̃ 1
2 ṽ2 H̃ + ṽc̃

 . (8.131)

The choice of a constant Jacobian matrix allows us to apply the theory in Section 8.4.1 directly. On
each side of a discontinuity, the solution jump can be computed by

∆~u = (~uR−~uL) =
m

∑
i=1

α̃i~̃qi, (8.132)

where α̃i is the jump in terms of the characteristic variables and ~̃qi is an eigenvector of Ã. Hence,
from Equation 8.132, we obtain a system of equations

Q~̃α = ∆~u, (8.133)

where ~̃α = [α̃1, α̃2, α̃3]
T . The resulting expressions for these coefficients can be written

α̃1 =
1
2c̃

(∆u1ũ+∆u1c̃−∆u2− c̃α̃2) , (8.134)

α̃2 =
γ−1

c̃2

(
∆u1H̃−∆u1ũ2 + ũ∆u2−∆u3

)
, (8.135)

α̃3 = ∆u1− α̃1− α̃2. (8.136)

Finally, the numerical flux can then be computed using

~Fi±1/2(~uL,~uR) =
1
2

[
~F(~uL)+~F(~uR)

]
− 1

2

3

∑
i=1

α̃i|λ̃i|∆ui. (8.137)



88 Chapter 8. Finite Volume Methods

A disadvantage of the Roe solver is that it may violate the entropy condition in the presence of sonic
rarefaction waves, where ṽ≈ c̃ (or λ̃1/3 ≈ 0). This occurs since the solver treats both rarefaction
and shock waves as discontinuous solutions. Hence, an entropy fix needs to be added. A common
approach consists of replacing the λ̃1 or λ̃3 eigenvalues if their absolute value is smaller than a
given tolerance δ . This is known as Harten’s entropy fix, which can be written [13]

λ̃i =

{
λ̃i if |λ̃i|> δ ,
λ̃ 2

i
2δ

+2δ if |λ̃i| ≤ δ .
(8.138)

The drawback of this approach is that the value of δ � 1 needs to be typically tuned for each
specific application.

Check out the Sod’s Shock-Tube Problem Jupyter notebook here. You can also download the
files from the Gitlab repository here.

8.6 MUSCL Schemes

We have shown in previous sections that finite-volume schemes are typically written for a general
conservation law in the form

d~ui

dt
=− 1

∆xi

[
~Fi+1/2−~Fi−1/2

]
, (8.139)

where ~ui is a constant approximation of the state variable vector within the cell defined by Ωi =
[xi−1/2,xi+1/2], and ~Fi+1/2 and ~Fi−1/2 are interface flux vectors of the form

~Fi+1/2 = ~F(~ui+1/2), (8.140)

where ui+1/2 is the solution at the interface between Ωi and Ωi+1 defined at xi+1/2. At this point,
two values of the solution uL

i+1/2, uR
i+1/2 coexist, and hence the flux is obtained using a Riemann

solver. In the first-order method of Godunov, the interface solution values are equal to the cell
averages in the corresponding control volumes, i.e.

uL
i+1/2 = ui, (8.141)

uR
i+1/2 = ui+1. (8.142)

For a better resolution of smooth solutions, we can derive methods with orders of accuracy higher
than one, allowing the numerical error to decrease significantly. This can be done by replacing
the constant interface values of the solution~ui+1/2 for a reconstructed value, which is interpolated
using information from neighbouring cells. This idea, developed by van Leer [23], is an extension
of Godunov’s method, and is known as the MUSCL (monotone upstream-centered schemes for
conservation laws) reconstruction approach. A graphical representation of the method is shown
in Figure 8.22. Hence, the solution is approximated by a Taylor series expansion around the cell
center xi

u(x) = ui +(x− xi)
∂ui

∂x
+

1
4
(x− xi)

∂ 2ui

∂x2 + . . . , (8.143)

where the derivatives are computed using cell solution differences with respect to neighbouring
cells. Note that this reconstruction process can be done using additional terms in Equation 8.143 to

https://tinyurl.com/cfd-binder
https://gitlab.com/bvermeir/book-cfd


8.6 MUSCL Schemes 89

xi−1/2 xi+1/2

uL
i−1/2

uR
i−1/2

uL
i+1/2

uR
i+1/2

ui−1

ui

ui+1

Figure 8.22: Linear reconstruction of the solution at interfaces xi−1/2 and xi+1/2

yield higher-order schemes. Hence, on the left and right sides of the interface, the solution can be
found by

~uL
i+1/2 =~ui +

1
2
~δi, (8.144)

~uR
i+1/2 =~ui+1−

1
2
~δi+1, (8.145)

where the so-called slopes δi can be defined using a blended approach with upwinding parameter b

~δi =
1
2
(1+b)δ~ui−1/2 +

1
2
(1−b)δ~ui+1/2, (8.146)

such that b = 1 results in an upwind-biased approximation. Considering a linear reconstruction, the
solution slopes are given by

δ~ui+1/2 =~ui+1−~ui, (8.147)

δ~ui−1/2 =~ui−~ui−1. (8.148)

Finally, the common fluxes can be computed using an appropriate Riemann solver of the form

~Fi+1/2 = F(~uL
i+1/2,~u

R
i+1/2). (8.149)

8.6.1 Second-Order Upwind Scheme for Linear Advection
For linear advection, a common choice is the upwind Riemann flux given by

Fupw(uL,uR) = αuL, (8.150)

where α is the advection velocity. At the xi+1/2 and xi−1/2 interfaces, the upwind flux can be found

Fupw
i+1/2 = αuL

i+1/2 = αui +
α

2
δi, (8.151)

Fupw
i−1/2 = αuL

i−1/2 = αui−1 +
α

2
δi−1, (8.152)

where we choose upwind-biased slopes in Equation 8.146 with b = 1 such that

δi = δui−1/2 = ui−ui−1, (8.153)

δi−1 = δui−3/2 = ui−1−ui−2. (8.154)



90 Chapter 8. Finite Volume Methods

Hence, using Equations 8.151-8.154, the common fluxes can be written

Fi+1/2 = F(ui+1/2) = αui +
α

2
(ui−ui−1) , (8.155)

Fi−1/2 = F(ui−1/2) = αui−1 +
α

2
(ui−1−ui−2) , (8.156)

which yields the following second-order upwind-biased scheme

dui

dt
=− α

2∆x
(3ui−4ui−1 +ui−2) . (8.157)

Later in this chapter, we show results of a numerical experiment using this scheme.

8.6.2 Total Variation Diminishing
The total variation (TV) of a scalar conservation law such as the linear advection equation is given
by [7]

TV (u) =
∫ ∣∣∣∣∂u

∂x

∣∣∣∣dx, (8.158)

which can be written for the discrete approximation

TV (u) =
N

∑
i=1
|ui+1−ui|, (8.159)

where N is the number of finite volume cells. A numerical method is said to be total variation
diminishing (TVD) if the solution does not spontaneously concentrate, i.e.

TV (ut +1)≤ TV (ut). (8.160)

Harten [6] proved that TVD schemes are monotonicity-preserving, meaning that in time, maxima
does not increase, minima does not decrease, and no new extrema are generated in the solution. It
turns out that this property can only be attributed to certain types of schemes. Godunov’s theorem
states [5]

Theorem 8.6.1 Linear numerical schemes for solving partial differential equations (PDE’s),
having the property of not generating new extrema (monotone scheme), can be at most first-order
accurate.

Hence, while higher-order schemes are more accurate for smooth solutions, they introduce spurious
oscillations in the presence of discontinuities, shocks and large solution gradients and are thus not
TVD. Hence, TVD schemes are at most first-order. Different approaches can be used to ensure the
TVD property for high-order numerical methods under these circumstances. In the next section, we
discuss one of these techniques, known as flux/slope limiters.

8.6.3 Limiters
Introducing limiters to high-order formulations prevents the generation of oscillations in regions
where nonsmooth solutions are present. Recall that Godunov’s theorem states that only first-order
accurate schemes are able to produce solutions without generating new extrema. Hence, limiters are
used as a switch mechanism which transforms the high-order numerical scheme into a first-order
method in the presence of discontinuities. This is done by evaluating and comparing slopes between
neighbouring cells. In this section, we introduce limiters to the MUSCL reconstruction framework
in Section 8.6.



8.6 MUSCL Schemes 91

Table 8.1: Common forms of limiter functions φ(r)

Name φ(r)
minmod max[0,min(1,r)]
van Leer r+|r|

1+|r|
superbee max[0,min(2r,1),min(r,2)]

The MUSCL formulation in Equation 8.146 can be rewritten for a scalar conservation law using
limited slopes

δ i =
1
2
(1+b)φ+

i−1/2δui−1/2 +
1
2
(1−b)φ−i+1/2δui+1/2, (8.161)

where the limiting functions can be defined using ratios of the slopes with neighbouring cells. At
interface xi+m, the slope limiter is given by

φ
±
i+m = φ

(
r±i+m

)
, r±i+m =

δui+m±1

δui+m
. (8.162)

Limiters are designed to treat similarly both upwind and downwind slopes by satisfying the
symmetry condition

φ(r)
r

= φ

(
1
r

)
, (8.163)

which allows us to simplify Equation 8.161 to

δ i =
φ(r+i−1/2)

2

[
(1+b)δui−1/2 +

1
r+i−1/2

δui+1/2

]
, (8.164)

where

r+i−1/2 =
δui+1/2

δui−1/2
=

ui+1−ui

ui−ui−1
. (8.165)

For the second-order upwind-biased scheme in Equation 8.157, we can obtain a scheme with
limiting functions using interface fluxes of the form

Fi+1/2 = F(ui+1/2) = αui +
α

2
φ(r+i−1/2)(ui−ui−1) , (8.166)

Fi−1/2 = F(ui−1/2) = αui−1 +
α

2
φ(r+i−3/2)(ui−1−ui−2) . (8.167)

Clearly, in the case φ(r) = 0, the flux reduces to the first-order upwind scheme. This occurs
particularly when the limiter detects a change in the slope (negative r). Some slope limiting
functions are shown in Table 8.1. In the next section, we show applications of these limiters in the
context of linear advection and the Euler equations.

8.6.4 Numerical Examples
Linear Advection
Consider the following advection problem

∂u
∂ t

+
∂u
∂x

= 0, (8.168)



92 Chapter 8. Finite Volume Methods

on a grid with x ∈ [0,2] with periodic boundary conditions. The initial conditions at t = 0 are given
by

u(x,0) =


e−20(x−0.5)2

if x < 1.2,
1 if 1.2 < x < 1.5,
0 otherwise.

(8.169)

which consist of a smooth gaussian profile and a step function. Due to the nature of the equation,
we expect a translation of the initial condition through the domain without any deformation. At
t = 2, a complete cycle has occurred and it is expected that ut=2

i ≈ u(xi,0). Using the second-order
advection scheme with b = 1 and N = 300 cells, the solution is shown in Figure 8.23. In the smooth
region of the domain, the second-order scheme does a good job representing the solution, but
we observe that the discontinuities on the right side of the domain contain large oscillations that
overshoot and undershoot the exact solution.

Implementation of the function in Table 8.1 shows the monotonicity of the slope-limited
methods. Clearly, the resolution of the shock does not include oscillations, and some limiters
introduce more dissipation than others. In all limited cases, observe the crest of the Gauss wave.
Due to the slope change of the solution in that region, we have therein introduced additional error.

x
−0.25

0.00

0.25

0.50

0.75

1.00

1.25

u

u(x, 0)
No limiter

x

u

u(x, 0)
minmod

0.0 0.5 1.0 1.5
x

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

u

u(x, 0)
van Leer

0.0 0.5 1.0 1.5
x

u

u(x, 0)
superbee

Figure 8.23: Second-order upwind-biased advection scheme (upper left) using minmod (upper
right), van Leer (lower left) and superbee (lower right) limiters

A comparison of the TVD properties of the scheme and other additional assessments can be
made using the MUSCL Schemes Jupyter notebook.



8.6 MUSCL Schemes 93

Check out the MUSCL Schemes Jupyter notebook here. You can also download the files
from the Gitlab repository here.

Sod’s Shock-Tube Problem
Consider Sod’s shock-tube problem with initial conditions

~uL =

ρL

vL

pL

=

1
0
1

 , and ~uR =

ρR

vR

pR

=

 1
8
0
1
10

 . (8.170)

on a domain x ∈ [0,1] and t ∈ (0,0.2]. Figure 8.24 shows a comparison between Godunov’s first-
order scheme and a linear MUSCL-reconstructed method with different limiters. We note that this
problem is unstable for the MUSCL scheme if no limiter function is added. The analysis of these
results is similar to the advection example and is left as an exercise to the student. The associated
Jupyter notebook shows the implementation of these functions for the Euler equations.

Check out the Sod’s Shock-Tube Problem Jupyter notebook here. You can also download the
files from the Gitlab repository here.

https://tinyurl.com/cfd-binder
https://gitlab.com/bvermeir/book-cfd
https://tinyurl.com/cfd-binder
https://gitlab.com/bvermeir/book-cfd


94 Chapter 8. Finite Volume Methods

x
0.0

0.2

0.4

0.6

0.8

1.0

ρ

Exact
Godunov

x

v

Exact
Godunov

x

p

Exact
Godunov

x
0.0

0.2

0.4

0.6

0.8

1.0

ρ

Exact
minmod

x

v

Exact
minmod

x

p

Exact
minmod

x
0.0

0.2

0.4

0.6

0.8

1.0

ρ

Exact
van Leer

x

v

Exact
van Leer

x

p

Exact
van Leer

0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

ρ

Exact
superbee

0.00 0.25 0.50 0.75 1.00
x

v

Exact
superbee

0.00 0.25 0.50 0.75 1.00
x

p

Exact
superbee

Figure 8.24: Results of Sod’s shock tube problem at t = 0.2 with initial conditions in Equation 8.170



9. Consistency, Stability, Convergence

Now that we have derived a few different schemes for solving linear advection, Burgers equation,
and linear diffusion, we should now ask ourselves whether they will give us accurate predictions,
and are there any restrictions on when they can be used. We have already discussed the importance
of the order of accuracy, which governs the rate at which the error will converge to zero. Now we
will introduce the concepts of consistency, stability, and convergence. If we can prove that our
numerical scheme satisfies all three of these properties, we can be confident that it is a promising
approach for the Euler or Navier-Stokes equations. In the current section, we will explore these
properties in the context of finite difference methods, but the exact same steps can be taken to
check whether a finite volume method is suitable or not. Some additional references on these topics
include [1, 7].

9.1 Consistency
A numerical scheme is consistent if it recovers the exact initial partial differential equation as the
grid spacing and time step size are reduced. In other words, the truncation error of the scheme must
go to zero in the limit ∆x→ 0 and ∆t → 0. This is usually the case, and it is left as an exercise
for the reader to check that our previous finite difference schemes for linear advection, Burgers
equation, and linear diffusion satisfy this property.

However, this is not always the case. To demonstrate this, we consider the Dufort-Frankel
scheme for linear diffusion

ut+1
i = ut−1

i +
2β∆t
∆x2

(
ut

i−1−ut+1
i −ut−1

i +ut
i+1
)
+O(∆x2,∆t2,(∆t/∆x)2). (9.1)

This differs from our example scheme for linear diffusion in that it uses central differences for
the time-derivative, and when computing the second-derivative in space, it uses the solution at the
current grid point at the previous and current time steps. While this scheme may have some useful
properties, we note that it has a peculiar term in the truncation error of O((∆t/∆x)2). This can be
obtained from a Taylor series expansion of the second derivative. This is concerning, as for any
scheme to be consistent with the original partial differential equation we require the truncation error



96 Chapter 9. Consistency, Stability, Convergence

to go to zero. However, if we use a naive approach and simply refine ∆x and ∆t at the same rate, this
term will not go to zero, and the scheme will not be consistent. For example, if we reduced both the
grid spacing and time step size by a half, this O((∆t/∆x)2) will remain the same. Hence, in order
for the Dufort-Frankel scheme to be consistent with our original partial differential equation, we
should refine the grid spacing faster than the time step size. For example, if we reduce ∆t by a half
we should reduce ∆x by a factor of four. This does not mean the Dufort-Frankel scheme is bad,
per-se, but it does mean that care needs to be taken when using it.

9.2 Stability
If we can demonstrate our schemes are consistent, then we know that in the limit ∆x→ 0 and
∆t→ 0 we recover the exact partial differential equation. However, this is impossible to achieve in
practice as it would require an infinite number of grid points and time steps. When considering
stability, we are concerned with whether our numerical scheme will provide physical solutions
when both ∆x and ∆t are finite. Let’s start by considering what we mean by a physical solution.

In order to advance our solution in time, we start with some initial condition. Then, by inserting
this initial condition into our scheme, we approximate the solution at the next timestep t +∆t. Then,
we insert this approximation back into our scheme to approximate the solution at time t +2∆t, and
this process is repeated over and over again until we reach our final desired time. Hence, the way
we advance our simulation in time is effectively a feedback loop, with the output of each time step
being recycled back through the numerical scheme to get the solution at each consecutive time step.

As an analogy, we can consider what happens in other simple feedback loops, such as a
microphone and speaker. When a performer sings into a microphone, their voice is amplified and
played back through the speaker. We expect that this produces a physical replication of their voice,
just at a louder volume for the audience. However, if the sound from the speaker is louder than
the singer’s voice at the microphone, it will get amplified, played through the speaker at a louder
volume, and this cycle then repeats. This results in feedback noise, usually a high-pitched ringing
that sounds nothing like the original performer, and usually happens when the performer moves to
close to the speaker.

Since our numerical scheme is applied as a feedback loop, the exact same kind of thing can
happen. If it amplifies our solution each time step, then the solution will continue to grow, eventually
leading to non-physical values such as near-infinite density or pressure. This is colloquially referred
to as the solution blowing up. In contrast, if the scheme damps our solution at each time step, it will
tend towards physical values, such as the background density or pressure. While this is perhaps not
desirable in terms of accuracy, which will be explored later, it is a desirable property in that the
solution remains stable and bounded between the initial condition and background state.

Proving stability for non-linear problems, such as Burgers equation, is a relatively daunting task.
However, if we restrict ourselves to linear equations, such as linear advection or linear diffusion,
then stability can be explored more readily. In order to do this, we introduce Von Neumann Analysis,
also commonly referred to as Fourier Analysis. We first assume that our solution u(x, t) can be
represented via a Fourier Series, such that

u(x, t) = ∑
m

bm(t)eiκmx, (9.2)

where bm(t) is the Fourier coefficients that vary with time as the solution evolves, κm is a wavenum-
ber, and in this context i =

√
−1. This is the exact same as a conventional Fourer series, with the

exception that the coefficients are a function of time describing the time evolution of the system of
equations. Furthermore, we take

κm =
2πm
2L

, m = 0,1,2, . . . ,M, (9.3)



9.2 Stability 97

where M is chosen based on the maximum wavenumber that can be represented on the grid based
on its Nyquist criteria, and L is the length of the domain. Hence, small values of κm correspond to
large waves, and large values of κm correspond to very compact waves.

Following this approach, we are taking our solution and decomposing it into a number of
different waves via a Fourier series. Now, since we have restricted ourselves to linear systems of
equations, we can apply the property of superposition. This means that we can analyze each wave
independently as a function of time, and the final solution is simply the superposition of all of these
waves. This allows us to analyze the behaviour of our numerical scheme for each wavenumber
independently, since they are not coupled. Hence, we can write the solution for one particular wave
of the Fourier series as

um(x, t) = bm(t)eiκmx, (9.4)

where the complete solution is

u(x, t) = ∑
m

um(x, t). (9.5)

We will also assume that the time-dependence of the solution is also wavelike with a prescribed
frequency in time such that

um(x, t) = eateiκmx, (9.6)

where a is a complex number, referred to as the numerical frequency, that describes how the solution
evolves in time. In order to justify this assumption we can consider the linear advection equation
applied to an arbitrary wavenumber κm. We note that this wave will propagate at velocity α from
left to right. Now, if we consider some fixed point in space, denoted by u1t, we note that the value
of the solution in time will alose behave like a sine wave. Hence, at a fixed point in time, the
solution has a wavelike structure in space and, at a fixed point in space, the solution has a wavelike
structure in time. Hence, the dual wavelike structure taken for um(x, t).

With the wavelike structure of the solution described, we can now explore how that wave will
change with time. Of primary importance, at least in terms of stability, is to determine whether
the wave will be amplified or damped as the solution evolves. Our objective in this section is to
determine whether, and under what conditions, numerical schemes satisfy this stability condition.
We note that the solution at time t +∆t is simply

um(x, t +∆t) = ea(t+∆t)eiκmx, (9.7)

which can be re-written as

um(x, t +∆t) = eatea∆teiκmx, (9.8)

and, in order for the magnitude of the solution to not be amplified at the next time step, we have the
stability constraint

|ea∆t | ≤ 1, (9.9)

which describes a unit circle in the complex plane. Referred to as the amplification factor, we will
next determine under what conditions our numerical schemes satisfy this stability constraint.

9.2.1 Explicit Linear Advection
For a methodological approach, we will break von Neumann down into a number of steps.



98 Chapter 9. Consistency, Stability, Convergence

Step 1: Choose the Discrete Scheme
The first step in von Neumann analysis is to determine what scheme we are interested in analyzing.
In this case, we will consider our simple first-order scheme for linear advection

ut+1
i −ut

i

∆t
+α

ut
i−ut

i−1

∆x
= 0. (9.10)

Step 2: Apply the Wavelike Solution
Since we know the prescribed wave-like form of the solution, the grid spacing ∆x, and the time step
size ∆t, we can write expressions for the solution for a particular wavenumber κm at each grid point
and time level as

ut
i = eateiκmx, (9.11)

ut+1
i = ea(t+∆t)eiκmx, (9.12)

ut
i−1 = eateiκm(x−∆x). (9.13)

Substituting these into our finite difference approximation yields

ea(t+∆t)eiκmx− eateiκmx

∆t
+α

eateiκmx− eateiκm(x−∆x)

∆x
= 0. (9.14)

Step 3: Solve for the Amplification Factor
Noting that all of these terms has a common factor of eateiκmx we can simply divide through yielding

ea∆t −1
∆t

+α
1− e−iκm∆x

∆x
= 0. (9.15)

Rearranging yields

ea∆t = 1−σ +σe−iκm∆x, (9.16)

where

σ =
α∆t
∆x

, (9.17)

is the Courant-Friedrichs-Lewy (CFL) number. Hence, the amplification factor of our first-order
linear advection scheme is

|ea∆t |= |1−σ +σe−iκm∆x|, (9.18)

and our scheme will be stable whenever this is contained within the unit circle in the complex plane.
We note that this is a function of two parameters, specifically the wavenumber and the CFL number.
Hence, we expect that the amount our solution gets amplified/damped each time step will depend
on these two parameters.

