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Abstract 

The work presented in this paper is in the area of brain tumor detection. We propose a fast detection system 

with 3D MRI scans of Flair modality. It performs 2 functions, predicting the gray level distribution and location 

distribution of the pixels in the tumor regions and generating tumor masks with pixel-wise precision. To 

facilitate 3D data analysis and processing, we introduce a 2D histogram presentation encompassing the gray-

level distribution and pixel-location distribution of a 3D object. In the proposed system, specific 2D histograms 

highlighting tumor-related features are established by exploiting the left-right asymmetry of a brain structure. 

A modulation function, generated from the input data of each patient case, is applied to the 2D histograms to 

transform them into coarsely or finely predicted distributions of tumor pixels. The prediction result helps to 

identify/remove tumor-free slices. The prediction and removal operations are performed to the axial, coronal 

and sagittal slice series of a brain image, transforming it into a 3D minimum bounding box of its tumor region. 

The bounding box is utilized to finalize the prediction and generate a 3D tumor mask. The proposed system has 

been tested extensively with the data of more than 1200 patient cases in BraTS2018~2021 datasets. The test 

results demonstrate that the predicted 2D histograms resemble closely the true ones. The system delivers also 

very good tumor detection results, comparable to those of state-of-the-art CNN systems with mono-modality 

inputs. They are reproducible and obtained at an extremely low computation cost and without need for training. 

Keywords: Brain tumor detection, Image processing, 3D MRI brain image processing, Deterministic model, 

Prediction of object-pixel distribution, Tumor mask generation 
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1. Introduction 

Brain tumor detection is important for brain cancer diagnosis. As tumors can grow everywhere in the 3D 

space of a brain and appear in very different sizes, shapes and texture patterns, as 2 examples illustrated in Fig. 

1, it is a difficult task to detect them. Hence, the analysis of brain images, such as those acquired by magnetic 

resonance imaging (MRI), for tumor detection is usually performed by highly-trained medical professionals, by 

carefully examining 3D brain images and precisely segmenting tumor regions from the images. If the resources 

of trained professionals are limited, the detection and diagnosis can be delayed. Developing computer vision 

systems for fully automatic brain tumor detection can help to reduce the work load of the medical specialists in 

order to improve the chance of timely diagnosis and treatments. 

          
(a)             (b)                         (c)              (d) 

Fig. 1 (a)(c) Slices sampled from two 3D MRI brain images of Flair modality. (b)(d) Binary tumor masks of the slices in (a) and (c). 

Convolutional neural network (CNN) can be considered to handle the complexity of brain tumor detection, 

as it can have many filtering layers and a very large number of filters in each layer to deal with enormous 

variations in its objects. Various CNN structures have been developed for particular kinds of tasks. For example, 

Visual Geometry Group Net (VGG Net) [1] is used to extract various image features, and many CNNs for 

medical image processing are built on the basis of U-Net structure [2-3]. The processing power of a CNN is 

related to its number of parameters in the filtering kernels, and the values of these parameters are determined 

by means of a training process. It should, however, be noted that the quantity and quality of data samples should 

match the number of the parameters to train the CNN decently. If one attempts to have more processing power 

by increasing the number of kernels/parameters of a CNN, more data samples will be needed whereas the 

currently available data resources may not necessarily meet the growing needs. Hence, the problem of 

insufficient data samples is yet to be overcome one way or another.  

It should also be noted that operating a CNN requires a large amount of computation, let alone training it. 

Though the computation capacity is constantly getting improved in recently years, the pace of growing may not 
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match what is desired. Moreover, the accessibility of the existing computation resources is another issue. Hence, 

maximizing the computation efficiency, i.e., performing the same task while using the minimum amount of 

computation, should still be a point drawing the attention of designers. 

In contrast to CNN, conventional filtering systems are developed with little dependency on training samples 

and at little computation cost with respect to that required by a CNN. A good number of such systems have 

been reported for brain tumor detection. In general, such a system performs 2 functions, feature extraction from 

the input data and classification operation applied to the extracted features. As the 2 functions can be performed 

in different ways, there are varieties systems reported in this topic area and relevant to the work presented in 

this paper. 

Feature extraction can be performed by means of filters. Gabor filters are commonly used for texture 

analysis and feature extraction in non-CNN systems. The extracted features are then applied to various 

classifiers. For example, the method of Extremely Randomized Trees can be used for this purpose [4,5]. In 

some systems, Gabor filtering method is combined with Support Vector Machine (SVM) to detect brain tumors 

[6,7]. One can also combine Gabor filtering and K-means clustering methods for feature extraction and SVM 

together with Random Forest (RF) for classification to improve the detection result [8]. Gabor filtering and 

Walsh-Hadamard transform (WHT) can be used for feature extraction, and Fuzzy C-Means clustering for 

classification [9]. 