Step 4: Determine the Stability Conditions
Based on these results, we can conclude that the first-order finite difference scheme for linear
advection is stable whenever



9.2 Stability 99

0≤ σ ≤ 1. (9.19)

That is, it is only stable for CFL numbers less than one. Hence, for a given grid spacing and
advection velocity, there is a limit on how large the time step can be. This clearly has implications
in terms of computational cost, as the smaller the time step is, the more steps must be taken to reach
a desired final solution time. Schemes of this type are referred to as being conditionally stable.

−1.0 −0.5 0.0 0.5 1.0

Re
(
ea∆t

)

−1.0

−0.5

0.0

0.5

1.0

Im
( ea∆

t)

σ = 0.5
σ = 0.6

σ = 0.7
σ = 0.8

σ = 0.9
σ = 1.0

Figure 9.1: Stability region for the explicit linear advection scheme.

9.2.2 Implicit Linear Advection
In the last section, we saw that our first-order finite difference scheme has a stability limit. In this
section, we will explore a slightly different first-order scheme for linear advection.

Step 1: Choose the Discrete Scheme
In this case, we use the following finite difference approximation of the linear advection equation

ut+1
i −ut

i

∆t
+α

ut+1
i −ut+1

i−1

∆x
= 0, (9.20)

noting that it is simple the original scheme, but we evaluate the spatial derivative at the next time
step rather than the current time step.

Step 2: Apply the Wavelike Solution
Our expressions for wavelike solutions at each point are

ut
i = eateiκmx, (9.21)

ut+1
i = ea(t+∆t)eiκmx, (9.22)



100 Chapter 9. Consistency, Stability, Convergence

ut+1
i−1 = ea(t+∆t)eiκm(x−∆x). (9.23)

Substituting these into our discrete scheme yields

ea(t+∆t)eiκmx− eateiκmx

∆t
+α

ea(t+∆t)eiκmx− ea(t+∆t)eiκm(x−∆x)

∆x
= 0. (9.24)

Step 3: Solve for the Amplification Factor
Again, we note a common factor of eateiκmx in all terms, allowing us to divide through yielding

ea∆t −1
∆t

+α
ea∆t − ea∆te−iκm∆x

∆x
= 0. (9.25)

Rearranging yields

ea∆t =
1

1+σ (1− e−iκm∆x)
, (9.26)

where σ is again the CFL number. Hence, the amplification factor is

|ea∆t |=
∣∣∣∣ 1
1+σ (1− e−iκm∆x)

∣∣∣∣ . (9.27)

Step 4: Determine the Stability Conditions
Based on these results, we can conclude that this finite difference scheme for the linear advection
equation is stable provided

0≤ σ ≤ ∞. (9.28)

Hence, we are able to take arbitrarily large time steps and maintain stability using this approach.
Schemes of this type are referred to as being unconditionally stable.

R Although this scheme is unconditionally stable, making it appealing since it allows for
arbitrarily large time-steps, it also becomes more difficult/expensive for each time-step. This
will be explored in the forthcoming time stepping section.

9.2.3 Explicit Linear Diffusion
Similar to the linear advection equation, we can also use von Neumann analysis to analyze the
stability of the linear diffusion equation.

Step 1: Choose the Discrete Scheme
We will start with the example scheme we derived in the finite difference section

ut+1
i −ut

i

∆t
−β

ut
i−1−2ut

i +ut
i+1

∆x2 = 0. (9.29)

Step 2: Apply the Wavelike Solution
Our expressions for wavelike solutions at each point are

ut
i = eateiκmx, (9.30)



9.2 Stability 101

−1.0 −0.5 0.0 0.5 1.0

Re
(
ea∆t

)

−1.0

−0.5

0.0

0.5

1.0

Im
( ea∆

t)

σ = 0.5
σ = 1.0

σ = 2.0
σ = 4.0

σ = 8.0
σ = ∞

Figure 9.2: Stability region for the implicit linear advection scheme.

ut+1
i = ea(t+∆t)eiκmx, (9.31)

ut
i−1 = eateiκm(x−∆x), (9.32)

ut
i+1 = eateiκm(x+∆x). (9.33)

Substituting these into our discrete scheme yields

ea(t+∆t)eiκmx− eateiκmx

∆t
−β

eateiκm(x−∆x)−2eateiκmx + eateiκm(x+∆x)

∆x2 = 0. (9.34)

Step 3: Solve for the Amplification Factor
Again we note a common factor of eateiκmx in all terms, allowing us to divide through yielding

ea∆t −1
∆t

−β
e−iκm∆x−2+ eiκm∆x

∆x2 = 0. (9.35)

Rearranging yields

ea∆t = 1+ r
(
e−iκm∆x−2+ eiκm∆x) , (9.36)

where

r =
β∆t
∆x2 , (9.37)

is similar to the CFL number but for diffusion rather than advection. Finally, the amplification
factor is



102 Chapter 9. Consistency, Stability, Convergence

|ea∆t |=
∣∣1+ r

(
e−iκm∆x−2+ eiκm∆x)∣∣ . (9.38)

Step 4: Determine the Stability Conditions
Based on this amplification factor, we demonstrate graphically that this scheme will be stable
provided

0≤ r ≤ 1
2
. (9.39)

We note that this scheme is conditionally stable, similar to the first linear advection scheme we
considered. This means if the grid is refined then the time step size must be reduced accordingly to
maintain stability. However, we note that the factor of ∆x2 in r will require the time step size to be
reduced with the square of the grid spacing, which can become expensive on finer meshes.

−1.0 −0.5 0.0 0.5 1.0

Re
(
ea∆t

)

−1.0

−0.5

0.0

0.5

1.0

Im
( ea∆

t)

σ = 0.1 σ = 0.3 σ = 0.5

Figure 9.3: Stability region for the explicit linear diffusion scheme.

R The Navier-Stokes equations have both advective and diffusive terms. Hence, the time step
is usually limited by the stricter of the stability constraints of the advective and diffusive
schemes that are being used.

9.2.4 Implicit Linear Diffusion
Similar to the modified linear advection scheme, we can also modify our initial linear diffusion
scheme by evaluating the spatial operator at the future unknown solution time.

Step 1: Choose the Discrete Scheme
This yields the following scheme

ut+1
i −ut

i

∆t
−β

ut+1
i−1−2ut+1

i +ut+1
i+1

∆x2 = 0. (9.40)



9.3 Convergence 103

Step 2: Apply the Wavelike Solution
Our expressions for wavelike solutions at each point are

ut
i = eateiκmx, (9.41)

ut+1
i = ea(t+∆t)eiκmx, (9.42)

ut+1
i−1 = ea(t+∆t)eiκm(x−∆x), (9.43)

ut+1
i+1 = ea(t+∆t)eiκm(x+∆x). (9.44)

Substituting these into our discrete scheme yields

ea(t+∆t)eiκmx− eateiκmx

∆t
−β

ea(t+∆t)eiκm(x−∆x)−2ea(t+∆t)eiκmx + ea(t+∆t)eiκm(x+∆x)

∆x2 = 0. (9.45)

Step 3: Solve for the Amplification Factor
Again we note a common factor of eateiκmx in all terms, allowing us to divide through yielding

ea∆t −1
∆t

−β
ea∆te−iκm∆x−2ea∆t + ea∆teiκm∆x

∆x2 = 0. (9.46)

Rearranging yields

ea∆t =
1

[1− r (e−iκm∆x−2+ eiκm∆x)]
, (9.47)

where r is the same as the original linear diffusion scheme. Finally, the amplification factor
is

|ea∆t |=
∣∣∣∣ 1
[1− r (e−iκm∆x−2+ eiκm∆x)]

∣∣∣∣ . (9.48)

Step 4: Determine the Stability Conditions
Based on the form of the amplification factor, we can conclude that this scheme will be stable
for

0≤ r ≤ ∞. (9.49)

Hence, this linear diffusion scheme is unconditionally stable.

9.3 Convergence
If a scheme is consistent, recovering the exact partial differential equation in the limit ∆x→ 0
and ∆t → 0, and stable, in that the approximate solution does not grow unbounded with time,
then Lax’s equivalence theorem can be applied. In summary, the theorem states that when given
a properly-posed initial value problem, and a numerical scheme that is consistent, stability is
the necessary and sufficient condition for convergence. In other words, if we can show that our
numerical schemes are consistent and stable, then we can be sure that it will converge to the true
solution of the partial differential equation in the limit ∆x→ 0 and ∆t→ 0.



104 Chapter 9. Consistency, Stability, Convergence

−1.0 −0.5 0.0 0.5 1.0

Re
(
ea∆t

)

−1.0

−0.5

0.0

0.5

1.0

Im
( ea∆

t)

σ = 1.0 σ = 5.0 σ = 10.0

Figure 9.4: Stability region for the implicit linear diffusion scheme.



10. Spectral Properties

In CFD, the numerical error introduced by a scheme is typically classified into two general types,
dissipation error and dispersion error. In this section, we will discuss how to quantify these two
types of error, and how they effect different types of solutions.

u x

(a) Dissipation

u x

(b) Dispersion

Figure 10.1: Types of numerical error

10.1 Dissipation Error

We have already discussed dissipation error in the context of stability, stating that in order for a
scheme to be stable, it must be dissipative or neutrally dissipative. That is, the amplitude of the
solution must remain the same or be reduced after each time step. We have shown this via von
Neumann analysis to be the amplification factor |ea∆t |, which was a function of the scheme we are
using, and the wavenumber in space κm. While a scheme being dissipative is inherently linked with
stability, it also introduces number error. For example, for the linear advection equation, we know
that the exact solution should have no dissipation, it should be simply the advection of the initial
condition with the prescribed advection velocity. However, with our initial finite difference scheme,
we found that this was not the case, and the amplitude of the waves is decreased as time goes on.



106 Chapter 10. Spectral Properties

It turns out that all the information we need to understand the dissipation error of the linear
advection equation is encoded in the amplification factors we found in the von Neumann analysis
section, |ea∆t |. For example, for the finite difference scheme

ut+1
i −ut

i

∆t
+α

ut
i−ut

i−1

∆x
= 0. (10.1)

we found that the amplification factor was

|ea∆t |= |1−σ +σe−iκm∆x|. (10.2)

Recall that, for a given wavenumber κm and CFL number σ , this told us how much the solution
will be damped over a time step. Hence, we can plot this for a range of permissible wavenumbers
in the range κm∆x ∈ [0,π] and CFL numbers within the stability limit σ ∈ [0,1]. A plot of this
is shown in Figure 10.2. We can observe a few interesting features that define the dissipation
error of this particular scheme. First, we note that when the wave size is large relative to the grid
spacing, the wave is well resolved regardless of the CFL number. However, as we move to larger
wavenumbers, there is significant numerical dissipation. Also, the amount of numerical in this
region dissipation depends on the CFL number, with larger CFL numbers corresponding to less
dissipation. Finally, when the CFL number approaches unity, the numerical dissipation approaches
zero for all wavenumbers. Hence, when this CFL number is used, we recover the exact dissipation
relation for linear advection, that the waves do not get damped. The dissipation error of this scheme
becomes particularly important in the context of turbulent flows. In this case, large scale structures
in the turbulent flow have small wavenumbers relative to the grid spacing. This means that our large
scale features will be simulated with relative accuracy. However, small scale turbulent structures
that are of a size proportional to the grid spacing have high relative wavenumbers. This means
that these fine-scale structures will be heavily dissipated by this first-order scheme. Let’s look at a

0 π
4

π
2

3π
4 π

κm∆x

0.0

0.2

0.4

0.6

0.8

1.0

|ea∆
t |

σ = 0.5
σ = 0.6
σ = 0.7
σ = 0.8
σ = 0.9
σ = 1.0

Figure 10.2: Amplification factor vs wavenumber for the explicit advection scheme

second example, our implicit finite difference scheme

ut+1
i −ut

i

∆t
+α

ut+1
i −ut+1

i−1

∆x
= 0, (10.3)

that had the amplification factor

|ea∆t |=
∣∣∣∣ 1
1+σ (1− e−iκm∆x)

∣∣∣∣ . (10.4)



10.2 Dispersion Error 107

We can generate the exact same type of plot for permissible wave numbers κm∆x ∈ [0,π] and, since
this scheme is unconditionally stable, we will look at a few CFL numbers in the range σ ∈ [0,10],
as shown in Figure 10.4. We note for this scheme, similar to the explicit scheme, that when the
wave size is large relative to the grid spacing, it is well resolved regardless of the CFL number.
However, there is again a strong dependence of the numerical dissipation on the CFL number for
high wavenumbers. As the wavenumber gets larger or as the CFL number gets larger, the amount of
numerical dissipation increases rapidly. Hence, while this scheme was found to be unconditionally
stable, using large CFL numbers introduces significant numerical dissipation to all but the largest
structures in the flow. Hence, this scheme is typically only used for solving steady-state problems
that are not a function of time.

0 π
4

π
2

3π
4 π

κm∆x

0.0

0.2

0.4

0.6

0.8

1.0

|ea∆
t |

σ = 0
σ = 2
σ = 4
σ = 6
σ = 8
σ = 10

Figure 10.3: Amplification factor vs wavenumber for the implicit advection scheme

Check out the Von Neumann Jupyter notebook here. You can also download the files from
the Gitlab repository here.

10.2 Dispersion Error
From the linear advection equation, we know that the solution should translate at an exact wave
speed α . However, our numerical schemes will often introduce another error whereby the numerical
wave does not move at the correct velocity. As a result, we often observe that the numerical solution
is out of phase with the exact solution, which is referred to as dispersion error. Similar to the
dissipation error, dispersion error can also be found from our results from von Neumann analysis.
Recall that our assumed form of the solution for any isolated wave component of the full solution
was

um(x, t) = eateiκmx, (10.5)

and recall the expression for the linear advection equation was

∂u
∂ t

+α
∂u
∂x

= 0. (10.6)

If we substitute our wavelike solution we get

aeateiκmx + iακmeateiκmx = 0. (10.7)

We note that this will be solved exactly when

https://tinyurl.com/cfd-binder
https://gitlab.com/bvermeir/book-cfd


108 Chapter 10. Spectral Properties

a =−iακm. (10.8)

which is called the exact dispersion relation. This tells us that the exact frequency in time, which
is described by a, is proportional to the wave speed and the wavenumber. Intuitively this makes
sense as the faster a wave moves, the more the solution at a point should move up and down, and
the higher the wavenumber, the more quickly the wave will move up and down in time as well.
However, our numerical scheme will usually not return a value of a that matches this dispersion
relation exactly. Hence, for a given wavenumber, we will get back a frequency that has some error,
implying that the wave is moving at the wrong speed, which is referred to as dispersion error. Over
a finite amount of time ∆t, based on the exact dispersion relation, we would expect the wave to
move a distance

a∆t =−iακm∆t. (10.9)

We note that we can also get to our numerical frequency from von Neumann analysis. For
example, for the finite difference scheme

ut+1
i −ut

i

∆t
+α

ut
i−ut

i−1

∆x
= 0, (10.10)

we found

ea∆t = 1−σ +σe−iκm∆x, (10.11)

which was the last step before getting the amplification factor. We can start by splitting the
exponential term up into its real and imaginary parts

eℜ(a)∆teℑ(a)∆t = 1−σ +σe−iκm∆x. (10.12)

We first note that the real part of this eℜ(a)∆t is responsible for the amplification/dissipation of the
solution, and is what is extracted in the dissipation section. In contrast, the imaginary part eℑ(a)∆t

is responsible for a change in phase of the wave, which moves it in space. We can extract this
imaginary term that is responsible for the phase change from

a∆t = ln
(
1−σ +σe−iκm∆x) , (10.13)

and then extract the imaginary components

ℑ(a∆t) = ℑ
[
ln
(
1−σ +σe−iκm∆x)]. (10.14)

In the ideal case, this should be identical to the exact dispersion relation, but in practical applications,
it is typically either slower or faster, resulting in some phase error from the wave moving at an
approximate speed. We can extract the relative speed from

ℑ(a∆t)
−iακm∆t

=
ℑ
[
ln
(
1−σ +σe−iκm∆x

)]
−iακm∆t

, (10.15)

which tells us the speed of the numerical wave relative to the exact wave speed. When this value is
less than 1 the wave moves too slowly, and when this value is greater than 1 the wave moves to fast.

Check out the Von Neumann Jupyter notebook here. You can also download the files from
the Gitlab repository here.

https://tinyurl.com/cfd-binder
https://gitlab.com/bvermeir/book-cfd


10.2 Dispersion Error 109

0 π
4

π
2

3π
4 π

κm∆x

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

=
( |e

a∆
t |)

σ = 0.00
σ = 0.20
σ = 0.40
σ = 0.60
σ = 0.80
σ = 1.00

Figure 10.4: Dispersion curve for the implicit advection scheme



11. Modified Equation Analysis

In the previous sections, we have demonstrated that our numerical schemes only approximate the
exact PDE we are trying to solve. Furthermore, via von Neumann analysis, we can quantify the
type of error we will observe as either dissipation or dispersion. Modified equation analysis is
another powerful technique that allows us to better understand how and why a particular numerical
scheme behaves the way it does. Using modified equation analysis, we can show that, while our
numerical scheme does not exactly satisfy the PDE we are trying to solve, it does provide an exact
solution to a similar PDE. By determining what this similar PDE is, we can gain further insight
into the behaviour of our scheme. In this section, we will demonstrate by example how to perform
modified equation analysis in the context of linear advection.



11.1 Linear Advection 111

11.1 Linear Advection
Here, we will derive the modified equation for our first order linear advection scheme

ut+1
i −ut

i

∆t
+α

ut
i−ut

i−1

∆x
= 0. (11.1)

In order to derive the modified equation, we will start by re-stating our Taylor-Series expansions for
the solution at each grid point and time level, dropping the evaluated at notation for compactness
and expanding up to the second-order terms, as

ut
i−1 = ut

i−∆x
∂u
∂x

+
∆x2

2
∂ 2u
∂x2 +O(∆x3), (11.2)

and using a similar Taylor-Series in time

ut+1
i = ut

i−∆t
∂u
∂ t

+
∆t2

2
∂ 2u
∂ t2 +O(∆t3). (11.3)

We will now insert these expansions into our numerical scheme for their respective terms

ut
i−∆t ∂u

∂ t +
∆t2

2
∂ 2u
∂ t2 +O(∆t3)−ut

i

∆t
+α

ut
i−ut

i−∆x ∂u
∂x +

∆x2

2
∂ 2u
∂x2 +O(∆x3)

∆x
= 0. (11.4)

Simplifying this expression down a bit yields

−∂u
∂ t

+
∆t
2

∂ 2u
∂ t2 +O(∆t2)+α

[
−∂u

∂x
+

∆x
2

∂ 2u
∂x2 +O(∆x2)

]
= 0, (11.5)

which can then be rearranged to

∂u
∂ t

+α
∂u
∂x

=−∆t
2

∂ 2u
∂ t2 +α

∆x
2

∂ 2u
∂x2 +O(∆x2,∆t2). (11.6)

We can recognize the right-hand side of this equation as the truncation error of our scheme and
we note that in the limit as ∆t and ∆x go to zero this will converge to the exact PDE. Furthermore,
since the behaviour of the temporal derivative on the left-hand side is somewhat unclear, we will
convert it to a spatial derivative. Starting by differentiating the above expression in time, we get

∂ 2u
∂ t2 +α

∂ 2u
∂x∂ t

=−∆t
2

∂ 3u
∂ t3 +α

∆x
2

∂ 3u
∂x2∂ t

+O(∆x2,∆t2), (11.7)

and in space, we get

∂ 2u
∂ t∂x

+α
∂ 2u
∂x2 =−∆t

2
∂ 3u

∂ t2∂x
+α

∆x
2

∂ 3u
∂x3 +O(∆x2,∆t2). (11.8)

Rearranging and substituting Equation 11.8 into Equation 11.7 yields

∂ 2u
∂ t2 = α

2 ∂ 2u
∂x2 +O(∆x,∆t). (11.9)

Hence, if we go back to Equation 11.10 we can replace our second derivative in time with a second
derivative in space, yielding

∂u
∂ t

+α
∂u
∂x

=−∆t
2

α
2 ∂ 2u

∂x2 +α
∆x
2

∂ 2u
∂x2 +O(∆x2,∆t2,∆x∆t2,∆t3). (11.10)

Then, using the definition of the CFL number previously defined as σ = α∆t/∆x

∂u
∂ t

+α
∂u
∂x

=
α∆x

2
(1−σ)

∂ 2u
∂x2 +O(∆x2,∆t2,∆x∆t2,∆t3), (11.11)

and rearranging finally yields



112 Chapter 11. Modified Equation Analysis

∂u
∂ t

+α
∂u
∂x
− α∆x

2
(1−σ)

∂ 2u
∂x2 = O(∆x2,∆t2,∆x∆t2,∆t3). (11.12)

If we look at the form of the Equation 11.12, we see that when ∆x and ∆t are small the right-
hand side reduces to zero, and we are left with a general advection-diffusion equation. Hence, we
have shown that our finite difference scheme is actually the exact solution to an advection-diffusion
problem, rather than the linear advection equation we initially intended to solve. Furthermore,
we note that the diffusion operator will only be valid for 0 ≤ σ ≤ 1, after which point the sign
of the term will change and it will become a non-physical anti-diffusive operator. This switch
from a physical to non-physical PDE coincides with the stability limits we had originally derived
for this scheme using von Neumann analysis. Also, as we would expect, our solutions using this
method also behave exactly like an advection-diffusion equation since the solution also move, but
simultaneously dissipates. Also, for the value σ = 1, this diffusion operator disappears, which
is also consistent with our observations and predictions based on von Neumann analysis, which
showed that the amplification factor |ea∆t |= 1 for this case.

11.2 General Observations
It is important to note that the procedure followed here for the first order linear advection scheme
can be repeated for any finite difference scheme of your choice. Starting with your numerical
scheme, you can replace each term with its Taylor Series expansion and rearrange this to try to get
the PDE of interest on the left-hand side and truncation error on the right-hand side. The leading
order terms will tell you the nature of the dominant error in the scheme. If the dominant error
has an even-order derivative, such as the scheme above, then one would expect that the scheme
is dominantly dissipative. In contrast, if the dominant error has an odd-order derivative, then one
would expect that the scheme is dominantly dispersive. Hence, similar to von Neumann analysis,
modified equation analysis is a powerful tool to aid in understanding the general behaviour of a
numerical scheme, to elucidate its dissipative and dispersive error properties, and to identify its
stability limits.



12. Time-Stepping

In the previous sections, we have always approximated the time derivative using first-order finite
differences, assuming

∂u
∂ t

=
ut+1

i −ut
i

∆t
+O(∆t). (12.1)

In the von Neumann analysis section, we demonstrated that two linear advection schemes and
two linear diffusion schemes are either conditionally or unconditionally stable using this approach.
However, if we try to use this finite difference approach to get higher-order accurate schemes in
time, such as a central in time approach

∂u
∂ t

=
ut+1

i −ut−1
i

2∆t
+O(∆t2), (12.2)

we find it is almost always unstable. Hence, getting higher than first-order accurate solutions in time
requires something other than finite differences. Furthermore, for both of the unconditionally stable
schemes in the von Neumann section, we have not yet discussed how to actually advance them in
time, and how to get higher-order accuracy in time, while maintaining this unconditional stability.
Hence, in this section, we will discuss more appropriate discretizations for the time derivative.

12.1 Explicit
Our previous approach for discretizing the time derivative is called a multi-step scheme since we
are using information from multiple time steps to try to estimate the solution at the next time-step.
In this section we will introduce multi-stage time stepping, specifically the well-known classical
Runge-Kutta methods. Rather than use the value of the solution at previous time steps, Runge-Kutta
methods compute the solution at intermediate stages between time level t and t +1. Then, these
intermediate solutions are cleverly combined to achieve a more stable and potentially higher-order
accurate solution in time. In all of these cases, we will re-arrange our system into a general form

∂u
∂ t

= R(u), (12.3)



114 Chapter 12. Time-Stepping

where R(u) is typically referred to as the residual or the right-hand side. Note that the term residual
is used in several different contexts in CFD.

12.1.1 Forward Euler

The forward Euler, or explicit Euler, scheme uses just one stage to predict the solution at the next
time step. In fact, it is equivalent to our previous finite difference approach. In this scheme we get

ut+1 = ut +∆tR(u). (12.4)

Graphically, this can be interpreted as using the current derivative of the solution in time at time t,
and simply extrapolating based on this derivative to the time t +1. This approach is O(∆t) in time.

t t + 1

u

ut

ut+1

≈ ∂u
∂t

∣∣∣
t

Figure 12.1: Explicit Euler

12.1.2 Heun’s Method

Heun’s method is a fairly simple but clever improvement on the explicit Euler scheme. We start by
using the explicit Euler method to build an approximation of the solution at t +1

ũ = ut +∆tR(u), (12.5)

where ũ is an initial guess for the solution. Then, we use an average of the following right-hand
sides to compute the solution at the next time step

ũt+1 = ut +∆t
[

R(u)+R(ũ)
2

]
. (12.6)

This approach is called a two-stage scheme, since we had to compute our solution at one intermediate
stage before the final solution is obtained. This requires us to evaluate two right-hand sides, one for
each stage, so is approximately twice as expensive as the explicit Euler method. However, it can be
shown that it achieves O(∆t2) in time. Hence, when the time step is small, it is significantly more
accurate.



12.1 Explicit 115

t t + 1

u

ut

ut+1

≈ ∂u
∂t

∣∣∣
t

≈ ∂ũ
∂t

∣∣∣
t+1

R(u)+R(ũ)
2

Figure 12.2: Heun’s method

12.1.3 Midpoint Method
The midpoint method is very similar to Heun’s method. However, we start by computing the
solution at an intermediate stage halfway between the current and next time steps, using an explicit
Euler approach

ũ = ut +
∆t
2

R(u). (12.7)

Since we have divided ∆t by two, we are now halfway between the current and next time steps,
hence why it is called the midpoint method. Now, we compute the solution at the next time step by
evaluating the residual at this midpoint location

ut+1 = ut +∆tR(ũ). (12.8)

Similar to Heun’s method, this is also a two stage scheme and has a temporal error of O(∆t2).

12.1.4 Runge-Kutta Methods
If we look at Heun’s method and the midpoint method, we note that their structure is very similar.
We start by computing some intermediate solution, then evaluating the residual of that intermediate
solution, and then linearly combining it with the residual of the initial solution. This can be
generalized from two stages up to as many stages as we may like, with multiple intermediate
solutions being obtained to improve the order of accuracy. Starting from our current solution ut , we
will compute s intermediate stage solutions

u1,u2, . . . ,us, (12.9)

where the subscript of ui denotes the stage number and s is the total number of stages. From
these, we can also get the residuals of these intermediate solutions from R(ui). We compute the
intermediate stage solutions from

ui = ut +∆t
s

∑
j=1

ai, jR(u j), (12.10)



116 Chapter 12. Time-Stepping

t t + 1/2 t + 1

u

ut

ut+1

ũ

≈ ∂u
∂t

∣∣∣
t

≈ ∂ũ
∂t

∣∣∣
t+1

Figure 12.3: Midpoint method

and the final solution is found from

ut+1 = ut +∆t
s

∑
i=1

biR(ui), (12.11)

where ai, j and bi and a set of constants. These can be compacted into a Butcher Tableau

c A
b

=

c1 a1,1 · · · a1,s
...

...
. . .

...
cs as,1 · · · as,s

b1 · · · bs

(12.12)

This will yield an explicit scheme if the A matrix is strictly lower-triangular. In that case, we find the
solution at any stage is simple a function of the solution of earlier stages. In that case, the method
consists of a number of intermediate stage solutions computed using an explicit Euler approach.
The following are some example tableaus for commonly-used explicit schemes, including those
already introduced.

Explicit Euler
The explicit Euler method has one stage and is O(∆t) in time.

0 0
1

(12.13)

Heun’s Method
Heun’s method has two stages and is O(∆t2) in time.

0
1 1

1
2

1
2

(12.14)

Explicit Midpoint
The explicit midpoint method has two stages and is O(∆t2) in time.

0
1
2

1
2
0 1

(12.15)



12.2 Implicit 117

t t + 1/2 t + 1

u

u1

u2

u3

u4

ut+1

∑
biR(ui)

Figure 12.4: Fourth-order four-stage RK method

Fourth-Order Runge-Kutta
The explicit four-stage fourth-order Runge-Kutta method is O(∆t4) in time.

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6

(12.16)

12.2 Implicit
Going back to the von Neumann analysis section, we note that implicit schemes, those where
we evaluated the spatial derivative using the solution at the as-yet-unknown next time step, were
unconditionally stable for both linear advection and diffusion. For example, the following scheme
was introduced for the linear advection equation

ut+1
i −ut

i

∆t
+α

ut+1
i −ut+1

i−1

∆x
= 0, (12.17)

and the following for the linear diffusion equation

ut+1
i −ut

i

∆t
−β

ut+1
i−1−2ut+1

i +ut+1
i+1

∆x2 = 0. (12.18)

These are very similar to our initial schemes, except the spatial operators are evaluated at t + 1
rather than t.

12.2.1 Implicit Linear Advection
We will start our exploration of implicit schemes with the linear advection equation, and rearrange
it so all of the terms involving the unknown solution at t +1 are of the left-hand side and all of the
terms involving the current solution at time t are on the right-hand side

ut+1
i +σ

(
ut+1

i −ut+1
i−1

)
= ut

i, (12.19)



118 Chapter 12. Time-Stepping

where as usual σ = α∆t/∆x. Then, lumping the terms for each grid point on the left-hand side
yields

(1+σ)ut+1
i −σut+1

i−1 = ut
i. (12.20)

Unlike the explicit schemes, where we could readily rearrange the expression to get ut+1
i alone on

the left-hand side, we now have one equation for each grid point that has two unknowns, ut+1
i and

ut+1
i−1 , on the left-hand side. This means that in order to get ut+1

i we need to already know ut+1
i−1 , and

in order to get ut+1
i−1 we need to already know ut+1

i−2 , and so on. Hence, it appears we are stuck in a
situation where we need to already know the solution at every grid point to get the solution at every
other grid point, which we don’t yet have.

To get around this, we can recognize that we actually have a large system of linear equations.
For each of the N grid points, there is an expression of the form of Equation 12.20, and these
involve some linear combination of the N unknown solution values at t + 1. Hence, we have N
equations and N unknowns, yielding a linear system to be solved. This can be written as a linear
system of the form

A~ut+1 =~ut , (12.21)

where, for the case of periodic boundary conditions

A =


1+σ 0 0 . . . σ

−σ 1+σ 0 . . . 0
0 −σ 1+σ . . . 0
...

...
...

. . .
...

0 0 . . . −σ 1+σ

 , (12.22)

is referred to as the Jacobian matrix, and

~ut =


ut

1
ut

2
ut

3
...

ut
N

 , (12.23)

is a vector of the solution at all grid points at the current time step, and

~ut+1 =


ut+1

1
ut+1

2
ut+1

3
...

ut+1
N

 , (12.24)

is a vector of the unknown solution values at the next time step, which is what we are trying to find.
Note that the structure of the Jacobian matrix arises directly from writing out the equation for each
grid point, and then assembling that as a linear system of equations. It is clear from Equation 12.21
that we can now solve for all of the solution values in ~ut+1 by simply solving a linear system of
equations. Hence, we obtain unconditional stability, as discussed in the von Neumann analysis
section, at the added cost of having to solve a linear system of equations at each time step. This
cost is usually substantial and, hence, implicit schemes are typically used when sufficiently large
time steps that are larger than the stability limits of explicit schemes are desired.



12.2 Implicit 119

12.2.2 Implicit Linear Diffusion
As a second demonstration of an implicit solver, we consider the implicit linear diffusion equation,
derived previously as

ut+1
i −ut

i

∆t
−β

ut+1
i−1−2ut+1

i +ut+1
i+1

∆x2 = 0. (12.25)

Rearranging this so that all of the known solution values are on the right-hand side and all values at
the as yet unknown next time step are on the left-hand side yields

ut+1
i − r(ut+1

i−1−2ut+1
i +ut+1

i+1) = ut
i, (12.26)

where again r = β∆t/∆x2. Rearranging slight yields

(1+2r)ut+1
i − r(ut+1

i−1 +ut+1
i+1) = ut

i. (12.27)

Following the same steps as the linear advection equation, this can be written as a linear system of
equations of the form

A~ut+1 =~ut , (12.28)

where the Jacobian matrix for periodic boundary conditions can be written as

A =


1+2r −r 0 . . . −r
−r 1+2r −r . . . 0
0 −r 1+2r . . . 0
...

...
...

. . .
...

−r 0 . . . −r 1+2r

 , (12.29)

taking note of the locations of the −r terms in the first and last rows that arise from the periodic
boundary conditions. Hence, similar to the implicit linear advection scheme, implicit linear diffusion
requires the solution of a linear system of equations at each time step. Therefore, it is typically
used when the desired time step exceeds the stability limit of available explicit methods. Due to the
∆x2 scaling of the time step size for diffusion equations, as discussed in the von Neumann analysis
section, diffusion operators are often solved using implicit approaches.

12.2.3 Implicit Burgers Equation
In both of the previous sections, we looked at implicit solvers for linear systems of equations,
specifically the linear advection and linear diffusion equations. In this section, we will consider an
implicit solver for the non-linear Burgers equation with a numerical scheme of the form

ut+1
i −ut

i

∆t
+

1
2∆x

((
ut+1

i

)2−
(
ut+1

i−1

)2
)
= 0. (12.30)

Starting from a suitable initial guess for~ut+1, which we will denote as~uk where k here denotes an
iteration number, we can compute the resulting residual at any gridpoint as

ri =
uk

i −ut
i

∆t
+

1
2∆x

((
uk

i

)2
−
(

uk
i−1

)2
)
. (12.31)

From this we can compute the unsteady residual array~r(~uk), which determines how well our initial
guess satisfies the system of equations. Our objective is to find a value of~uk such that this residual
is zero. Once this is achieved we have found a solution and we can take~ut+1 =~uk.



120 Chapter 12. Time-Stepping

One of the most powerful approaches to solving this is to use Newton-Raphson. Starting with
~uk, our current guess of the solution we will iterate by attempting to enforce that the next iterated
values satisfies

~r(~uk+1) = 0. (12.32)

Via the application of Newton-Raphson we obtain the following expression

~uk+1 =~uk−
(

∂~r
∂~uk

)−1

~r(~uk), (12.33)

where the Jacobian matrix, for the current Burgers equation discretization, is given by

∂~r
∂~uk =


1+ ∆t

∆x uk
i 0 0 . . . −

(
∆t
∆x uk

i−1

)
−
(

∆t
∆x uk

i−1

)
1+ ∆t

∆x uk
i 0 . . . 0

0 −
(

∆t
∆x uk

i−1

)
1+ ∆t

∆x uk
i . . . 0

...
...

...
. . .

...
0 0 . . . −

(
∆t
∆x uk

i−1

)
1+ ∆t

∆x uk
i

 . (12.34)

Hence, the general procedure for solving nonlinear systems of equations is to start by guessing a
solution~ut+1, which is stored as~uk. Typically, a good initial guess is that~uk =~ut . Using this initial
guess, the residual and Jacobian matrices are computed and, via application of Newton-Raphson,
an improved guess~uk+1 is obtained. This procedure is then repeated until~r(~uk)≈ 0, at which point
we take~ut+1 =~uk. In the case of linear systems, only one Newton iterations is required. However,
for non-linear systems such as Burgers or Navier-Stokes, several Newton iterations are typically
required for sufficient convergence.



13. Iterative Methods

In this implicit time stepping section we reduced each time step to the solution of a linear system of
N equations of the form

A~x =~b, (13.1)

when solving either linear advection or linear diffusion, where N is the number of grid points
in the domain. The extra cost of solving this linear system was introduced in order to obtain
unconditionally stable schemes, allowing very large time steps to be taken. However, this will only
be faster than an explicit approach if the linear system of equations can be solved efficiently. Hence,
this section is dedicated to exploring different methods of solving linear systems of equations.

13.1 Gaussian Elimination

Perhaps the most straightforward method for solving a linear system of equations is Guassian
elimination. This requires us to invert A and obtain

~x = A−1~b. (13.2)

Gaussian elimination is the workhorse of most undergraduate linear algebra courses, and is a
straightforward extension of the substitution approach for solving systems of equations taught in
highschool. This requires inverting A or an LU decomposition of A and~b to be formed, and then
back substitution to solve for the unknown components of~x.

While Gaussian elimination is well known, its computational cost scales like O(N3) where N
is the number of unknowns. Hence, as the system of equations, and in our case number of grid
points, grows, the computational cost of Gaussian elimination grows cubically. Any undergraduate
student should be familiar with trying to solve even 3×3 linear systems in an exam, let alone 4×4,
or 5×5. With each additional equation, doing this by hand takes significantly more time. Hence,
in the context of CFD, where thousands or millions of equations is common practice, Gaussian
elimination is rarely used.



122 Chapter 13. Iterative Methods

13.2 Jacobi Iteration
Since the formation of A−1 is prohibitively expensive for large systems of equations, we will try to
find an approximate solution~x, without actually forming A−1. This can be done iteratively, and the
first approach we will introduce is Jacobi iteration. In Jacobi iteration, we start by splitting A into L,
D, and U , and are its strictly lower-triangular, diagonal, and strictly upper-triangular components.
This allows us to write our linear system as

(L+D+U)~x =~b, (13.3)

where

A =


a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

a31 a32 a33 . . . a3n
...

...
...

. . .
...

an1 an2 an3 . . . ann

 , (13.4)

L =


0 0 0 . . . 0

a21 0 0 . . . 0
a31 a32 0 . . . 0

...
...

...
. . .

...
an1 an2 an3 . . . 0

 , (13.5)

D =


a11 0 0 . . . 0
0 a22 0 . . . 0
0 0 a33 . . . 0
...

...
...

. . .
...

0 0 0 . . . ann

 , (13.6)

U =


0 a12 a13 . . . a1n

0 0 a23 . . . a2n

0 0 0 . . . a3n
...

...
...

. . .
...

0 0 0 . . . 0

 . (13.7)

Now if~x is a solution to the linear system then the following is valid

L~x+D~x+U~x =~b. (13.8)

We can now rearrange this expression

D~x =~b− (L+U)~x, (13.9)

and by inverting D we get

~x = D−1
[
~b− (L+U)~x

]
. (13.10)

At this point, it is important to know that while inverting A is very expensive, inverting just its
diagonal values in D is trivial.

We note that if~x is a solution to the linear system of equations, then Equation 13.10 will be
satisfied exactly, but if we already had the exact solution there would be no point in this exercise.
However, if we look again at Equation 13.10 it has an interesting form. We note that if we insert
some guess for~x into the right-hand side, we get out a modified~x on the left-hand side. This allows
us to define Jacobi iteration as



13.2 Jacobi Iteration 123

~xn+1 = D−1
[
~b− (L+U)~xn

]
, (13.11)

where~xn is an approximate solution, and~xn+1 is an updated approximation. Then we can simply
pass~xn+1 back through this formulation to obtain~xn+2, and so on, iterating to a final solution when
the value of~x converges. This can also be written in an element-by-element manner as

xn+1
i =

1
ai,i

(
bi−∑

i 6=i
ai, jxk

j

)
, i = 1,2, . . . ,n. (13.12)

Each step of Jacobi iteration requires O(N2) operations, hence, we can expect Jacobi to outperform
Gaussian elimination, as long as we need fewer iterations than there are rows in the system of
equations. Furthermore, in CFD it is usually sufficient to converge~x to some finite level of precision.

To demonstrate the utility of Jacobi iteration we will use a simple example of a 3×3 system of
equations. Starting with

A =

10 2 4
6 8 4
2 3 9

 , (13.13)

and

~b =

1
2
3

 , (13.14)

we obtain the following for L, D, and U

L =

0 0 0
6 0 0
2 3 0

 , (13.15)

D =

10 0 0
0 8 0
0 0 9

 , (13.16)

U =

0 2 4
0 0 4
0 0 0

 . (13.17)

Furthermore, we can easily invert D to get

D−1 =

 1
10 0 0
0 1

8 0
0 0 1

9

 . (13.18)

Now we can start with some initial guess, lets say

~x0 =

0
0
0

 . (13.19)



124 Chapter 13. Iterative Methods

Convergence can usually be accelerated by using a good initial guess, for example, that the solution
at the next time step in our CFD simulation is the same as the current solution.

Now with our initial Guess and all terms from the right-hand side of Equation 13.11 defined,
we can compute

~x1 = D−1
[
~b− (L+U)~x0

]
=

0.1000
0.2500
0.3333

 . (13.20)

Repeating this iteration a few times yields

~x2 = D−1
[
~b− (L+U)~x1

]
=

−0.0833
0.0083
0.2277

 , (13.21)

~x3 = D−1
[
~b− (L+U)~x2

]
=

0.0072
0.1986
0.3490

 , (13.22)

and after 15 iterations we obtain

~x15 = D−1
[
~b− (L+U)~x14

]
=

−0.0465
0.1356
0.2984

 , (13.23)

which is very close to the exact solution

~x =

−0.0465
0.1357
0.2984

 . (13.24)

Hence, after only 15 iterations Jacobi was able to converge to approximately four digits, without
having to ever directly invert the A matrix.

Check out the Iterative Methods Jupyter notebook here. You can also download the files from
the Gitlab repository here.

13.3 Gauss Seidel Iteration
With the idea of Jacobi iteration outlined above, we may wonder whether similar more efficient
approaches exist. The first of these, with a very similar derivation to Jacobi, is the Gauss-Seidel
method. Starting from our split A matrix in the Jacobi section

(L+D+U)~x =~b, (13.25)

we rearrange it as

(L+D)~x =~b−U~x. (13.26)

If we consider the (L+D) matrix we note that it is lower-triangular. While not as trivial to invert as
D in Jacobi iteration, inverting (L+D) can be done quickly via back-substitution. Hence, we can
write

~x = (L+D)−1
[
~b−U~x

]
. (13.27)

Similar to Jacobi, we notice that if we insert an estimate for~x on the right-hand side, we obtain an
updated estimate on the left-hand side. Hence, we define Gauss-Seidel iteration as

https://tinyurl.com/cfd-binder
https://gitlab.com/bvermeir/book-cfd


13.3 Gauss Seidel Iteration 125

~xn+1 = (L+D)−1
[
~b−U~xn

]
. (13.28)

Also, similar to Jacobi this can be performed in a element-wise manner for each component of the
solution via

xn+1
i =

1
ai,i

(
bi−

i−1

∑
j=1

ai, jxn+1
j − ∑

j=i+1
ai, jxn

j

)
, i = 1,2, . . . ,n. (13.29)

It is clear from this that Gauss-Seidel amounts to simply a Jacobi iteration but using the most up
to date entries ai, jxn

j or ai, jxn+1
j as they are available. Usually, the additional cost of computing

(L+D)−1, relative to simply computing D−1 with Jacobi, significantly reduces the number of
iterations and total computational cost.

Going back to our example from Jacobi iteration, we have Now with our initial Guess and all
terms from the right-hand side of Equation 13.11 defined, we can compute

~x1 = (L+D)−1
[
~b−U~x0

]
=

0.1000
0.1750
0.2527

 . (13.30)

Repeating this iteration a few times yields

~x2 = (L+D)−1
[
~b−U~x1

]
=

−0.0361
0.1506
0.2911

 , (13.31)

~x3 = (L+D)−1
[
~b−U~x2

]
=

−0.0465
−0.0467
0.2982

 , (13.32)

and after only 5 iterations we obtain

~x5 = (L+D)−1
[
~b−U~x4

]
=

−0.0465
0.1358
0.2984

 , (13.33)

which is very close to the exact solution

~x =

−0.0465
0.1357
0.2984

 . (13.34)

Hence, after only 5 iterations, or three times as fast as Jacobi in this case, Gauss Seidel was able to
converge to approximately four digits.

Check out the Iterative Methods Jupyter notebook here. You can also download the files from
the Gitlab repository here.

https://tinyurl.com/cfd-binder
https://gitlab.com/bvermeir/book-cfd


126 Chapter 13. Iterative Methods

13.4 Successive Over-Relaxation
When using the Gauss-Seidel approach, we often observe that the iterated solutions converge
gradually to the exact solution for~x. That is, each iteration takes a step towards the exact solution
in a somewhat uniform manner. We can exploit this by simply extrapolating each iteration to move
a bit further towards the exact solution, which is known as Successive Over-Relaxation (SOR).
This is usually done to accelerate convergence, but as will be discussed later, it can be used to also
stabilize convergence.

n

x

xn

x̃n+1

xn+1

ω
(x̃ n+

1
− x n)

Figure 13.1: Successive Over-Relaxation method.

With SOR we simply apply a Gauss Seidel iteration to our current approximation of the solution,
~xn. We store the results of this Gauss-Seidel iteration temporarily as ~̃xn+1. Then, using the SOR
approach, we linearly project our updated solution using our current and previous approximations,
as shown in Figure 13.1. Hence,

~xn+1 = ω~̃xn+1 +(1−ω)~xn. (13.35)

where ω is referred to as therelaxation factor. We note that when ω = 1 we recover the original
Gauss Seidel approach. When ω > 1 we say it is over-relaxed, usually accelerating convergence
but also potentially causing the iterations to diverge. When ω < 1 we say it is under-relaxed, which
usually improves stability, but reduces the rate of convergence. In general, a suitable value for the
relaxation factor is within the range

0≤ ω ≤ 2, (13.36)

and values of ω > 2 will diverge. Typically, ω is chosen to be as large as possible, without causing
the iterations to diverge.

13.5 Assessing Convergence
In typical CFD applications, the user provides a desired convergence tolerance for solving the linear
system of equations. To assess this, we introduce the concept of a residual. In the case of an exact
solution to a linear system, we would expect

A~x−~b = 0. (13.37)

However, since our solution at any given iteration is only an approximate solution then

A~xn−~b =~r, (13.38)



13.6 Multigrid 127

where~r is referred to as the residual and measures how well our current approximate solution
satisfies the system of equations being solved. While~r gives detailed information about how well
each equation in the entire system is being solved, it is typically more useful to provide the user
with a norm, such as ‖~r‖2 or ‖~r‖∞, giving a single measure of convergence. Then, iterations are
continued until this residual norm converges to within the desired tolerance. It is also important to
note that if the convergence tolerance is too high, it can result in a loss of accuracy or stability in the
CFD simulation. Hence, particular care must be chosen in how to select the desired convergence
tolerance.

13.6 Multigrid
It is important to note that both Jacobi and Gauss-Seidel iterations require O(N2) operations per
iteration, they will typically be much faster than Gaussian elimination, provided the number of
iterations is relatively small. However, the computational cost will still increase rapidly with the
number of grid points. Ideally, we would like an iterative method that will converge with O(N)
operations, resulting in a computational cost that varies linearly with the number of grid points.

An important observation regarding the aforementioned iterative methods, such as Jacobi and
Gauss-Seidel, is that they tend to converge high-wavenumber features, those that span only a few
grid points, very quickly. In contrast, low-wavenumber features, those that span a large number of
grid points, converge relatively slowly. The general idea behind the multigrid method is to use an
additional coarse grid to converge these large scale structures. Since this additional grid is coarse,
it is relatively cheap per iteration, since it contains significantly fewer grid points and unknowns.
Also, the low-wavenumber features on the fine grid appear as higher-wavenumber features on the
coarse grid and, hence, they converge quickly there. This procedure can then be extended to a large
number of grid levels, resulting in the multigrid method.

As an example, we will describe a two-level multigrid method for solving the linear system of
equations

Ah~xh =~bh, (13.39)

where the subscript h denotes that this is the initial system of equations the on fine grid, denoted
by Ωh. Ultimately, we want to obtain the final solution to this linear system, ~xh, with as little
computational cost as possible. From here, we will recall that the residual on the fine grid can be
defined as

~rh =~bh−Ah~xh,n, (13.40)

where~xh,n is our current iterated estimate of the true solution. We will also define the error on the
fine grid as simply the difference between the exact solution and the current iterated solution

~eh,n =~xh−~xh,n. (13.41)

Rearranging this expression for the error yields

~xh,n =~xh−~eh,n. (13.42)

Substituting this into our expression for the expression for the residual yields

~rh =~bh−Ah(~xh−~eh,n), (13.43)

and finally

Ah~eh,n =~rh. (13.44)



128 Chapter 13. Iterative Methods

Hence, similar to the solution, the error between the exact and current iterated solution also obeys
a linear system of equations. In the multigrid method, it is this error on the fine grid that gets
projected to the coarse grid, and that is what is solved. The general multigrid process is as follows:
• Relax Ah~xh =~bh using n iterations of Jacobi or Gauss-Seidel to obtain~xh,n

• Compute the residual on the fine grid level using~rh =~bh−Ah~xh,n
• Restrict the residual from Ωh→Ω2h using~r2h = I2h

h ~rh
• Solve A2h~e2h,n =~r2h using Jacobi, Gauss-Seidel, or Gaussian elimination
• Prolongate the error from Ω2h→Ωh using~eh = Ih

2h~e2h
• Correct the solution on the fine grid using~xh,n =~xh,n +~eh
• Repeat from the first step until the system of equations on the fine grid converges

In the above approach, we have introduced two new operators, specifically the restriction operator
I2h
h and the prolongation operator Ih

2h that are responsible for transferring data from the fine to coarse
grid, and vice-versa. If we look at their required shapes, we find that I2h

h ∈ N2h×Nh, where N2h is
the number of degrees of freedom on the coarse grid and Nh is the number of degrees of freedom
on the fine grid. In contrast, the prolongation operator is of dimension Ih

2h ∈ Nh×N2h. Consider the
one-dimensional example case shown in Figure ??, where Ω2h is coarser than Ωh in the sense that
every other grid point is omitted. One simple option is to simply linearly interpolate the error from
the coarse grid to the fine grid. This would give the following prolongation operator matrix

Ih
2h =



1 0 0 0
1
2

1
2 0 0

0 1 0 0
0 1

2
1
2 0

0 0 1 0
0 0 1

2
1
2

0 0 0 1
1
2 0 0 1

2


, (13.45)

assuming periodic boundary conditions and a linear interpolation between the intermediate points.
Now, to get the restriction operator, which transfers data from the fine grid to the coarse grid, we
use

I2h
h = c(Ih

2h)
T , (13.46)

where c is a constant chosen such that all row sums of I2h
h are unity. This expands to

I2h
h = c


1 1

2 0 0 0 0 0 1
2

0 1
2 1 1

2 0 0 0 0
0 0 0 1

2 1 1
2 0 0

0 0 0 0 0 1
2 1 1

2

 , (13.47)

and taking c = 1/2 yields

I2h
h =


1
2

1
4 0 0 0 0 0 1

4
0 1

4
1
2

1
4 0 0 0 0

0 0 0 1
4

1
2

1
4 0 0

0 0 0 0 0 1
4

1
2

1
4

 , (13.48)

satisfying the condition of having row sums of unity. Now that we have the restriction and
prolongation operators, the last step is to find the linear system of equations on the coarse grid.
This is found via

A2h = I2h
h AhIh

2h. (13.49)



13.6 Multigrid 129

Hence, starting from the linear system of equations and the node locations on the coarse and fine
grids, the first step for constructing the system on the coarse grid level is to provide a suitable
prolongation operator to take data from this coarse to the fine grid. From this, one obtains the
corresponding restriction operator, and finally the operator matrix on the coarse grid. Now, all of
the required data is available to complete the multigrid procedure. We note that the above procedure
describes a two-level multigrid method. However, this can be readily extended to any number
of multigrid stages, and the smallest grid levels are typically coarse enough to be solved directly
using Gaussian elimination. Furthermore, these grid levels can be traversed in different orders. For
example, the V-cycle, W-cycle, and Full Multigrid cycle shown in Figure 13.2. Typically, each
cycle spends the majority of its iterations on the coarsest grid levels, since iterations are relatively
inexpensive here. Iterations are only performed on the finest grid level sparingly, and to converge
the highest-wavenumber features in the flow.

Ωh

Ω2h

Ω4h

W-cycle V-cycle Full cycle

Figure 13.2: Common multigrid methods using three refinement levels



14. Applications

14.1 An Euler Solver
In this section, we will describe how to develop a two-dimensional solver for the Euler equations
on a periodic domain. This will be approximated using finite difference methods in space and
advanced in time using an explicit Runge-Kutta method.

Note that the Euler equations in two dimensions can be expanded as

∂~w
∂ t

+
∂~F
∂x

+
∂ ~G
∂y

= 0, (14.1)

where

~w = [ρ,ρu,ρv,ρE]T , (14.2)

is a vector of the conserved variables, u and v are the velocity components, and E is the specific
energy. The fluxes can be found directly as a function of the solution

~F = [ρu,ρu2 + p,ρuv,u(ρE + p)]T , (14.3)

and

~G = [ρv,ρuv,ρv2 + p,v(ρE + p)]T , (14.4)

where

p = ρRT, (14.5)



14.1 An Euler Solver 131

is the ideal gas law where R is the gas constant and T is temperature. Through some manipulation
of the ideal gas law it can be shown that this can be written in an alternative form

p = (γ−1)ρ
(

E− 1
2
(
u2 + v2)) , (14.6)

that no longer requires the gas constant, and where γ is the ratio of specific heats. Hence, given the
value of the solution at any point in the domain, and the ideal gas law, we can determine both of the
flux components.

It is worth taking a moment to consider this set of equations. Using the finite difference
approach, we will store the conserved variables, specifically mass, momentum, and energy, at
each grid point. From Equation 14.15, it is then possible to then get the time derivative of the
solution at all of these grid points, provided we can compute the fluxes and their derivatives in
space. This simply requires the specification of suitable finite difference methods for approximating
the derivatives in space.

Now consider a two-dimensional domain of length Lx and Ly in each direction that is discretized
using a grid of Nx and Ny equidistant points. Using periodic boundary conditions, the grid spacing
between adjacent points is

∆x =
Lx

Nx
, (14.7)

in the x-direction and

∆y =
Ly

Ny
, (14.8)

in the y-direction. The current value of the solution is stored at all grid points and denoted by ~wt
i, j

where i and j are the grid point indices and t is the time level. We also store the coordinates of each
grid point as~xi, j, where

~xi, j = [xi, j,yi, j]
T . (14.9)

Provided an initial condition, the value of the solution is known at each grid point at the start of
the simulation. Then the fluxes at each grid point can be calculated according to Equation 14.3
and Equation 14.4. Hence, at every grid point we will now have ~wt

i, j, ~F
t
i, j, and ~Gt

i, j. Now using, for
example, second-order central differences in space, we can write

d~wt
i, j

dt
+

~F t
i+1, j−~F t

i−1, j

2∆x
+

~Gt
i, j+1− ~Gt

i, j−1

2∆y
+O(∆x2,∆y2) = 0. (14.10)

Hence, given a value of the solution at every grid point, the fluxes, their divergence, and finally the
time rate of change of the solution at each grid point can be determined. Then, using an appropriate
temporal scheme, such as the classical RK4,4 method, this system of equations can be advanced to
the next time step.

As an example, we will consider advection of an isentropic vortex having the initial condition

ρ =

[
1− S2Ma2(γ−1)e2 f

8π2

] 1
γ−1

,

u =
S(y− yc)e f

2πR
,

v = 1− S(x− xc)e f

2πR
,

p =
ργ

γMa2 ,

(14.11)



132 Chapter 14. Applications

where f = (1− (x− xc)
2− (y− yc)

2)/2R2, S = 13.5 is the strength of the vortex, R = 1.5 is the
characteristic vortex radius, γ = 1.4, the Mach number is Ma = 0.4, and xc and yc are the initial
location of the vortex center. This initial condition is isentropic and, hence, without any viscous
effects, the exact solution consists of the vortex maintaining its initial shape and simply advecting
with the mean flow at a vertical velocity of unity. Since the domain is periodic, the vortex will
eventually return to its initial condition, and at this point, we can evaluate an error norm of the
density field of the form

‖ρ‖2 =

√√√√∑
Nx
i=1 ∑

Ny
j=1 (ρi, j−ρe,i, j)

2

NxNy
, (14.12)

where ρe,i, j is the exact solution at a grid point, which is equal to the initial condition at time
t = Ly/1 since the vertical velocity is unity.

14.2 A Navier-Stokes Solver

Ly

Lx

uw

ub = 0
vb = 0

ub = 0
vb = 0

ub = 0
vb = 0

ub = uw
vb = 0

Figure 14.1: Lid-driven cavity flow problem

In order to solve the Navier-Stokes equations, we can readily extend the two-dimensional Euler
solver outlined in the previous section. Here we will demonstrate how to solve the Navier-Stokes
equations for a classical lid-driven cavity flow problem, as shown in Figure 14.1. Again, this will
be discretized using the finite difference method in space, with grid spacings

∆x =
Lx

(Nx−1)
, (14.13)

and

∆y =
Ly

(Ny−1)
, (14.14)

to ensure that grid points are included along all edges of the domain.



14.2 A Navier-Stokes Solver 133

Starting with the Navier-Stokes equations in two dimensions, we note that they can also be
expanded in the following form

∂~w
∂ t

+
∂~F
∂x

+
∂ ~G
∂y

= 0, (14.15)

where again

~w = [ρ,ρu,ρv,ρE]T , (14.16)

is a vector of the conserved variables. In addition, unlike the isentropic vortex test case, the lid-
driven cavity flow problem requires boundary conditions to be applied at the edges of the domain.
In this case, we need to enforce the no-slip boundary conditions on all four walls. In addition, we
will enforce that the walls are isothermal. This is achieved by setting

ub = uw, vb = vw, (14.17)

where uw = vw = 0 on all boundaries, except for the top plate where uw is specified to be consistent
with the chosen Reynolds number. Then, the temperature at the boundary is fixed at

Tb = Tw, (14.18)

which is specified to be the same temperature as the initial gas in the domain. In order to get the
density at the wall, the pressure is first projected from the interior onto the boundary, and

pb = p+, (14.19)

where p+ is the pressure at the first grid point off of the wall. Finally, the density can be obtained
from the ideal gas law with the specified wall temperature and the pressure, and the state vector at
the wall ~wb can be constructed.

For the Navier-Stokes equations, the flux functions can now be written as the sum of their
respective inviscid and viscous components, such that ~F = ~Fi +~Fv and ~G = ~Gi + ~Gv, and ~Fi and ~Gi

are the inviscid flux, which are still

~Fi = [ρu,ρu2 + p,ρuv,u(ρE + p)]T , (14.20)

and

~Gi = [ρv,ρuv,ρv2 + p,v(ρE + p)]T . (14.21)

Furthermore, the viscous fluxes ~Fv and ~Gv are expanded to

~Fv = [0,−τxx,−τxy,qx−uτxx− vτxy]
T , (14.22)

and

~Gv = [0,−τxy,−τyy,qy−uτxy− vτyy]
T , (14.23)

where

qx =−k
∂T
∂x

, (14.24)

qy =−k
∂T
∂y

, (14.25)



134 Chapter 14. Applications

are the heat fluxes, k is the thermal conductivity and

τxx =
2
3

µ

(
2

∂u
∂x
− ∂v

∂y

)
, (14.26)

τyy =
2
3

µ

(
2

∂v
∂y
− ∂y

∂x

)
, (14.27)

τxy = µ

(
∂u
∂y

+
∂v
∂x

)
. (14.28)

We note that, unlike the Euler equations, we cannot obtain the viscous fluxes directly from the
solution, since they also require the gradients of the velocity components and temperature. To
obtain these gradients, we will simply use central differences in the middle of the domain. For
example, for the gradient of u the following finite difference methods can be used

∂u
∂x

=
ut

i+1, j−ut
i−1, j

2∆x
, (14.29)

∂u
∂y

=
ut

i, j+1−ut
i, j−1

2∆y
. (14.30)

However, these finite difference methods will not work for computing the velocity and temperature
gradients of the solution at the boundaries of the domain, since they would require points outside of
the computational domain. Instead, one-sided stencils can be used at the wall. For example, the
following stencil can be used on the left-hand side boundary of the domain

∂u
∂x

=
−ui,3 +4ui,2−3ui,1

2∆x
, (14.31)

and along the length of each wall, we will take the derivative to be zero. For example, on the left
and right-hand side boundaries this will yield

∂u
∂y

= 0. (14.32)

Using these stencils we now have the solution vector at each grid point in the domain, and
derivatives of the velocity and temperature field at each point in the domain. Now, at every point
the inviscid and viscous fluxes can be computed. With these obtained, the same finite difference
stencils can be applied to get the divergence of these fluxes, completing the right hand side of the
conservation law. Finally, the solution and be advanced in time using a suitable explicit Runge-Kutta
method for the temporal term.



III
15 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 137

16 Inviscid NACA 0012 . . . . . . . . . . . . . . . . . 139

17 Supersonic Wedge . . . . . . . . . . . . . . . . . . 149

18 Inviscid ONERA M6 . . . . . . . . . . . . . . . . . 161

19 Laminar Cylinder . . . . . . . . . . . . . . . . . . . 170

20 Turbulent ONERA M6 . . . . . . . . . . . . . . . 183

21 Mesh Generation Using Gmsh . . . . . . . 194

22 Shock Waves . . . . . . . . . . . . . . . . . . . . . . . 205

Bibliography . . . . . . . . . . . . . . . . . . . . . . . 214
Articles
Books

Part 3: Applications





15. Introduction

Gmsh

To read all about Gmsh and download its source, executables, and license please click here.

Gmsh is a 2D/3D mesh generator including a built-in CAD engine and post-processor. Gmsh was
developed to provide a fast, lightweight, and user-friendly meshing environment with additional
visualization capabilities. It is open-source, and the source code and executables for various
operating systems (Windows, Mac, Linux) are available for free. Gmsh contains modules for
geometry definition, meshing, solving and post-processing. Each module has its own set of
commands and utilities, which can be easily manipulated using a graphical user interface (GUI).

Upon launching the Gmsh executable, the GUI will open and the module panel will appear on
the left-hand side of the window with headings to control the:
• Geometry
• Mesh
• Solver

The Geometry section is a module that allows you to create your own geometry directly within
Gmsh or import external CAD files. Geometry in Gmsh is defined using a hierarchical structure.
This means a volume is made up of different surfaces, and each surface is made up of different
curves or lines. In turn, each curve or line is bounded by two end points in the case of a straight line,
or a sequence of points in the case of a spline, for example. Therefore, to define a given geometry,
a set of points is specified first, and the connections between these points are built using straight
lines or curves. Then, a set of surfaces is created using the lines and curves, which are themselves
used to define a volume in the case of a three-dimensional problem.

The geometry module has some key features to allow you to accomplish these tasks. Some of
the important features are
• Elementary entities: Create, merge, split or delete points, lines, curves, faces or volumes.
• Physical groups: Specify boundary conditions and physical properties of a particular geo-

metric entity.
• Reload script: Re-read the geometry saved in your .geo file, the Gmsh native file format.

http://gmsh.info


138 Chapter 15. Introduction

• Edit script: Edit the .geo file manually using a built-in text editor.
It is worth noting that geometry specifications are saved in the .geo file in plain text format. This
allows you to manually manipulate your geometry or any other specifications by editing this file
using either the in-built text editor, or an external one of your choice.

After building the geometry and defining the boundary conditions via the Geometry module,
the next step is usually to generate a mesh of the geometry using the Mesh module. This module
splits the geometry up into a number of simple geometric elements, such as: lines, triangles,
tetrahedra, hexahedra and pyramids. Gmsh has several different algorithms for automatically
generating a mesh, and an unstructured mesh will be generated by default. The Mesh module has
sections that help to specify the type, number, and density of the mesh in the computational domain.
Some of the important sections are
• Define: Set the number of points and stretching ratios along lines. Additionally, control the

mesh type (whether structured or unstructured).
• 2D/3D: Generates the mesh for surfaces/volumes in the domain. It automatically generates

the mesh using specifications provided in the Define section.
There is another module named Solver, which allows a numerical solver to be accessed directly
from within Gmsh. In the context of the current book, this will not be used.

SU2

To read all about SU2 and download its source, executables, and license please click here.

As discussed in the Physics and Numerics parts of this book, ultimately, an approximate solution
to the Navier-Stokes or RANS equations is obtained by solving a discrete system of equations on
a computational grid or mesh. SU2 is an open-source CFD solver built specifically for this task.
SU2 is written in C++, and its primary applications are computational aerodynamics and shape
optimization. SU2 is generally user-friendly, and pre-compiled versions are available for all major
operating systems (Windows, Mac, Linux). In the following tutorials, we will demonstrate the
utility of SU2 as a CFD tool for computational aerodynamics.

Paraview

To read all about Paraview and download its source, executables, and license please click here.

After SU2 runs, it generates a set of data files, which includes the complete flow field solved
on the mesh generated previously using Gmsh. This data must be post-processed to visualize
flow structures of interest, such as the velocity or pressure fields. Paraview is an open-source and
multi-platform visualization package designed for this task. It is also available for all operating
systems (Windows, Mac, Linux) and is free to download and use. Paraview is designed specifically
to handle large complex data sets, such as those generated in CFD simulations. In the following
laboratory experiments, we will use Paraview as a post-processing tool for the analysis of the data
produced by SU2. Typically, this analysis consists of contours of flow parameters, extracting line
plots, slices, or pressure coefficient distributions.

https://su2code.github.io/
https://www.paraview.org/


16. Inviscid NACA 0012

Required Files

Use the following links to download the same version of SU2 for Windows (click here) or
Mac (click here), the required configuration and mesh files (click here), and the reference
dataset (click here).

Use the following links to download the same version of Paraview for Windows (click here)
or Mac (click here).

Problem Description

In this tutorial, we are going to demonstrate how to simulate transonic inviscid flow around a NACA
0012 airfoil. Under the assumption of inviscid flow, the Euler equations will be used. Please note
that this assumption is only reasonably valid at high Reynolds numbers and low angles of attack
since the contribution of the viscous terms in the Navier-Stokes equations is minimal in this case.
The flow specifications are provided as
• Pressure = 101,325 Pa
• Temperature = 273 K
• Mach number = 0.8
• Angle of attack = 1.25 degree

This tutorial has two parts: Flow Solution and Post-Processing. In the first part we will explain how
to manage the required files and settings in SU2, and then run the simulation. In the second part we
will demonstrate how to use Paraview to visualize the data files generated in the first step using
SU2.

https://users.encs.concordia.ca/~bvermeir/book/executables/windows/SU2_Windows.zip
https://users.encs.concordia.ca/~bvermeir/book/executables/osx/SU2_Mac.zip
https://gitlab.com/bvermeir/book-cfd/blob/master/tutorial/tut1_inviscid_naca0012/naca0012.zip
https://gitlab.com/bvermeir/book-cfd/blob/master/tutorial/tut1_inviscid_naca0012/experimental_values.zip
https://users.encs.concordia.ca/~bvermeir/book/executables/windows/ParaView-5.4.0-Qt5-OpenGL2-Windows-64bit.exe
https://users.encs.concordia.ca/~bvermeir/book/executables/osx/ParaView-5.4.0-Qt5-OpenGL2-MPI-OSX10.8-64bit.dmg


140 Chapter 16. Inviscid NACA 0012

Flow solution

To run this simulation, SU2 needs two files: a configuration file (.cfg) and a mesh file (.su2).
Links to the required files and executables are provided at the start of this tutorial. The files include:

1. inv_NACA 0012.cfg: the configuration file.
2. mesh_NACA 0012_inv.su2: the mesh file.

The next step is to copy these two files in the directory where you have saved the SU2 executable,
so that everything is located in the same folder. Then, to run the simulation using the executable,
mesh, and configuration files, simply open a terminal window and enter the following commands:

Windows
$ cd "where you saved the package"
$ SU2_CFD.exe inv_NACA0012.cfg

Mac
$ cd "where you saved the package"
$ ./SU2_CFD inv_NACA0012.cfg

The SU2 solver will commence solving the problem and will print out the residuals at every
iteration until the specified convergence criteria is achieved. The computational time for this case is
highly dependant on the computer’s performance. However, the run time is expected to be about
15 minutes on average. After the calculations are complete, the following output files should have
been generated within the SU2 folder:
• flow.vtk: The flow solution on the entire domain.
• force_breakdown.dat: Forces and moment on the airfoil.
• history.vtk: Convergence history.
• restart_flow.dat: Restart file.
• surface_flow.vtk: The flow solution on the airfoil surface.
• surface_flow.csv: A comma separated value file of the flow solution on the airfoil.

Please keep in mind that every time you run SU2, the output data will be overwritten. Hence, before
launching a new simulation you should backup your files in another directory.

Post-Processing

In this section, we will explain how to use Paraview to visualize the solution files generated by
SU2. First of all, install Paraview using the links at the start of this tutorial. Once that is complete,
perform the following steps to visualize the results:

16.0.1 Load the Solution File
1) Launch Paraview.
2) Go to File → Open, and then select the flow.vtk file. On the left-hand side of the

Paraview window, you will see the file appear under builtin in the Pipeline Browser.
3) Now press the Apply button in the Properties tab, right under the Pipeline Browser heading.

After taking these steps, your file is loaded by Paraview and is ready to be visualized (Figure
16.1).

16.0.2 Visualize the Mesh

In order to view the mesh that was stored in the .su2 file, and as shown in Figure 16.2, select
Solid Color with Wireframe in the toolbar. Then, you can zoom in to see the mesh near the surface
of the airfoil, as shown in Figure 16.3. The mesh around the NACA 0012 is unstructured, and the
elements are clustered around the leading and trailing edges to resolve the complex flow structures
that are expected there.



141

Figure 16.1: Loading the .vtk file into the Pipeline Browser.

Figure 16.2: Displaying the NACA 0012 mesh.

16.0.3 Visualize Pressure Contours
In order to visualize pressure contours, you can take the following steps:

1) Click on flow.vtk from within the Pipeline Browser to select the current data file. Then
click on the Properties tab.

2) According to Figure 16.4, in the Coloring section select Pressure from the drop-down menu.

Figure 16.4: Contour settings in the Display tab.

3) To change the color settings used to show the pressure field, you can click on Edit under the
Coloring options. Another display window appears on the right-hand side of the monitor,
similar to Figure 16.5. Now you can change the maximum/minimum range of pressure to
your desired values using the Set Range option, or change the contour colors using Choose
Preset field (Figure 16.5). After these steps, the pressure contours shown in the display
window should be similar to those shown in Figure 16.6.

4) To add contour lines, click again on the flow.vtk file in the Pipeline Browser, and then
click on the Contour icon (Figure 16.7) in the toolbar. Now you should see that a new item
called Contour1 appears under flow.vtk in the Pipeline Browser (Figure 16.8).

5) Go to the Properties tab (as shown in Figure 16.9a), and select Pressure from the Contour
By drop-down menu.

6) Click on the New Range icon to customize the range of contour lines that will be generated.
7) For now, set the number of steps to 20, similar to Figure 16.9b. This means the pressure



142 Chapter 16. Inviscid NACA 0012

Figure 16.3: The unstructured mesh around the NACA 0012 airfoil.

Set range

Choose preset

Figure 16.5: How to change color and max/min values for contours.

Figure 16.6: Pressure contour for NACA 0012 airfoil.



143

Figure 16.7: Contour icon in the toolbar.

Figure 16.8: Adding Contour1 in Pipeline Browser.

contour range is equally divided by 20 portions between the minimum and maximum values.
Finally, click on Apply to generate these contour lines in the display window.

(a) Define a new range (b) Add range

Figure 16.9: How to define a new range for the contour lines.

8) As shown in Figure 16.10, click on Display under the Properties tab. In the Coloring
section, select Solid Color from the drop-down menu, and choose white as the color using
Edit. Now the pressure contour lines should look similar to those in Figure 16.11.

16.0.4 Visualize the Pressure Coefficient
The pressure data on the surface of the airfoil is stored in surface_flow.vtk. We will now
generate a plot of the pressure coefficient as a function of chord-wise position. To do so, you can
take the following steps:

1) Go to Open→ File and select surface_flow.vtk. As shown in Figure 16.12, this file
is now loaded and added to the list of items under builtin in the Pipeline Browser. Note
that there is an eye icon on the left-hand side of each item in the Pipeline Browser, which



144 Chapter 16. Inviscid NACA 0012

Figure 16.10: Changing contour line colors in the Coloring section.

Figure 16.11: Pressure contours superimposed with contour lines around the NACA 0012 airfoil.

enables you to hide/unhide the plots related to each item. Since we want to see only the
pressure coefficient plot, we hide the previously-generated contours by unselecting the eye
icon beside flow.vtk and Contour1.

Figure 16.12: Loading the surface .vtk file into Paraview.

2) Select surface_flow.vtk in the Pipeline Browser (as shown in Figure 16.13). Then,
go to Filters→ Search (Figure 16.13a) and search for Plot Data (Figure 16.13b). After
taking this step, as shown in Figure 16.14, the PlotData1 item is added to the Pipeline
Browser.

3) Hide (deactivate) all items in the list of the Pipeline Browser except PlotData1 by clicking
on the eye icons beside each, and then click on Apply.

4) As shown in Figure 16.15, under Display in the Properties tab, deactivate Use Index For
XAxis, and then select Points_X from the drop-down menu.

5) Under Series Parameters in the same tab, unselect all variables except for Pressure_Coefficient.
This allows you to have only one plot showing the pressure coefficient versus chord wise



145

(a) Searching for a Filter (b) Searching for the PlotData filter

Figure 16.13: How to plot data.

position. The pressure plot in the display window should be similar to that shown in Figure
16.16.

Figure 16.14: Adding PlotData1 to the Pipeline Browser.

Figure 16.15: Plot settings for pressure coefficient along the airfoil surface.

By convention,−Cp is typically plotted such that the pressure curve on suction side (lower pressure)
is on top of the pressure curve on the pressure side (higher pressure). Therefore, we need to reverse
the y-axis in this plot to flip it. To do this, you can take the following steps:

1) Go to Display in the Properties tab.
2) Find the Left Axis Range section in the same tab, and then click on Left Axis Use Custom

Range (Figure 16.17).



146 Chapter 16. Inviscid NACA 0012

Figure 16.16: Pressure coefficient on the surface of the NACA 0012 airfoil.

3) Later, another section appears to select maximum/minimum ranges for the left axis of the plot.
Now, switch numbers in these two text bars. This allows the y-axis to be reverse (flipped).

4) There are other parameters that you may want to change in the same tab, such as the Left
Axis Title or the Bottom Axis Title. Please type Cp and x/c in Left Axis Title and Bottom
Axis Title, respectively.

5) For adding markers to the plot lines, from Display select the Marker Style as Diamond
(Figure 16.18). You can also change the thickness of the plot line in the same tab.

After taking all these steps, the final plot you get should be similar to Figure 16.19.

Figure 16.17: Plot Settings.



147

Figure 16.18: How to add markers to a line plot.

Figure 16.19: Final pressure coefficient plot on the surface of the NACA 0012 airfoil.

16.0.5 Aerodynamic Forces
In order to obtain the aerodynamic forces on the airfoil, open force_breakdown.dat using a
text editor. As shown in Figure 16.20, the flow properties are tabulated and it can be confirmed that
they agree with the configuration file.

Figure 16.20: Fluid and flow properties in force_breakdown.dat.

As shown in Figure 16.21, the aerodynamic forces are expressed in non-dimensional form by
using free-stream values for density and velocity, as well as a unit reference length in this case.
The actual dimensional forces can be obtained by multiplying the flow coefficients with these



148 Chapter 16. Inviscid NACA 0012

non-dimensional factors calculated with the free-stream density and velocity. Note that you can
find the lift coefficient (CL), drag coefficient (CD), lift to drag ratio (CL/CD), the moment coefficient
(CM,z), x-component of force coefficient (CF,x) and y-component of force coefficient (CF,y) all from
the force_breakdown.dat file.

Figure 16.21: Aerodynamic forces obtained from force_breakdown.dat.

Questions
1. Run the provided default NACA 0012 test case at Ma = 0.8.

(a) Plot and comment on the mesh.
(b) Plot and comment on the pressure contours around the airfoil.
(c) Plot and comment on the pressure coefficient on the surface of the airfoil.

2. Re-run the default NACA 0012 case but change the Mach number to Ma = 0.3, and run several
simulations using α = 0,2,4,6,8,10,12,14,16 degrees.

(a) Plot CL vs α alongside the provided experimental data provided at the start of this tutorial [10].
(b) Repeat 1.b with Ma = 0.3 for the α = 0,8,16 degree cases.
(c) Repeat 1.c with for the α = 0,8,16 degree cases, and include the provided experimental data

from [11].
3. Compare your CFD results in Q.2, and discuss sources of error that could have led to any
discrepancies in your results relative to the experimental data.



17. Supersonic Wedge

Required Files

Use the following links to download the same version of SU2 for Windows (click here) or
Mac (click here), and the required configuration and mesh files (click here).

Use the following links to download the same version of Paraview for Windows (click here)
or Mac (click here).

Problem Description

In this tutorial, we are going to demonstrate how to simulate supersonic inviscid flow past a
simple 2D wedge. This wedge generates an oblique-shock wave moving outwards from its surface.
Assuming the Reynolds number is high, and that the fluid is an ideal gas, we will be using the Euler
equations. The domain is approximated using a structured mesh with 3,750 nodes. The domain
consists of a flat upper wall, and a lower wall with an inclined a wedge starting at x/L = 1/3, where
L is the length of the duct. The wedge angle is taken to be 10 degrees, and the inlet flow parameters
are
• Pressure = 101,325 Pa
• Temperature = 273.15 K
• Mach number = 2.0
• Wedge angle = 10 degrees

This tutorial has two parts: Flow Solution and Post-processing. In the first part, we will explain
how to manage the prerequisite files and settings, and how to run the CFD simulation using SU2.
In the second part, we explain how to use Paraview to visualize the data obtained from SU2.

https://users.encs.concordia.ca/~bvermeir/book/executables/windows/SU2_Windows.zip
https://users.encs.concordia.ca/~bvermeir/book/executables/osx/SU2_Mac.zip
https://gitlab.com/bvermeir/book-cfd/blob/master/tutorial/tut2_supersonic_wedge/wedge.zip
https://users.encs.concordia.ca/~bvermeir/book/executables/windows/ParaView-5.4.0-Qt5-OpenGL2-Windows-64bit.exe
https://users.encs.concordia.ca/~bvermeir/book/executables/osx/ParaView-5.4.0-Qt5-OpenGL2-MPI-OSX10.8-64bit.dmg


150 Chapter 17. Supersonic Wedge

Flow solution
To run this simulation, SU2 needs two files: a configuration file (.cfg) and a mesh file (.su2).
Links to the required files and executables are provided at the start of this tutorial. The files include:

1. inv_wedge_HLLC.cfg which is a configuration file.
2. mesh_wedge_inv.su2 which is a a mesh file.

The next step is to copy these two files into the same directory as the SU2 executable. Then, to run
the simulation, open a terminal window and enter the following commands:

Windows
$ cd "where you saved the package"

$ SU2_CFD.exe inv_wedge_HLLC.cfg

Mac
$ cd "where you saved the package"
$ ./SU2_CFD inv_wedge_HLLC.cfg

The SU2 solver will commence solving the problem and will print out the residuals at every
iteration, until the specified convergence criteria is achieved. The computational time for this case
is highly dependant on the computer’s performance. However, the run time is expected to be about
15 minutes on average. After the calculations are complete the following output files should have
been generated within in the SU2 folder:
• flow.vtk: The flow solution on the entire domain.
• history.vtk: Convergence history.
• restart_flow.dat: Restart file.
• surface_flow.vtk: The flow solution on the airfoil surface.

Please keep in mind that every time you run SU2, the output data will be overwritten. Hence, before
launching a new simulation you should backup your files in another directory.

Post-Processing
In this section, we explain how to use Paraview to visualize the solution generated by SU2. First of
all, install paraview (if not already done) using the links at the start of this tutorial. Once that is
complete, perform the following steps to visualize the results:

17.0.1 Load the Solution File:
1) Launch Paraview.
2) Go to File→ Open, and then select the flow.vtk file. On the left side of the Paraview

window, you will see the file appears in the Pipeline Browser under builtin
3) Now press the Apply button in the Properties tab, right under the Pipeline Browser heading.

After taking these steps, your file is loaded by Paraview and is ready to be visualized (Figure
17.1).

Figure 17.1: Loading the .vtk file into the Pipeline Browser.



151

17.0.2 Visualize the Mesh

As shown in Figure 17.2, in order to view the mesh select Solid Color with Wireframe in the toolbar.
Then, you can zoom in to see the mesh for the computational domain, as shown in Figure 17.3.
As you can see, the mesh in the duct is structured, and the wedge abruptly changes the direction
of mesh on the bottom surface. Additionally, the grids are approximately uniform throughout the
domain.

Figure 17.2: How to display the mesh.

Figure 17.3: The structured mesh for the supersonic wedge.

17.0.3 Visualize Pressure and Mach Contours

To display pressure contours, you can take the following steps:

1) Click on flow.vtk in the Pipeline Browser, and then click on the Display form in the
Properties tab.

2) Under the Coloring section select Pressure from the drop-down menu (Figure 17.4).



152 Chapter 17. Supersonic Wedge

Figure 17.4: Settings for displaying pressure contours.

3) Additionally, to change the color settings used for pressure, you can click on the Edit option
under the Coloring section. Another display window will appear on the right-hand side
of the menu entitled Mapping Data, similar to Figure 17.5. Now you can change contour
colors by choosing Choose preset.

Choose preset

Figure 17.5: Changing the color range used for pressure contours.

4) Choose a color scale for your contours. Here, we select the Cold and Hot color scale to show
clearly the sharp changes in pressure values around the shock (Figure 17.6). Then, click
Apply.

Figure 17.6: Different color ranges used to display contours.



153

5) To add axes to the plots, look under the Miscellaneous form of the Display field (Figure
17.7) and select the check box beside Data Axes Grid. Then, go to Edit and change these
options based on your preferences (Figure 17.8). Finally, the pressure contour should be
similar to Figure 17.9.

Figure 17.7: How to add axes to the plots.

Figure 17.8: Settings for the axis style.

Figure 17.9: Pressure contours for the supersonic wedge case.

The pressure gradient along the shock wave is difficult to visualize directly from these contours.



154 Chapter 17. Supersonic Wedge

To help, we can add contour lines to clearly delineate the different regions. To add contour lines,
you can take the following steps:

6) Click on the flow.vtk file in the Pipeline Browser, and then click on the Contour icon
(Figure 17.10) in the toolbar. Now, a new Contour1 item appears under the flow.vtk file
in the Pipeline Browser (Figure 17.11). Click on Apply to proceed to the next step.

Figure 17.10: Contour icon in the toolbar.

Figure 17.11: Adding Contour1 to the Pipeline Browser.

Add Range

(a) Define a new range (b) Add range

Figure 17.12: How to define a new range for the contour lines.

7) Following Figure 17.12a, go to the Properties tab and select Pressure from the Contour By
drop-down menu.

8) Click on the Add Range icon to customize the range for the pressure contours. In Figure
17.12b, you will see the max/min range of contour lines (i.e. From/To), as well as the number
of lines you would like to have in your contour plot (i.e. Steps).

9) Next, set Steps to 20 and click OK. By doing this the pressure contour range is equally
divided into 20 lines. At the end, click on Apply to see contour lines in the display window.

10) As shown in Figure 17.13, click on Display under the Properties tab. In the Coloring
section select Solid Color from the drop-down menu and choose white from Edit. The
pressure contour lines should now be similar to those in Figure 17.14. You can zoom-in to
the region at the bottom of the wedge to see the pressure gradient along the oblique shock, as



155

shown in Figure 17.15.

Figure 17.13: Changing contour line colors in the Coloring section.

Figure 17.14: Pressure contours superimposed by contour lines for the supersonic wedge case.



156 Chapter 17. Supersonic Wedge

Figure 17.15: Magnified pressure contour superimposed with contour lines for the supersonic
wedge case.

10) Now to display the Mach number contours click on flow.vtk in the Pipeline Browser.
11) Similar to Figure 17.4, under the Coloring section select Mach from the drop-down menu.
12) Click on Contour1 in the Pipeline Browser. Now, under Properties select Mach from the

Contour By drop-down menu.
13) Since these settings are related to the previous pressure values, we need to revise some

options to display contours of the Mach number appropriately. To do this, we need to delete
the data range that was used for pressure, and replace it with the data range corresponding to
the Mach number. Under Isosurfaces from Properties, click on the Remove All icon and
then click on the Add Range icon, as shown in Figure 17.16a. As you can see from Figure
17.16b, the max/min values for the Mach number have changed.

14) Set the Steps to 20 and click on OK to proceed to the next step. Now, the Mach number
contours should look similar to Figure 17.17. Additionally, if you zoom-in the plot, you will
see more contour details near the wedge, similar to Figure 17.18.

Remove All

Add Range

(a) Define a new contour range (b) Add range

Figure 17.16: Define a new range for the contour lines.



157

Figure 17.17: Mach number contours superimposed with contour lines for the supersonic wedge
case.

17.0.4 Plotting a variable over an arbitrary line

To plot a variable over an arbitrary line in space, you can take the following steps:
1) Select flow.vtk by clicking on it in the Pipeline Browser.
2) Go to Filters→ Data Analysis→ Plot Over Line (as shown in Figure 17.19).
3) Under Line Parameters in Properties (as shown in Figure 17.20), select the coordinates

for two arbitrary points you want (i.e. Point1 and Point2). In this case, plot the line from
Point1 to Point2 with (0,0.5,0) and (1.5,0.5,0), respectively, and then click Apply. A new
line plot item will be generated.

Figure 17.19: How to plot data over an arbitrary line in space.

4) According to Figure 17.21, under the X Axis Parameters from Display, select Point_X from
the X Array Name drop-down menu. Now, under the Series Parameters options, toggle
the box beside Variable to uncheck everything, then select only the Mach item. The plot of
Mach number vs the x-coordinate will be displayed in the main window as shown in Figure
17.22.



158 Chapter 17. Supersonic Wedge

Figure 17.18: Magnified Mach number contours superimposed with contour lines for the supersonic
wedge case.

Figure 17.20: Define the coordinates for a line plot in space.

Figure 17.21: How to plot Mach number over a line.



159

Figure 17.22: Mach number plotted over the specified line.

6) In order to see a spreadsheet view of the datapoints, you can click the upper right icon as
shown in Figure 17.23, then click on the Spreadsheet View similar to Figure 17.24.

7) Additionally, you can export a .csv file and plot it with any other plotting software. To export
the spreadsheet as a .csv file, go to File→ Export, and then Save as .csv.

Figure 17.23: How to make spreadsheet view in a new window.

Questions
1. Run the default case as provided which uses 2ND_ORDER and the HLLC Riemann solver.

(a) Create coloured contours of Pressure and Mach number in the entire domain.
(b) Plot Pressure from (0,0.5,0) to (1.5,0.5,0) using Plot Over Line.

2. Repeat Q.1 but switch the SPATIAL_ORDER_FLOW to 1ST_ORDER.
3. Repeat 1 using SPATIAL_ORDER_FLOW as 2ND_ORDER but using the JST flux.
4. Repeat Q.1 using SPATIAL_ORDER_FLOW as 2ND_ORDER but using the LAX-FRIEDRICH
flux.
5. Repeat Q.1 using SPATIAL_ORDER_FLOW as 2ND_ORDER but using the CUSP flux.
6. Repeat Q.1 using SPATIAL_ORDER_FLOW as 2ND_ORDER but using the ROE flux.
7. Comment on how the spatial order of accuracy and choice of Riemann solver affect the resolution
of the shock and any dissipation or dispersion errors you can observe. Based on your results,
recommend a combination of spatial order and Riemann solver that performs particularly well.



160 Chapter 17. Supersonic Wedge

Figure 17.24: Selecting the Spreadsheet View among the different available views.



18. Inviscid ONERA M6

Required Files

Use the following links to download the same version of SU2 for Windows (click here) or
Mac (click here), and the required configuration and mesh files (click here).

Use the following links to download the same version of Paraview for Windows (click here)
or Mac (click here).

Problem Description
In this tutorial, we are going to explain how to simulate transonic inviscid flow around the three-
dimensional ONERA M6 wing. This is a commonly used benchmark problem for computational
aerodynamics due to the availability of experimental data and its relatively simple geometry. In
this tutorial, the computational domain is discretized using an unstructured mesh with of 582,752
tetrahedral elements. The flow specification is as follows:
• Pressure = 101,325 Pa
• Temperature = 273.15 K
• Mach number = 0.8395
• angle of attack = 3.06 degrees
This tutorial has two parts: Flow Solution and Post-processing. In the first part, we will explain

how to manage the prerequisite files and settings and how to run the CFD simulation using SU2. In
the second part, we explain how to use Paraview to visualize the data obtained from SU2.

Flow solution
In the configuration file, you can manually adjust the multigrid control parameters. For the tutorial
case, you will see that the number of multigrid levels is set to 0, MGLEVEL=0. In the assigned
questions, the number of multigrid levels will be changed by adjusting this MGLEVEL parameter.

https://users.encs.concordia.ca/~bvermeir/book/executables/windows/SU2_Windows.zip
https://users.encs.concordia.ca/~bvermeir/book/executables/osx/SU2_Mac.zip
https://gitlab.com/bvermeir/book-cfd/blob/master/tutorial/tut3_invisicd_oneram6/oneram6_inviscid.zip
https://users.encs.concordia.ca/~bvermeir/book/executables/windows/ParaView-5.4.0-Qt5-OpenGL2-Windows-64bit.exe
https://users.encs.concordia.ca/~bvermeir/book/executables/osx/ParaView-5.4.0-Qt5-OpenGL2-MPI-OSX10.8-64bit.dmg


162 Chapter 18. Inviscid ONERA M6

You can also select the multigrid cycle type by choosing one of either MGCYCLE (V Cycle, W
Cycle or Full MG Cycle). Another parameter that can be controlled is the total number
of iterations. This can be modified by changing the value of EXT_ITER. For this example, it will
be kept at 200 for demonstration purposes, but depending on the method used, more iterations may
be required to reach convergence. We will post-process the results to obtain the pressure coefficient
and Mach number contours, as well as the lift coefficient (CL), and drag coefficient (CD) of the
ONERA M6 wing. We will also explore the rate of convergence as a function of the number of
multigrid levels used.

To run the simulation, SU2 needs two files: the configuration file (.cfg) and the mesh file
(.su2). Links to the required files and executables are provided at the start of this tutorial. The
files include:

1. inv_ONERAM6_JST.cfg as a configuration file.
2. mesh_ONERAM6_inv.su2 as a mesh file.

The next step is to copy these two files into the same directory as your SU2 executable. Then, open
a terminal window and execute the following commands to run the simulation:

Windows
$ cd "where you saved the package"

$ SU2_CFD.exe inv_ONERAM6_JST.cfg

Mac
$ cd "where you saved the package"

$ ./SU2_CFD inv_ONERAM6_JST.cfg

The solver will begin solving the problem and will print out the residuals at every iteration,
until the specified convergence criteria is achieved. The computational time for this case is highly
dependant on the computer’s performance. However, the run time is expected to be about 5 hours
on average. After the calculations are complete the following output files will be generated within
in the SU2 folder:
• flow.vtk: The flow solution on the entire domain.
• force_breakdown.dat: Forces and moment on the airfoil.
• history.vtk: Convergence history.
• restart_flow.dat: Restart file.
• surface_flow.vtk: The flow solution on the airfoil surface.
• surface_flow.csv: A comma separated value file of the flow solution on the airfoil.

Please keep in mind that every time you run SU2, the output data will be overwritten. Hence, before
launching a new simulation you should backup your files in another directory.

Post-processing

In this section, we will explain how to use Paraview to visualize the results produced by SU2.

18.0.1 Load the Solution File:

In order to import the data to Paraview, you can take the following steps:
1) Launch Paraview.
2) Go to File→ Open, and select the surface_flow.vtk file.
3) On the left-hand side of the Paraview window you will see the file is loaded under builtin

in Pipeline Browser. Press the Apply button in the Properties tab, right under the Pipeline
Browser heading. Paraview will now load the data associated with your file, and it will be
ready for visualization (Figure 18.1).



163

Figure 18.1: Loading surface_flow.vtk file into the Pipeline Browser.

18.0.2 Visualize the Mesh
In order to view the mesh, as shown in Figure 18.2, select Solid Color with Wireframe in the toolbar.
As you can see in Figure 18.3, the mesh around the ONERA M6 wing is unstructured and the
elements are clustered around the wingtip, leading edge, and trailing edge of the wing. This is to
accommodate large changes in the flow solution in the vicinity of the features.

Figure 18.2: How to display the ONERA M6 mesh.

Figure 18.3: The unstructured mesh around the ONERA M6 wing.

18.0.3 Pressure Coefficient and Mach Number Contours
To display pressure coefficient contours on the surface of the wing, you can take the following
steps:

1) Click on surface_flow.vtk in the Pipeline Browser.
2) Click on Display in Properties tab



164 Chapter 18. Inviscid ONERA M6

3) Under Coloring, select Pressure_Coefficient from the drop-down menu (Figure 18.4)
4) Pressure coefficient contours should now be displayed, similar to Figure 18.5.

Figure 18.4: Display contours by selecting the appropriate variable.

Figure 18.5: Pressure coefficient contour for ONERA M6 wing.

5) To add contour lines to the plot click on surface_flow.vtk in the Pipeline Browser,
and then click on the Contour icon (Figure 18.6) in the toolbar.

6) The Contour1 item now appears under flow.vtk file in the Pipeline Browser (Figure
18.7). Click on Apply to proceed to the next step.

Figure 18.6: Contour icon in toolbar.



165

Figure 18.7: Adding Contour1 in the Pipeline Browser.

7) As shown in Figure 18.8a, go to Properties and choose Pressure_Coefficient from Contour
By drop-down menu

8) Click on the Add Range icon to customize the range used for the pressure contours.
9) As shown in Figure 18.8b, set the max/min (i.e. From/To) range of contour lines, as well as

the number of steps used to divide this range into equally spaced contour levels. Set Step to
20, and then click on OK.

10) At the end, click on Apply to generate the contour lines in the display window.

Add Range

(a) Define a new range (b) Add the new range

Figure 18.8: How to define a new range for the contour lines.

11) As shown in Figure 18.9, click on Display under the Properties tab.
12) In the Coloring section select Solid Color from the drop-down menu and choose black from

Edit.
13) Pressure coefficient contours will now be displayed in black and should be similar to those

shown in Figure 18.10.

Figure 18.9: Changing contour line colors in the Coloring section.



166 Chapter 18. Inviscid ONERA M6

Figure 18.10: Pressure coefficient contours superimposed with contour lines for the ONERA M6
wing.

14) To display Mach number contours, similar to Figure 18.4, click on surface_flow.vtk
in the Pipeline Browser.

15) Under Coloring in the Display section, select Mach from the drop-down menu.
16) Click on "Contour1" in the Pipeline Browser.
17) As shown in Figure 18.11a, under the Properties tab, select Mach from the Contour By

drop-down menu.
18) Click on the Remove All icon to remove the previous range used for the pressure coefficient.
19) Similar to Figure 18.11b, click on the Add Range icon and set Steps to 20.
20) Next, click on OK and Apply to show the plot. Now the Mach number contours on the wing

surface should be shown, similar to Figure 18.12.

Add Range

Remove All

(a) Define a new range (b) Add the new range

Figure 18.11: How to define a new range for the contour lines.



167

Figure 18.12: Mach number contour with superimposed by lines.

18.0.4 Comparison of Convergence Rates

We will now explore the rate of convergence of SU2 for this problem. To do this, we are going to
consider the residual of the solution at each iteration as well as the aerodynamic loads in order to
see how they change with respect to the number of iterations. Therefore, you can take the following
steps:

14) Launch any suitable plotting or spreadsheet software.
15) Open the file history.vtk that was generated by SU2.
16) Choose the file type that best describes your data, and tell your software to use Tab, Semicolon,

and Comma as possible delimiters (Figure 18.13).

Figure 18.13: Import the .vtk file into plotting or spreadsheet software.

As shown in Figure 18.14, the first column (Column A) shows the iteration number. The lift
coefficient (CL) and the drag coefficient (CD) are displayed in the second and third columns,
respectively (Column B and Column C). Finally, the residuals can also be examined to check the
rate of convergence (Column L to Column P in Figure 18.15).



168 Chapter 18. Inviscid ONERA M6

Figure 18.14: Columns in history.vtk

Figure 18.15: Residuals in history.vtk

Now, we can plot the predicted lift coefficient, drag coefficient, and density residual against the
number of iterations to visualize when the solver has converged to a steady solution. Figure 18.16
and Figure 18.17 show plots for the aerodynamic loads and residual as a function of the number of
iterations, respectively, for the default case of no multigrid, MGLEVEL=0.history

Page 1

0 500 1000 1500 2000 2500 3000
-0.1

0

0.1

0.2

0.3

0.4

0.5
CL
CD

Iterations

C
L

, C
D

Figure 18.16: Lift and Drag coefficients versus the number of iterations.



169history

Page 1

0 500 1000 1500 2000 2500 3000
-12

-10

-8

-6

-4

-2

0

Iterations

D
e

n
si

ty
 r

e
si

d
u

a
l

Figure 18.17: Density residual versus the number of iterations.

Questions
1. Run the simulation without multigrid (MGLEVEL=0).

(a) Follow the procedure in the guideline document to run the simulation and record the number
of iterations and wall-clock time for the simulation to converge.

(b) Record the lift and drag coefficients.
(c) Plot the surface pressure coefficient with coloured contours and contour lines.
(d) Plot the surface Mach number with coloured contours and contour lines.
(e) Plot the value of CL, CD and the density residual vs. the number of iterations.

2. Modify the configuration file in the multigrid folder (MGLEVEL= 3, MGCYCLE= W_CYCLE)
and repeat Q.1 using multigrid.
3. Compare the results in part (a)-(e) of Q.1 and Q.2. In what way is the use of multigrid advanta-
geous for this test case?



19. Laminar Cylinder

Required Files

Use the following links to download the same version of SU2 for Windows (click here) or Mac
(click here), and the required configuration and mesh files for the steady case (click here),
unsteady case (click here), and the reference datasets (click here).

Use the following links to download the same version of Paraview for Windows (click here)
or Mac (click here).

https://users.encs.concordia.ca/~bvermeir/book/executables/windows/SU2_Windows.zip
https://users.encs.concordia.ca/~bvermeir/book/executables/osx/SU2_Mac.zip
https://gitlab.com/bvermeir/book-cfd/blob/master/tutorial/tut4_laminar_cylinder/cylinder_steady.zip
https://gitlab.com/bvermeir/book-cfd/blob/master/tutorial/tut4_laminar_cylinder/cylinder_unsteady.zip
https://gitlab.com/bvermeir/book-cfd/blob/master/tutorial/tut4_laminar_cylinder/experimental_values.zip
https://users.encs.concordia.ca/~bvermeir/book/executables/windows/ParaView-5.4.0-Qt5-OpenGL2-Windows-64bit.exe
https://users.encs.concordia.ca/~bvermeir/book/executables/osx/ParaView-5.4.0-Qt5-OpenGL2-MPI-OSX10.8-64bit.dmg


171

Problem Description

In this tutorial, we will explain how to simulate external viscous flow past a 2D cylinder. To simulate
this, the Navier-Stokes equations will be solved in both steady and unsteady forms, depending on
the chosen Reynolds number. For this type of flow, the wake is expected to remain steady up to
a Reynolds number of around 46. At higher Reynolds numbers, the flow becomes unsteady with
oscillating vortices being shed in its wake. This is known as a Von-Karman vortex street, which is a
well-known phenomenon in fluid mechanics. The computational domain for this tutorial uses an
O-topology mesh with the cylinder in the center of the domain. The outer boundary is situated at a
radial distance of 15D, where D is cylinder diameter. The resulting mesh is composed of 26,192
triangular elements. The elements around the surface of the cylinder are refined to resolve the
viscous boundary layer in this region. For this example, the flow specifications are provided as
follows:
• Pressure = 101,325Pa
• Temperature = 273.15K
• Mach number = 0.1
• Angle of attack = 0 degrees
• Reynolds number = 40
• Characteristic length = 1m

This tutorial has two parts: Flow Solution and Post-processing. In the first part, we will explain
how to manage the prerequisite files and settings, and how to run the CFD simulation using SU2.
In the second part, we explain how to use Paraview to visualize the data obtained from SU2.

Flow solution

To run this simulation, SU2 needs two files: a configuration file (.cfg) and a mesh file (.su2).
Links to the required files and executables are provided at the start of this tutorial. The files include:

1. lam_cylinder.cfg as a configuration file.
2. mesh_cylinder_lam.su2 as a mesh file.

The next step is to copy these two files into the same directory as the SU2 executable. To run the
simulation, open a terminal window and enter the following commands:

Windows
$ cd "where you saved the package"
$ SU2_CFD.exe lam_cylinder.cfg

Mac
$ cd "where you saved the package"

$ ./SU2_CFD lam_cylinder.cfg

SU2 will begin solving the problem, and will print out the residuals at every iteration until the
specified convergence criteria is reached. The computational time for this case is highly dependant
on the computer’s performance. However, the run time is expected to be about 15 minutes on
average. After converging, the following output files will be generated and saved in the SU2 folder:
• flow.vtk: The flow solution on the entire domain.
• force_breakdown.dat: Forces and moment on the cylinder.
• history.vtk: Convergence history.
• restart_flow.dat: Restart file.
• surface_flow.vtk: The flow solution on the cylinder surface.
• surface_flow.csv: A comma separated value file of the flow solution on the cylinder.

Please keep in mind that every time you run SU2, the output data will be overwritten. Hence, before
launching a new simulation you should backup your files in another directory.



172 Chapter 19. Laminar Cylinder

Post-processing

In this section, we will explain how to use Paraview to visualize the data produced by SU2.

19.0.1 Load the Solution File:

In order to imort data to Paraview, you can take the following steps:
1) Launch Paraview.
2) Go to File→ Open, and then select the flow.vtk file.
3) On the left-hand side of the Paraview window you will see the file appear under builtin in

the Pipeline Browser.
4) Now press the Apply button in the Properties tab, directly under the Pipeline Browser. The

solution file is now loaded by Paraview and is ready to be visualized (Figure 19.1).

Figure 19.1: Loading flow.vtk file in the Pipeline Browser.

19.0.2 Visualize the Mesh

In order to display the mesh, as shown in Figure 19.2, select Solid Color with Wireframe in the
toolbar. Then, you can zoom-in to see mesh around the surface of the cylinder, as shown in Figure
19.3. The mesh around the cylinder is unstructured, and the elements are clustered around the
cylinder to be able to capture the boundary layer region properly.

Figure 19.2: How to display the cylinder mesh.

19.0.3 Visualize Pressure Contour and Much Number Contour

To visualize pressure contours in the domain, you can take the following steps:
1) Activate flow.vtk by clicking on it in the Pipeline Browser.
2) Go to Display in Properties tab.
3) Under the Coloring section, select Pressure from the drop-down menu (Figure 19.4). Con-

tours of the pressure coefficient will now be displayed, similar to Figure 19.5.
4) To change the color range used for pressure, you can also click on Edit under the same

Coloring section.
5) To add contour lines to the plot, click again on the flow.vtk file in the Pipeline Browser.
6) Click on the Contour icon (Figure 19.6).



173

Figure 19.3: The cylinder mesh.

Figure 19.4: How to display contours by selecting the variable.

Figure 19.6: The Contour icon in the toolbar.

7) Similar to Figure 19.7, you should now see Contour1 under the flow.vtk file in the
Pipeline Browser.

8) As shown in Figure 19.8a, in the Properties section select Pressure from the Contour By
drop-down menu.

9) You can use the Remove All icon to remove the default range.
10) Then, click on the Add Range icon to make a new range based on your preferences.
11) Similar to Figure 19.8b, set Steps to 20, and then, click on OK and Apply, respectively.
12) To change the color of the contour lines, activate Contour1 by clicking on it in Pipeline

Browser.
13) Similar to Figure 19.4, you can go to Edit under the Coloring section and select white.

Finally, the pressure contours superimposed with appropriate contour lines should be visible,
similar to Figure 19.9. Keep in mind that to display both contour and contour lines, the eye
beside each iten in the Pipeline Browser should be activated (Figure 19.10)

14) To display the Mach number contours, click on flow.vtk again in the Pipeline Browser.
15) As shown in Figure 19.11, under the Coloring section in Display, select Mach from the

drop-down menu.
16) Click on Contour1 in the Pipeline Browser.
17) Similar to Figure 19.12a, in Properties select Mach from the Contour By drop-down menu.



174 Chapter 19. Laminar Cylinder

Figure 19.5: Pressure contours around the cylinder.

Figure 19.7: Adding Contour1 to the Pipeline Browser.

18) Click on Remove All to remove the previous value range used for pressure.
19) Click on Add Range and set the the value of Steps to 20.
20) Click on OK and Apply, respectively (Figure 19.12b). Mach number contours around the

cylinder should now be visible, similar to Figure 19.13.

Add Range

Remove All

(a) Define a new range (b) Add the new range

Figure 19.12: How to define a new range for the contour lines.



175

(a) Define a new range (b) Add the new range

Figure 19.8: How to define a new range for the contour lines.

19.0.4 Streamlines and Separation Length

Streamlines show the path that a fluid element will follow, when released. Streamlines can help
with visualizing flow separation and the wake region behind bluff bodies, such as the cylinder used
in this tutorial. In this case, streamlines can be used to visualize the separation bubble behind the
cylinder. To do this, you can take the following steps:

1) Activate flow.vtk by clicking on it in the Pipeline Browser.
2) As shown in Figure 19.14, click on the Calculator icon, which allows you to define new

variables and add add them to the list of variables.
3) Click on Calculator1 in the Pipeline Browser and, as shown in Figure 19.15, rename the

Result Array Name to Velocity.
4) Following Figure 19.15, write the contribution of each velocity component in the equation

box. Keep in mind that dividing momentum by density results the corresponding fluid
velocity component.

5) Then, click on Apply to proceed to the next step.
6) As shown in Figure 19.16, Calculator1 now appears in the Pipeline Browser as a subset of

flow.vtk.
7) Now click again on Calculator1 in the Pipeline Browser.
8) Click on the Stream Tracer icon in the toolbar (Figure 19.17).
9) Click on StreamTracer1 in the Pipeline Browser.

10) As shown in Figure 19.18, in the Properties menu select Velocity from Vectors drop-down
menu.

11) Select High Resolution Line Source from the Seed Type drop-down menu.
12) Under Line Parameters, set Point1 and Point2 as (-15,0,0) and (15,0,0), respectively. These

two points define the endpoints of a line along which streamlines will be generated.
13) As shown in Figure 19.19, under Coloring in the Display section select Solid Color from

Edit, and then choose white color for the streamlines
14) Click on the check-box beside Data Axis Grid to display the axis range in the plot.
15) Hide all items except flow.vtk and StreamTracer1 by deactivating the eye icon beside

each of them (Figure 19.20).
Finally, Figure 19.21 shows the Mach number contours with superimposed streamlines. As
mentioned previously, the diameter of the cylinder is taken to be 1m. From Figure 19.21, you can
approximate the separation length to be around 2m behind the cylinder at the chosen Re = 40.



176 Chapter 19. Laminar Cylinder

.

Figure 19.9: Pressure contours superimposed by contour lines around the cylinder.

Activate both items

.

Figure 19.10: How to display contour and contour lines at the same time in the plot.

Figure 19.21: Mach number contours superimposed with streamlines.

The length of the separated bubble can also be calculated more precisely. To do this we will
plot the streamwise velocity component along the computational domain center-line, and measure



177

.

Figure 19.11: How to change the color for contour lines of Mach number.

Figure 19.13: Mach number contour with superimposed by lines.

the length of the separation bubble, which is defined as the region of reversed flow in the wake.
Therefore, the separation bubble length can be found as the distance between the surface of the
cylinder and the location where the Velocity_X component switches from negative to positive. To
get started, you can take the following steps:

1) In the Pipeline Browser click on Calculator1.
2) Go to the Filters→ Data Analysis→ Plot Over Line option (Figure 19.22).
3) Activate PlotOverLine1 by clicking on it in the Pipeline Browser.
4) As shown in Figure 19.23, under Line Parameters in the Properties menu set Point1 and

Point2 as (-15,0,0) and (15,0,0), respectively. Please note that this line is different from the
previous line we defined to generate streamlines.

5) Set the Resolution to 10,000, and then click on Apply.



178 Chapter 19. Laminar Cylinder

Figure 19.14: How to define new variables using the Calculator.

Figure 19.15: How to use a Calculator to compute the velocity.

Figure 19.23: Settings for Plot Over Line.

6) As shown in Figure 19.24, in the Display panel select Point_X from the X Array Name
drop-down menu.

7) Under the Series Parameters, unselect all variables except for Velocity_X.
A figure similar to Figure 19.25 will now display the velocity profile over the chosen line along the
(X Axis). As shown in Figure 19.25, the separation length, L, can be measured when Velocity_X
approaches zero in the wake of the cylinder.

19.0.5 Shedding Frequency

When the Reynolds number is high enough, the wake behind the cylinder becomes unsteady, and
vortex shedding occurs. The frequency of the wake oscillations is called the “shedding frequency.”
To explore this unsteady case, open the history.vtk in an appropriate plotting program. As



179

Figure 19.16: Calculator1 as a subset of flow.vtk in the Pipeline Browser.

Figure 19.17: How to add streamlines using Stream Tracer.

shown in Figure 19.26, the first column in the file shows the number of iterations. Note that the
physical time can be computed by multiplying the iteration number with the time-step size, which
is ∆t = 0.001s for the unsteady case as set in the configuration file. Plotting CL or CD as a function
of time demonstrates that the shedding amplitude grows, and then remains quasi-steady. The
non-dimensional Strouhal number of this vortex shedding can now calculated from St = f D

U , where
f , D and U are the shedding frequency, cylinder diameter, and free-stream velocity, respectively.
The shedding frequency can be found manually by determining the time interval between vortex
shedding events in the CL time history, within the quasi-steady region.

Questions
1. Run the laminar flow over a cylinder as per the tutorial case but at Re = 10, 20, and 40.

(a) Plot Mach contours with streamlines for Re = 10, 20, and 40
(b) Plot the x-velocity component vs the x-coordinate beginning at x = 1 (location of rear surface

of cylinder)
(c) Calculate L/D (non-dimensional separation length) for the three Re cases and compare with

the experimental L/D data provided at the start of this tutorial [3]. Also include the CD

values for the three Re cases from the simulation results. Comment on the effect of Re on the
non-dimensional separation length L/D and CD.

2. Download the unsteady configuration files provided at the start of this tutorial for Re = 150.
(a) Plot the CL and CD versus time.
(b) Calculate the amplitudes ∆CL , ∆CD, and the Strouhal number, and compare your results with

experimental data provided at the start of this tutorial [8].



180 Chapter 19. Laminar Cylinder

Figure 19.18: Streamline settings in the Stream Tracer panel.

Figure 19.19: Changing the streamline colors in the Display panel.

Activate both items

Figure 19.20: Activating both flow.vtk and StreamTracer1 in the Pipeline Browser.



181

Figure 19.22: How to plot over an arbitrary line.

Figure 19.24: How to Plot Velocity_X versus X Axis.



182 Chapter 19. Laminar Cylinder

L

Figure 19.25: Velocity_X versus X Axis, and the length of the separation bubble.

Figure 19.26: Time history of flow variables.



20. Turbulent ONERA M6

Required Files

Use the following links to download the same version of SU2 for Windows (click here) or
Mac (click here), the required configuration and mesh files (click here), and reference dataset
(click here).

Use the following links to download the same version of Paraview for Windows (click here)
or Mac (click here).

Problem Description

In this tutorial, we will demonstrate how to simulate transonic viscous flow past a three-dimensional
wing. We will use the ONERA M6 again, and detailed information is given in the previous
tutorial for inviscid flow in Chapter 18. We will use the Reynolds-Averaged Navier-Stokes (RANS)
equations and compare the Spalart-Almaras (SA) and k−ω Shear Stress Transport (SST) turbulence
models for turbulent eddy viscosity. The computational domain uses a structured mesh with
43,008 hexahedral elements. Note that this mesh is relatively coarse to allow for relatively short
computation time. The flow specifications are provided as follows:
• Temperature = 288.15 K
• Mach number = 0.8395
• Angle of attack = 3.06 degrees
• Reynolds length = 0.64607 m

This tutorial has two parts: Flow Solution and Post-processing. In the first part, we will explain
how to manage the prerequisite files and settings and how to run the CFD simulation using SU2. In
the second part, we explain how to use Paraview to visualize the data obtained from SU2.

https://users.encs.concordia.ca/~bvermeir/book/executables/windows/SU2_Windows.zip
https://users.encs.concordia.ca/~bvermeir/book/executables/osx/SU2_Mac.zip
https://gitlab.com/bvermeir/book-cfd/blob/master/tutorial/tut5_turbulent_oneram6/oneram6_turbulent.zip
https://gitlab.com/bvermeir/book-cfd/blob/master/tutorial/tut5_turbulent_oneram6/experimental_values.zip
https://users.encs.concordia.ca/~bvermeir/book/executables/windows/ParaView-5.4.0-Qt5-OpenGL2-Windows-64bit.exe
https://users.encs.concordia.ca/~bvermeir/book/executables/osx/ParaView-5.4.0-Qt5-OpenGL2-MPI-OSX10.8-64bit.dmg


184 Chapter 20. Turbulent ONERA M6

Flow solution

To run this simulation, SU2 needs two files: a configuration file (.cfg) and a mesh file (.su2).
Links to the required files and executables are provided at the start of this tutorial. The files include

1. turb_ONERAM6.cfg as a configuration file.
2. mesh_ONERAM6_turb_hexa_43008.su2 as a mesh file.

The next step is to copy these two files into the same directory as the SU2 executable. To run the
simulation, open a terminal window and enter the following commands:

Windows
$ cd "where you saved the package"

$ SU2_CFD.exe turb_ONERAM6.cfg

Mac
$ cd "where you saved the package"
$ ./SU2_CFD turb_ONERAM6.cfg

SU2 will begin solving the problem and will print out the residuals at every iteration until the
specified convergence criterion is reached. The computational time for this case is highly dependant
on the computer’s performance. However, the run time is expected to be about 4 hours on average.
After this, the following output files should be generated and saved in the SU2 folder:
• flow.vtk: The flow solution on the entire domain.
• force_breakdown.dat: Forces and moment on the wing.
• history.vtk: Convergence history.
• restart_flow.dat: Restart file.
• surface_flow.vtk: The flow solution on the wing surface.
• surface_flow.csv: A comma separated value file of the flow solution on the wing.

Please keep in mind that every time you run SU2, the output data will be overwritten. Hence, before
launching a new simulation you should backup your files in another directory.

Post-processing

In this section we demonstrate how to use Paraview to visualize the data produced by SU2.

20.0.1 Load the Solution File:
In order to import data to Paraview, you can take the following steps:

1) Launch Paraview.
2) Go to File→ Open, and then select the flow.vtk file.
3) On the left-hand side of the Paraview window you will see the file appear under builtin in

the Pipeline Browser.
4) Now press the Apply button in the Properties tab, directly under the Pipeline Browser. The

solution file is now loaded by Paraview and is ready to be visualized (Figure 20.1).

Figure 20.1: Loading surface_flow.vtk file in the Pipeline Browser.



185

20.0.2 Visualize the Mesh
In order to view the mesh, as shown in Figure 20.2, select Solid Color with Wireframe in the toolbar.
Then, you can zoom-in to see mesh around the airfoil, as shown in Figure 20.3. You can see that
this mesh uses structured elements, and is highly refined in the boundary layer, leading edge, and
trailing edge regions.

Figure 20.2: How to display mesh in computational domain.

Figure 20.3: Structured mesh for ONERA M6 wing. The mesh around the surface is refined to
capture the boundary layer.

20.0.3 Visualize Pressure Coefficient at Different Stations
In this section, we will explain how to plot the pressure coefficient on the surface of the wing as a
function of chord-wise position at different span-wise stations along the wing. To get started, you
can take the following steps:

1) Activate surface_flow.vtk by clicking on it in the Pipeline Browser.
2) Click on the Slice icon in the toolbar, as shown in Figure 20.4. This will allow you to slice a

plane through the wing, to plot the pressure coefficient (Cp) at a specific station or location
along the span.

3) As shown in Figure 20.5, click on Y Normal, and under Plane Parameters specify the
y-coordinate location in the Origin field where we want the slice to be taken.

4) For this example we select (0.5705415, 0.6081815, 0) as a suitable value for Origin, which
is approximately in the middle of the wing (Figure 20.6).

5) Click on Apply after specifying the y-coordinate.

Figure 20.4: How to slice a 3D computational domain.



186 Chapter 20. Turbulent ONERA M6

Figure 20.5: Setting for Slice in Properties panel.

Figure 20.6: Determining the slice to be taken (red line shows the location where a cross-sectional
slice will be taken form the wing).

After clicking on the Apply, you will generate a slice of the wing span at the specified y-
coordinate, as shown in Figure 20.7. To plot Cp along this slice the chord line should first be made
non-dimensional. To do this, you can take the following steps:

1) Click on the upper left icon, as shown in Figure 20.8. This will create another set of viewing
options.

2) By click on the Spreadsheet View, as shown in Figure 20.9, it will generate a spreadsheet
view of the data contained in that slice.

3) As seen from Figure 20.10, we want to pan to the right where the data set of Points are
located. You can vary the display Precision when looking up the maximum and minimum



187

values as well.
4) Double click on the Points to sort them by descending or ascending order.

Figure 20.7: Slice to be taken form the wing.

Figure 20.8: How to make alternative viewing options.

Figure 20.9: How to make spreadsheet view.

We want to get the maximum and minimum values in the array to determine the local chord
length on the wing. As shown in Figure 20.10a and Figure 20.10b, the maximum and minimum
values for this slice are 0.97631m and 0.349704m, respectively. These two values correspond to
x-coordinate for the trailing edge and the leading edge of the chosen wing section, respectively. As
you can see in Figure 20.10, the y-coordinate is constant for all values, and hence the slice was
taken perpendicular to the y-coordinate.

5) Click on Slice1 in the Pipeline Browser, and click on the Calculator icon (Figure 20.11).
6) We want to create a new array field called Normalized chord. We will then plot the pressure

coefficient (Cp) along the local normalized chord length. Therefore, as shown in to Figure
20.12, type Normalized chord in the Result Array Name text-box.



188 Chapter 20. Turbulent ONERA M6

(a) Maximum value for x-component of the Points.

(b) Minimum value for x-component of the Points.

Figure 20.10: How to find maximum/minimum of the Points.

7) Additionally, type the following equation in the equation-box to normalize the local chord
length at that chosen station along the wing span. Please note that the variable coordsX can
be chosen from the Scalars drop-down menu.

8) Click on Apply to proceed the next step.

Figure 20.11: How to use Calculator.

Figure 20.12: How to make new variable using Calculator.



189

After taking these steps, the Normalized chord is made and added to the list of variables that
are available for plotting. You can see Normalized chord in Spreadsheet View, as shown in Figure
20.13.

Figure 20.13: Normalized coordinate in Spreadsheet View.

In order to plot the pressure coefficient along the non-dimensional length of the wing, you can
take the following steps:

1) Activate Calculator1 by clicking on it in Pipeline Browser.
2) Go to Filter→ Data Analysis→ Plot Data (Figure 20.14). Consequently, PlotData1 is

created and added to the Pipeline Browser (Figure 20.15).

Figure 20.14: How to plot data versus a variable list.

Figure 20.15: PlotData1 in Pipeline Browser.



190 Chapter 20. Turbulent ONERA M6

3) In the Properties tab, click on the Display panel (Figure 20.16).
4) Under the X Axis Parameters uncheck Use Index For XAxis, and then choose Normalized

chord from the X Array Name drop-down menu.
5) Unselect everything in the Series Parameters fields except for the Pressure_Coefficient.
6) At the bottom of the Series Parameters field, select Diamond for the Marker Style. After

taking these steps, a plot for pressure coefficient should be generated, similar to Figure 20.17.

Figure 20.16: How to plot pressure coefficient versus Normalized chord.

Figure 20.17: Pressure coefficient on the surface of the airfoil versus Normalized chord.

Similar to the Chapter 16, we want to have the Cp on the suction surface to be on top of the pressure
side. To do this, please take the following steps:

7) Go to the Properties tab and select the View panel.
8) As shown in Figure 20.18, under Left Axis Range you can click on the check-box beside

the Left Axis Use Custom Range option, and then switch the values for Left Axis Range.
9) To rearrange numbers along the left axis, you can click on the check-box beside Left Axis Use

Custom Labels, and provide different numbers based on your visual preference. Eventually,



191

the plot you get should be similar to Figure 20.19.

Figure 20.18: Settings for changing the range of variables in left axis of 2D plot.

Figure 20.19: Final plot for the pressure coefficient on the surface of the airfoil versus Normalized
chord.

20.0.4 Visualize Pressure Coefficient (Alternative Method) Exporting .csv file at Different
Stations
If you would like to try plotting in other software (i.e. Microsoft Excel), you can collect data for
each station (or slice) and then export to .csv file. To get started, you can take the following steps:

1) Activate surface_flow.vtk by clicking on it in Pipeline Browser.
2) Go to Filter→ Data Analysis→ Plot On Intersection Curves (Figure 20.20).
3) According to Figure 20.21, under Plane Parameters from Properties panel, click on the Y

Normal. Please note that the span of wing is b = 1.2m.



192 Chapter 20. Turbulent ONERA M6

Figure 20.20: How to extract data from an intersection of the surface curve.

Figure 20.21: Settings for specifying the curve intersection on the wing.

Figure 20.22: Location of intersection (red line shows the locaiton where the intersection of wing
curve and normal plate to it is determined).

4) To get the Cp curve in station at y/b = 0.2, for the Origin coordinate, keep the default values
of the x-coordinate and z-coordinate; set the y-coordinate to 0.24. This value is obtained by



193

multiplying the wing span of 1.2 by y/b of 0.2.
5) You should see the plane to be located at y/b = 0.2 (Figure 20.22), and then, click on the

Apply.
6) You will see PlotOnIntersectionCurves1 appears as a subset of surface_flow.vtk in

Pipeline Browser.
7) In order to export .csv file for y/b = 0.2, activate PlotOnIntersectionCurves1 by clicking on

it in the Pipeline browser.
8) Go to File→ Export Scene..., and save the .csv file.
9) To obtain the .csv files for other stations, activate again PlotOnIntersectionCurves1 in the

Pipeline Browser, and in the Properties panel, change the y-coordinate according to the
desired y/b value. For example, to obtain the right location for station with y/b = 0.44,
multiply this value with 1.2 to obtain the y-coordinate of 0.528. Then, click on the Apply,
and proceed export procedure as before.

10) In the next step, launch Microsoft Excel.
11) Open the .csv file you exported earlier in step (6).
12) To create the Cp plots, first we need to create a new variable x/c, which is the normalized x-

coordinate with respect to the chord length at that station. With the S Columns as x-coordinate,
enter the following equation in the equation-box in the toolbar to get x/c values:

= (S2−MIN(S$2 : S$90))/(MAX(S$2 : S$90)−MIN(S$2 : S$90)) (20.1)

13) For other .csv files, edit the column variable and range accordingly. You can then plot the
Cp curve for each station.

14) The .csv file does not keep the equations but only the values at each cell. Therefore, to
keep the equations, you can save the file as .xlsx.

Questions
1. Plot and comment on the mesh and compare it with the one used for the inviscid ONERA M6.
To view the mesh use both the flow.vtk and surface_flow.vtk files to view the mesh
structure from different directions.
2. Run the Onera M6 with Spalart-Allmaras the (SA) turbulence model as described in the tutorial
documentation. Plot the pressure coefficient contour and contour lines of the wing surface.
3. Perform Q.2 again but with k−ω SST turbulence model.
4. Plot the pressure coefficient vs x/c at the stations y/b = 0.2, 0.44, 0.65, 0.8, 0.9, 0.95, 0.99 for
SA and k−ω SST with the experimental data provided at the start of this tutorial for each of these
stations [19].
5. Compare the CL and CD values of the SA and k−ω SST model; compare as well with the CL

and CD values obtained from the inviscid case (multigrid results). Comment on possible sources of
discrepancies relative to the experimental data.



21. Mesh Generation Using Gmsh

Required Files

Use the following links to download the same version of Gmsh for Windows (click here) or
Mac (click here).

Use the following links to download the python file for this toturial (click here).

Problem Description
In this tutorial, we are going to explain how to generate a mesh for inviscid flow around an airfoil.

https://users.encs.concordia.ca/~bvermeir/book/executables/windows/gmsh-3.0.5-Windows64.zip
https://users.encs.concordia.ca/~bvermeir/book/executables/osx/gmsh-3.0.5-MacOSX.dmg
https://gitlab.com/bvermeir/book-cfd/blob/master/tutorial/tut6_mesh_generation/gmshconverter.py


195

Airfoil Coordinate Preparation
To generate the mesh, we first need access to the coordinates defining the desired airfoil’s geometry.
These are typically obtained from reference material, or from the shape parameterization of standard
airfoil families, such as the NACA series. In this tutorial, we will use AirfoilTools.com (Figure
21.1) to obtain a set of coordinates for our airfoil. For example, we can select either the NACA
4 digit generator or NACA 5 digit generator on this website. Here, we will demonstrate mesh
generation for a NACA2312 using the NACA 4 digit generator (Figure 21.2). To get started, you
can take the following steps:

1) Go to AirfoilTools.com using a web browser.
2) From the main page, click on the NACA 4 digit generator, on the left-hand side of the web

page.

Figure 21.1: The www.airfoiltools.com website.

3) According to the NACA2312 specification, the parameters defining the Max Camber, Max
camber position, and Thickness are 2, 30 and 12, respectively.

4) Select the Number of points to be 50. Please note that it can be increased if more precision
is required.

5) Make sure you activate the check-box beside Cosine spacing to choose the Close Trailing
edge option. The Cosine spacing increases the number of points (or decreases the distance
between points) around the leading edge and trailing edges of the airfoil, which have the
greatest curvature. Additionally, Close Trailing edge forces a sharp trailing edge on the
airfoil.

Figure 21.2: Settings for obtaining a NACA 4 digit series airfoil coordinates.



196 Chapter 21. Mesh Generation Using Gmsh

6) Click on the Plot, and copy the coordinate data from the Data file.
7) Create a new file and open in with any standard text editor (i.e. Notepad, Text Editor, etc.)
8) Copy the coordinates into it and finally, go to File→ Save as and choose a suitable filename,

such as naca2312.dat.

Converting Coordinates to Gmsh format
Gmsh uses a native .geo file format, which is a readable list of instructions to build the airfoil
geometry, and then mesh it. Points in Gmsh can be defined in the .geo file as:
Point(1)={1.00000000, 0.00000000, 0.00000000, 1.000};,
where, the number in Point(1) shows the index of the corresponding point, and the first three
numbers in brackets indicate the point coordinates in space (its x, y, and z components). Additionally,
the last number is the scale of the mesh distribution around the corresponding point, which is
1 by default. Keep in mind that the coordinates saved in the naca2312.dat include only the x
and y coordinates, whereas Gmsh also requires the z coordinate. Hence, for a two-dimensional
case we must also add zero for the z component to the naca2312.dat file. Since it can be
time-consuming to input all of the airfoil geometry points into Gmsh, we have included with
this tutorial a small Python script that reads the naca2312.dat file, converts the coordinates
into Gmsh format, and them exports a new .geo file with all of the points connected using a
spline. To use this converter, copy the gmshconverter.py script file into the folder you saved
naca2312.dat, and then open a terminal window and enter the following commands:

Windows
$ cd "where you saved naca2312.dat and gmshconverter.py"

$ python3 gmshconverter.py naca2312.dat naca2312.geo

Mac
$ cd "where you saved naca2312.dat and gmshconverter.py"

$ python3 gmshconverter.py naca2312.dat naca2312.geo

After completing these steps, the .geo file is saved in the same directory and is ready to be loaded
into Gmsh.

Mesh Design Using Gmsh
In this section, we will show how to use Gmsh. In order to get started, you can take the following
steps:

1) Launch Gmsh.
2) Go to File→ Open, and select the naca2312.geo file. As shown in Fig21.3, once you

have loaded the naca2312.geo file you will see the points defining the airfoil surface in
the display window.

3) To make a surface for the airfoil we can use a spline to define a smooth curve. On the
right-hand side of the Gmsh display window, go to Modules→ Geometry→ Elementary
entities→ Add→ Spline (Figure 21.4).

0.25 0.5 0.75 1.00.0
-0.04

0.08

Figure 21.3: Points defining NACA2312 airfoil.



197

Figure 21.4: How to add spline to design platform.

4) Start to click on points from the trailing edge (1,0,0) toward the leading edge (0,0,0) for the
upper side of the airfoil.

5) When you reach (0,0,0) press the e key on your keyboard to apply your command (or design).
6) Then, start again from (1,0,0) toward (0,0,0) for the lower side of the airfoil, and again when

you reach (0,0,0), press the e button.
7) It is worth pointing out that by pressing the e button, Gmsh applies the selected command on

the geometric entities you have selected. Additionally, you can quit the current command by
pressing the q button.

8) Once you are done making the upper and lower surfaces of the airfoil, press q to exit from
the spline command. As shown in Figure 21.5, splines for both the upper and lower surfaces
of the airfoil are now added to the geometry.

Figure 21.5: Splines added to define a smooth surface for the NACA2312 airfoil.

9) In order to define the outer boundaries for the computational domain, as shown in Figure
21.6, go to Modules→ Geometry→ Elementary entities→ Add→ Point.

Figure 21.6: How to add points to define the outer domain boundaries.



198 Chapter 21. Mesh Generation Using Gmsh

10) Another display window similar to Figure 21.7 will appear that you can use to define the
coordinates for each boundary point.

11) Click on the Apply button to add them in order.
12) Give four points with following coordinates: (10,-10,0), (10,10,0), (-10,-10,0), and (-10,10,0).
13) Next, press the q button on your keyboard to terminate the new point command. As seen

form Figure 21.8, four points are added in the display window.

Figure 21.7: Adding points to the domain.

Airfoil

Add Point

Figure 21.8: Final points defining the outer edges of the domain.

14) The next step is to connect these four points using lines. To do this, as shown in Figure 21.9,
go to Modules→ Geometry→ Elementary entities→ Add→ Straight line.

15) Connect the points by clicking on them in order.
16) Once they are connected, four straight blue lines showing the connection between each pair

of points points should be visible (Figure 21.10).
17) Now press the q button on your keyboard to end the command.
18) The next step is to specify the boundaries of the domain/geometry with respect to the

lines/splines, and define a unified computational domain. As shown in Figure 21.11, go to
Modules→ Geometry→ Elementary entities→ Add→ Plane Surface.



199

Figure 21.9: How to add straight lines to the domain.

Add Straight line

Figure 21.10: Straight lines added to define the outer boundaries of the domain.

Figure 21.11: How to add a plane surface to the domain.



200 Chapter 21. Mesh Generation Using Gmsh

19) Click on all lines and splines, and then, press e button on your keyboard. As shown in Figure
21.12, dashed grey lines will now appear, which defines a computational surface that defines
the region containing fluid flow.

20) Press the q button on your keyboard to end the command.

Add Plane surface

Figure 21.12: A new surface that defines the computational domain.

21) After defining the computational domain in Gmsh, we also need to specify the boundary
conditions tags that will be read by SU2 (or any other compatible CFD software). As shown
in Figure 21.13, go to Modules→ Geometry→ Physical groups→ Add→ Line.

Figure 21.13: How to define boundary type in design platform.

23) To define the outer boundary condition, as shown in Figure 21.14a, type farfield, and then
select the four straight lines in the display window by clicking on them. This step specifies
the boundary condition name of these four lines as farfield, and later SU2 will read in this
boundary tag farfield.

24) Press the e button on your keyboard.
25) As shown in Figure 21.14b, do the same thing for the airfoil surface, but giving it the name

airfoil.
26) to specify the fluid containing region of the domain go to Modules→Geometry→ Physical

groups→ Add→ Surface (Figure 21.15).



201

27) As shown in Figure 21.14c, type fluid in the text-box, and then select surface of the domain
in the display window by clicking on one of the dash lines (which indicate the surface of the
domain).

28) Press the e button to apply this tag, and then the q to exit the command.

(a) Define farfield boundary for outer
boundaries

(b) Defining airfoil boundary for the surface
of the airfoil

(c) Defining fluid for the inside of the com-
putational domain.

Figure 21.14: How to define a new range for the contour lines.

Figure 21.15: Defining different boundary type.

In order to add elements to the domain, we start by specifying the number of points to use on each
line/spline, and then generate an unstructured mesh over the entire domain. To get started, you can
take the following steps:

1) Go to Modules→Mesh→ Define→ Transfinite→ Line (Figure 21.16).
2) As shown in Figure 21.17a, choose 100 grid points in the Number of points option.
3) select Bump from the Type drop-down menu, and set 0.3 for this Parameter. In this step,

we selected 100 grid points for each side of the airfoil, and by selecting Bump with 0.3
as parameter set, we distributed the nodes along each spline with a concentration near the
leading and trailing edges of the airfoil. You can change the node clustering by choosing
different values for the bump Parameter.

4) Click on both splines the form the upper and lower surfaces of the airfoil and press the e
button on your keyboard.

5) According to Figure 21.17b, set the Number of points option to 20.
6) To have similar distributions of the grids on each line of the outer boundaries, select Progres-



202 Chapter 21. Mesh Generation Using Gmsh

sion from Type drop-down menu with value of 1 for the Parameter.
7) Click on all four straight lines at the outer boundary of the domain, and then press the e key

on your keyboard.
8) At the end, press the q key to end the command.
9) The next step is to finally generate the mesh for the 2D domain. To do this, as shown in Figure

21.18, go to Modules→ Mesh→ 2D. Now you can select 2D, and it will automatically
generate an unstructured mesh for the computational domain.

Figure 21.16: How to specify the number of nodes on the boundaries.

(a) Grid points for the surface of the airfoil. (b) Grid points for the outer boundaries.

Figure 21.17: Settings for defining different type of grid points.

Figure 21.18: How to generate 2D mesh.

The mesh you get should be similar to that shown in Figure 21.19. As you can see from Figure
21.19a, the mesh is coarse around the outer boundaries, while it is significantly finer around the
airfoil (Figure 21.19b), especially near the leading edge and trailing edges of the airfoil geometry
since we used the bump distribution on these lines.

Once the mesh generation is completed, we need to save it in a format that can be read by SU2.
Fortunately, Gmsh can save directly in the native SU2 format generating a .su2 mesh file. To do
this, go to File→ Export. Next, according to Figure 21.20, select Mesh-SU2(*.su2) from the
Format drop-down menu, and in the Filename address bar, type naca2312.su2 to create a new
.su2 mesh file. Then, click on OK to proceed to the next step. A display window appears that



203

asks for various SU2 Options. You should ignore this option for now by clicking on OK to simply
write the mesh file to disk. You should now see the naca2312.su2 mesh has been generated
and saved.

(a) Full view of computational domain with unstruc-
tured mesh.

(b) Zoom-in view of the computational domain.

Figure 21.19: Mesh generated for computational domain.

Figure 21.20: How to export the mesh in SU2 format.



204 Chapter 21. Mesh Generation Using Gmsh

Run Tutorial In Chapter16 Using New Mesh
To demonstrate how to use this mesh, we will repeat the tutorial in Section (16) but using this
new NACA 2312 mesh. To choose the new mesh, and to change the names of boundary con-
ditions, you can open the SU2 configuration (.cfg) file. For example, open the inv_NACA
0012.cfg file and search for INPUT/OUTPUT INFORMATION. According to Figure 21.21,
in MESH_FILENAME under INPUT/OUTPUT INFORMATION, you can change the filename of
mesh you are going to use, in this case using naca2312.su2.

Figure 21.21: Changing the mesh in the SU2 configuration file.

Additionally, if you would like to use a different name for the physical boundaries in the
Gmsh, you should change the boundary names in the configuration file as well. To do this, search
for BOUNDARY CONDITION DEFINITION in inv_NACA 0012.cfg. As shown in Figure
21.22, you can change the names of your boundaries to be the same as those used in Gmsh when you
defined your Physical Lines/Curves. In this case, MARKER_EULER and MARKER_FAR correspond
to the wall boundary for the upper and lower surfaces of the airfoil, and the far-field boundary,
respectively. After having these changes, you can continue with the rest of the steps, similar to
Section (16).

Figure 21.22: Boundary conditions settings in the SU2 configuration file.

Questions
1. Run the provided default NACA2312 test case at the provided Ma = 0.8.

(a) Plot and comment on the mesh.
(b) Plot and comment on the pressure contours around the airfoil.
(c) Plot and comment on the pressure coefficient on the surface of the airfoil.

2. Re-run the default NACA2312 case but change the Mach number to Ma = 0.3 and run several
simulations using alpha = 0, 2, 4, 6, 8, 10, 12, 14, 16 degrees.

(a) Plots Cl vs alpha alongside the provided experimental data[10] in the test case folder.
(b) Repeat 1.b with Ma = 0.3 for the alpha = 0, 8, 16 degree cases.
(c) Repeat 1.c with for the alpha = 0, 8, 16 degree cases.

3. Discuss the differences exist between the results of this tutorial and the results of Chapter16.
What is the major difference and what could be the reason for that?



22. Shock Waves

Required Files

Use the following links to download the same version of SU2 for Windows (click here) or Mac
(click here). The required configuration and mesh files for normal shock detection (click here).
The required configuration and mesh files for oblique shock detection (click here).

Use the following links to download the same version of Paraview for Windows (click here)
or Mac (click here).

Problem Description
When the speed of flow is much less than the speed of sound (Ma< 0.3), the density of flow remains
constant. However, when the speed of flow is higher (0.3 < Ma < 1), then the compressibility
effect becomes an important matter. For subsonic compressible flows, the entropy remains constant
and the flow process is reversible. On the other hand, when the flow speed exceeds the speed of
sound (Ma > 1), the flow experiences abrupt changes in volume, and hence notable changes in
density. In this case, the flow process becomes irreversible, and hence, the entropy increases. This
significant and fast change in the density of gas flow is the main reason for the shock formation.
Shocks are a small region in the gas where the flow properties change significantly. When shock
happens, the static pressure and temperature increases, while the Mach number decreases. It is
worth mentioning that if the shock waves are perpendicular to the flow direction, then this shock is
called a normal shock. Another type of shock, which is not perpendicular to the flow direction is
called an oblique shock, which is usually formed in supersonic jet flows.

In this tutorial, we are going to demonstrate how to simulate a supersonic inviscid flow inside of
a Converging-Diverging (CD) nozzle. For simplicity, this nozzle is assumed to have a rectangular
cross-sectional area with a depth of 1m. Other geometry specifications are set as follows:
• Inlet height = 280mm
• Throat height = 210mm

https://users.encs.concordia.ca/~bvermeir/book/executables/windows/SU2_Windows.zip
https://users.encs.concordia.ca/~bvermeir/book/executables/osx/SU2_Mac.zip
https://gitlab.com/bvermeir/book-cfd/blob/master/tutorial/tut7_shock_wave/normal_shock.zip
https://gitlab.com/bvermeir/book-cfd/blob/master/tutorial/tut7_shock_wave/oblique_shock.zip
https://users.encs.concordia.ca/~bvermeir/book/executables/windows/ParaView-5.4.0-Qt5-OpenGL2-Windows-64bit.exe
https://users.encs.concordia.ca/~bvermeir/book/executables/osx/ParaView-5.4.0-Qt5-OpenGL2-MPI-OSX10.8-64bit.dmg


206 Chapter 22. Shock Waves

• Exit height = 336mm
To begin, let us consider different flow regimes inside the CD nozzle. Figure 22.1 shows a schematic
of plot of pressure ratio ( pb

p0
) versus centerline location, x. The pressure ratio shows the relation

between the pressure at the inlet of the nozzle (p0) and the exit of the nozzle (pb). As it is
shown in Figure 22.1, four different flow regimes can usually happen in a nozzle given different
circumstances. In the first regime noticed by curve (a), when the back pressure of the nozzle is
less than the pressure of the inlet flow ( pb

p0
< 1), then the flow is subsonic since it does not reach

Ma = 1 at all. In this case, the gas flow accelerates during the converging part fo nozzle, and it
decelerates in the diverging part, exiting the nozzle as a subsonic flow. In the curve (b), the flow
regime is called sonic flow. In this regime, the gas velocity increases in the converging part and
it reaches Ma = 1 at the throat. However, the gas velocity decreases in the diverging part and it
becomes subsonic at the exit of the nozzle. This flow regime is referred to as choked flow. It means
any further reduction in the back pressure of the nozzle does not change the mass flow in the nozzle.
Furthermore, curve (c) shows the flow accelerates in the converging part of the nozzle and it reaches
Ma = 1 at the throat. Also, the gas flow velocity increases continually as the cross-sectional area
gets bigger in the diverging part (Ma > 1). However, a normal shock happens in the downstream
of the throat in the diverging part. In this case, it is expected to have a subsonic flow at the exit
of the nozzle. With further reduction in back pressure, when the pressure difference between the
inlet and exit of the nozzle is large enough, the flow becomes supersonic in the diverging part of
the nozzle and is exhausted as a supersonic flow without any normal shock occurred inside of the
nozzle. However, the oblique shock is expected at the exit of the nozzle. As mentioned before, this
type of shock is not perpendicular to the flow direction, and it usually happens when a supersonic
jet discharges in ambient.

  

p
b
/p

0

x

p
0 
, T

0 p
b 
, T

b

(a)

(d)

(c)

(b)

1

Figure 22.1: Schematic representation of the pressure changes inside the nozzle for different flow
regimes.

Usually, the static pressure and temperature at the inlet of the nozzle are given, and based on
the operating Mach number, the stagnation pressure and temperature at the inlet of the nozzle are
calculated. Considering mathematical formulations is beyond the concept of this tutorial and hence
we do not discuss them here. The flow properties for the simulation can be represented as follows:
• Inlet Mach number = 0.5
• Inlet static pressure = 200,000 Pa
• Inlet static temperature = 288 K
• Inlet stagnation pressure = 238,828 Pa
• Inlet stagnation temperature = 308.4 K



207

• Back (Exit) static pressure = 190,000 Pa
This tutorial has two parts: Flow Solution and Post-processing. In the first part, we will explain
how to manage the prerequisite files and settings, and how to run the CFD simulation using SU2.
In the second part, we explain how to use Paraview to visualize the data obtained from SU2.

Flow solution

To run this simulation, SU2 needs two files: a configuration file (.cfg) and a mesh file (.su2).
Links to the required files and executables are provided at the start of this tutorial. The files include:

1. inv_normal_shock.cfg which is a configuration file.
2. mesh_nozzle.su2 which is a a mesh file.

The next step is to copy these two files into the same directory as the SU2 executable. Then, to run
the simulation, open a terminal window and enter the following commands:

Windows
$ cd "where you saved the package"

$ SU2_CFD.exe inv_normal_shock.cfg

Mac
$ cd "where you saved the package"
$ ./SU2_CFD inv_normal_shock.cfg

The SU2 solver will commence solving the problem and will print out the residuals at every
iteration until the specified convergence criteria is achieved. The computational time for this case is
highly dependant on the computer’s performance. However, the run time is expected to be about
15 minutes on average. After the calculations are complete, the following output files should have
been generated within in the SU2 folder:
• flow.vtk: The flow solution on the entire domain.
• history.vtk: Convergence history.
• restart_flow.dat: Restart file.
• surface_flow.vtk: The flow solution on the airfoil surface.

Please keep in mind that every time you run SU2, the output data will be overwritten. Hence, before
launching a new simulation you should backup your files in another directory.

Post-Processing

In this section, we explain how to use Paraview to visualize the solution generated by SU2. First of
all, install paraview (if not already done) using the links at the start of this tutorial. Once that is
complete, perform the following steps to visualize the results:

22.0.1 Load the Solution File:
1) Launch Paraview.
2) Go to File→ Open, and then select the flow.vtk file. On the left side of the Paraview

window, you will see the file appears in the Pipeline Browser under builtin
3) Now press the Apply button in the Properties tab, right under the Pipeline Browser heading.

After taking these steps, your file is loaded by Paraview and is ready to be visualized (Figure
22.2).

22.0.2 Visualize the Mesh
As shown in Figure 22.3, in order to view the mesh select Solid Color with Wireframe in the toolbar.
Then, you can zoom in to see the mesh employed for this computational domain, as shown in
Figure 22.4. As you can see, the mesh in the nozzle is structured, and mesh concentration around



208 Chapter 22. Shock Waves

Figure 22.2: Loading the .vtk file into the Pipeline Browser.

the throat is higher than in other areas since the speed of the flow increases at the throat. Therefore,
more cells are needed in this region to detect the flow properties with enough accuracy.

Figure 22.3: How to display the mesh.

Figure 22.4: The structured mesh for the CD nozzle.

22.0.3 Visualize Pressure, Temperature and Mach Contours

To display pressure contours, you can take the following steps:

1) Click on flow.vtk in the Pipeline Browser, and then click on the Display form in the
Properties tab.

2) Under the Coloring section, select Pressure from the drop-down menu (Figure 22.5). The
pressure contours should be like Fig(22.6)

3) Repeat the same procedure to get the contours for temperature and Mach number. The
contours for the temperature and Mach number should be like Fig(22.7) and Fig(22.8),
repectively.



209

Figure 22.5: Settings for displaying pressure contours.

Figure 22.6: Pressure contours for the nozzle.

Figure 22.7: Temperature contours for the nozzle.



210 Chapter 22. Shock Waves

Figure 22.8: Mach contours for the nozzle.

As seen from Figure 22.6, The static pressure decreases even in the diverging part, while after
the shock, the pressure increases abruptly. Since the flow process is irreversible, it would not be
isentropic anymore. Hence, the total pressure at downstream of shock is always less than the total
pressure in upstream. This pressure loss is due to the shock wave. As mentioned before, according
to Fig(22.7), the static temperature also increases downstream of the shock wave. But keep in mind
that there is no work done in a shock and no heat is produced then. Therefore the total temperature
and total enthalpy remain constant. According to Fig(22.8), the Mach number decreases abruptly
due to the shock. Roughly speaking, this phenomenon is unfavorable, and to avoid the normal
shock in CD nozzles, the pressure difference between the inlet and exit of the nozzle should be
increased adequately if supersonic flow is demanded at the exit of the nozzle.

22.0.4 Plotting non-dimensional variables along the centerline

Since static temperature and pressure as well as the speed of gas flow have different dimensions,
then plotting all of these three variables in one figure does not fit well. Therefore, they should be
non-dimensionalized to have the same scale in the plot. To non-dimensionalize these variables,
we can divide the pressure and temperature by their constant values at the inlet of the nozzle.
Additionally, for gas velocity, we can use the Mach number since it is already a non-dimensional
value. To plot multiple non-dimensional variables along the centerline you can take the following
steps:

1) Select flow.vtk by clicking on it in the Pipeline Browser.
2) According to Figure 22.9, click on the Calculator icon .
3) Under Properties, click on the Scalars and from the drop-down list, select Temperature

(Figure 22.10).

Figure 22.9: Calculator option in Paraview.



211

Figure 22.10: Calculator settings.

Figure 22.11: How to plot data over an arbitrary line in space.

4) Then in the equation-box, divide the Temperature by stagnaiton temperature (T0 = 308.4K).
5) Select a name for the non-dimensionalized temperature in Result Array Name. Here, we

call it non_temp. Then, Click on Apply.
6) Repeat the same procedure for pressure. Please note that you need to divide static pressure

by stagnation pressure (P0 = 238,828Pa) and set a name for this variable as non_pressure.
7) Go to Filters→ Data Analysis→ Plot Over Line (as shown in Figure 22.11).

4) Under Line Parameters in Properties (as shown in Figure 22.12), select the coordinates
for two arbitrary points you want (i.e. Point1 and Point2). In this case, plot the line from
Point1 to Point2 with (0,0,0) and (0.84,0,0), respectively, and then click Apply. A new line
plot item will be generated.

5) According to Figure 22.13, under the X Axis Parameters from Display, select Point_X from
the X Array Name drop-down menu. Now, under the Series Parameters options toggle
the box beside Variable to uncheck everything, then select the Mach, non_pressure and
non_temp items. The plot of these three variables versus the x-coordinate will be displayed
in the main window as shown in Figure 22.14.



212 Chapter 22. Shock Waves

Figure 22.12: Define the coordinates for a line plot in space.

Figure 22.13: How to plot multiple variables over a line.

Figure 22.14: Plot for non-dimensionalized variables along the nozzle centerline.



213

4) In order to see a spreadsheet view of the datapoints, you can click the upper right icon as
shown in Figure 17.23, then click on the Spreadsheet View similar to Figure 17.24.

5) Additionally, you can export a .csv file and plot it with any other plotting software. To export
the spreadsheet as a .csv file, go to File→ Export, and then Save as .csv.

Figure 22.15: How to make spreadsheet view in a new window.

Figure 22.16: Selecting the Spreadsheet View among the different available views.

Questions
1. Run the default case as provided which uses JST Riemann solver and detect flow regime
represented by curve (c) in Figure 22.1.

(a) Create colored contours of Pressure, Temperature, and Mach number.
(b) Plot non-dimensionalized Pressure, Temperature, and Mach number along the nozzle center-

line using Plot Over Line.
2. Repeat Q.1 but change the static pressure at the exit of the nozzle to detect the flow regime
represented by curve (a) in Figure 22.1.
3. Repeat Q.1 but change the static pressure at the exit of the nozzle to detect the flow regime
represented by curve (b) in Figure 22.1.
4. Repeat Q.1 but change the static pressure at the exit of the nozzle to detect the flow regime
represented by curve (d) in Figure 22.1.
5. Compare and comment on the results of different flow regimes.
6. Download the oblique shock mesh and configuration files provided at the start of this tutorial.
Run the case for the oblique shock problem. (Hint: You need to stabilize the solution by tuning
CFL number or finding the proper Riemann solver.)

(a) Create coloured contours of Pressure, Temperature, and Mach number.
(b) Plot non-dimensionalized Pressure, Temperature, and Mach number along the centerline of

the domain using Plot Over Line.
(c) Comment on the results.



Bibliography

Articles
[2] Jorge E. Bardina, Peter G. Huang, and Thomas J. Coakley. “Turbulence Modeling Validation,

Testing, and Development”. In: (1997) (cited on page 45).

[3] Madeleine Coutanceau and Roger Bouard. “Experimental determination of the main features
of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady
flow”. In: Journal of Fluid Mechanics 79.2 (1977), pages 231–256 (cited on page 179).

[5] SK Godunov. “Different methods for shock waves”. In: Moscow State University (1954)
(cited on page 90).

[6] Ami Harten. “High resolution schemes for hyperbolic conservation laws”. In: Journal of
computational physics 135.2 (1997), pages 260–278 (cited on page 90).

[8] Osamu Inoue and Nozomu Hatakeyama. “Sound generation by a two-dimensional circular
cylinder in a uniform flow”. In: Journal of Fluid Mechanics 471 (2002), pages 285–314
(cited on page 179).

[9] W. P. Jones and Brian Edward Launder. “The Prediction of Laminarization with a Two-
Equation Model of Turbulence”. In: International journal of heat and mass transfer 15.2
(1972), pages 301–314 (cited on page 45).

[10] Charles L Ladson. “Effects of independent variation of Mach and Reynolds numbers on the
low-speed aerodynamic characteristics of the NACA 0012 airfoil section”. In: (1988) (cited
on pages 148, 204).

[11] Charles L Ladson, Acquilla S Hill, and William G Johnson Jr. “Pressure distributions from
high Reynolds number transonic tests of an NACA 0012 airfoil in the Langley 0.3-meter
transonic cryogenic tunnel”. In: (1987) (cited on page 148).



215

[12] Brian Edward Launder and B. I. Sharma. “Application of the Energy-Dissipation Model of
Turbulence to the Calculation of Flow near a Spinning Disc”. In: Letters in heat and mass
transfer 1.2 (1974), pages 131–137 (cited on page 45).

[15] Stephen B Pope. “Turbulent Flows”. In: (2001) (cited on page 26).

[16] Ludwig Prandtl. “7. Bericht Über Untersuchungen Zur Ausgebildeten Turbulenz”. In: ZAMM-
Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und
Mechanik 5.2 (1925), pages 136–139 (cited on page 43).

[17] Osborne Reynolds. “IV. On the Dynamical Theory of Incompressible Viscous Fluids and
the Determination of the Criterion”. In: Philosophical transactions of the royal society of
london.(a.) 186 (1895), pages 123–164 (cited on page 32).

[19] V Schmitt. “Pressure distributions on the ONERA M6-wing at transonic mach numbers,
experimental data base for computer program assessment”. In: AGARD AR-138 (1979) (cited
on page 193).

[22] E. F. Toro. “Riemann Solvers with Evolved Initial Conditions”. In: International journal for
numerical methods in fluids 52.4 (2006), pages 433–453 (cited on pages 66, 77, 79, 85, 87).

[23] Bram Van Leer. “Towards the ultimate conservative difference scheme. II. Monotonicity and
conservation combined in a second-order scheme”. In: Journal of computational physics
14.4 (1974), pages 361–370 (cited on page 88).

[24] Frank M. White. “Fluid Mechanics”. In: (2015) (cited on page 13).

Books
[1] Dale Anderson, John C. Tannehill, and Richard H. Pletcher. Computational Fluid Mechanics

and Heat Transfer. CRC Press, 2016 (cited on pages 43, 46, 66, 95).

[4] Peter Alan Davidson. Turbulence: An Introduction for Scientists and Engineers. Oxford
University Press, 2015 (cited on pages 26, 31).

[7] Charles Hirsch. Numerical Computation of Internal and External Flows: The Fundamentals
of Computational Fluid Dynamics. Elsevier, 2007 (cited on pages 13, 16, 66, 90, 95).

[13] Randall J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Volume 31. Cambridge
university press, 2002 (cited on pages 66, 77, 85, 88).

[14] Bruce Roy Munson et al. Fluid Mechanics. Wiley Singapore, 2013 (cited on page 13).

[21] Steven H Strogatz. Nonlinear dynamics and chaos with student solutions manual: With
applications to physics, biology, chemistry, and engineering. CRC press, 2018 (cited on
page 27).

[25] David C Wilcox et al. Turbulence Modeling for CFD. Volume 2. DCW industries La Canada,
CA, 1998 (cited on pages 34, 42, 46, 47).


	Part I — Part 1: Physics
	1 Conservation Laws
	1.1 Reynolds Transport Theorem

	2 The Navier Stokes Equations
	2.1 Integral Form
	2.2 Divergence Form

	3 Simplified Systems
	3.1 Euler Equations
	3.2 Linear Advection
	3.3 Burgers Equation
	3.4 Linear Diffusion
	3.5 PDE Classification

	4 Turbulence
	4.1 Turbulence Theory
	4.2 Reynolds Averaging
	4.3 Turbulence Modelling

	5 Boundary Conditions
	5.1 Wall Boundaries


	Part II — Part 2: Numerics
	6 Taylor-Series
	7 Finite Difference Methods
	7.1 The First Derivative
	7.2 A General Approach
	7.3 The Second Derivative
	7.4 Example Applications

	8 Finite Volume Methods
	8.1 Derivation
	8.2 The Riemann Problem
	8.3 Example Applications
	8.4 Linear Hyperbolic Problems
	8.5 Nonlinear Hyperbolic Problems
	8.6 MUSCL Schemes

	9 Consistency, Stability, Convergence
	9.1 Consistency
	9.2 Stability
	9.3 Convergence

	10 Spectral Properties
	10.1 Dissipation Error
	10.2 Dispersion Error

	11 Modified Equation Analysis
	11.1 Linear Advection
	11.2 General Observations

	12 Time-Stepping
	12.1 Explicit
	12.2 Implicit

	13 Iterative Methods
	13.1 Gaussian Elimination
	13.2 Jacobi Iteration
	13.3 Gauss Seidel Iteration
	13.4 Successive Over-Relaxation
	13.5 Assessing Convergence
	13.6 Multigrid

	14 Applications
	14.1 An Euler Solver
	14.2 A Navier-Stokes Solver


	Part III — Part 3: Applications
	15 Introduction
	16 Inviscid NACA 0012
	17 Supersonic Wedge
	18 Inviscid ONERA M6
	19 Laminar Cylinder
	20 Turbulent ONERA M6
	21 Mesh Generation Using Gmsh
	22 Shock Waves
	Bibliography
	Articles
	Books