Some region-based image segmentation methods are used to detect brain tumor, e.g., homogeneity- and 

object-feature based Random Walks (HORW) [10], and multi-agent adaptive region grow [11]. In these 

methods, initial seed points should be selected, and the neighboring pixels are examined and determined 

whether they belong to the same region of the seed.  

The feature information concerning brain tumors can also be extracted by measuring asymmetry of a brain 

structure, as a tumor can make its left-right halves less symmetrical. The degree of asymmetry can be measured 

by calculating, for example, the pixel-by-pixel difference of the two 3D halves. Then, the 3D data resulting 

from such a calculation are used as feature data to be applied to a classifier of Random Forest [12].  
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It should be noted that the 3D data produced by the dissimilarity measures represent all the asymmetry 

caused not only by the tumors but also by the differences of texture details in healthy parts. To make the latter 

less pronounced, one can measure the degree of asymmetry of the 2 halves based on their statistical 

presentations, e.g., gray level distributions, instead of their 3D data. For example, the difference between the 

gray level histograms of the normal hemisphere and the pathological hemisphere of a brain are calculated by a 

very simple subtraction operation [13]. One can also generate multiple pairs of histograms, each of which given 

by 2 subregions located symmetrically in the 2 halves, and calculate the degree of dissimilarity by Bhattacharya 

coefficient method to find the likely tumor location [14]. By these measures, the dissimilarity of healthy parts 

in image details may be less pronounced, but it can still be more visible than that caused by tumors. 

Due to enormous variations in brain tumor regions, it is very difficult to achieve a high detection quality 

by means of conventional non-CNN filtering systems, whereas CNNs require enormous computation and data 

resources. If one wishes to develop a brain tumor detection system of good processing quality at a very low 

computation cost, the symmetrical nature of brain structure can be explored but the problem of non-tumoral 

asymmetry should be solved, and new methods for feature extraction and classification need to be developed. 

Various image processing techniques have reported to handle different medical image problems. For 

example, a multi-level threshold image segmentation is used for Coronavirus Disease 2019 (COVID-19) 

infection diagnosis [15,16]. CNN approaches are also used in developing different systems to detect, for 

example, colorectal polyps in colonoscopy image [17], gastrointestinal cancers in Computed Tomography (CT) 

and MRI image [18], and brain tumors in MRI image [19-21]. 

The objective of the work presented in this paper is to develop a computation-efficient system to detect 

brain tumors with pixel-wise precision in MRI Flair images. The system is non-CNN-based, able to find tumor 

information from its input data, and no training is needed. In general, MRI scanning can be done by 4 modalities, 

i.e., Flair, T1, T1c and T2, resulting in four 3D images, and tumor regions are more visible in images of Flair 

modality than the other 3. The proposed system uses only this modality to minimize the volume of the input 

data in order to achieve a fast detection in a computation resource-restricted environment. Moreover, in clinical 
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routine, some of the modalities can be missing, because of time constraints and/or image artifacts (such as 

patient motion) [22-25]. Thus, systems functioning with mono-modality images can be widely applicable with 

less restriction. 

To achieve a high processing quality at the lowest computation cost, the new system is designed based on 

a new scheme: the main processing in the system is to predict, step by step, the gray level distribution and 

location distribution of the pixels in the tumor regions of a 3D brain image. The prediction result of each step 

is used to detect and to remove regions of non-interest, i.e., tumor-free regions, from the 3D image. Each 

removal reduces the data volume and improves the density of the tumor information, facilitating the prediction 

in the succeeding step. The final prediction result is then applied to the remaining 3D data to detect, by means 

of very simple operations, the tumor locations precisely. In the design of this system, the following ideas and 

methods have been proposed and implemented, as positive contributions to this topic area. 

• Presentation of 2D histogram of 3D data. It encompasses the gray level distribution of the data and their 

locational distribution. As the pixels of a 3D image can be presented in a series of 2D slices, the 2D 

histogram illustrates how the pixels at a particular gray level, or in a given gray level range, are distributed 

over the slices. 

• Histogram modulation function to attenuate the presence of tumor-free elements. It transforms a histogram 

representing the gray level distribution and location distribution of the elements in both tumoral and tumor-

free areas to a histogram representing mainly the distributions of the tumoral elements. The modulation 

function is generated with the original data of each patient case so that its characteristic can adapt to the 

data distribution of the particular case. 

• Method to interleave a step-by-step prediction of the gray level distribution and location distribution of 

pixels in the object regions and a multi-step detection/removal of non-object regions in a 3D image. The 

two interact with each other and complement to each other: the result of each prediction step is used to 

detect and to remove non-object regions, improving the density of the object information and benefiting 

the prediction in the following step. 
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This paper consists of 4 sections. The work concerning the proposed system is presented in Section 2 and 

it involves a proposed method to present 3D data distribution and a proposed scheme for brain tumor detection. 

Section 3 is dedicated to the presentation of the experiment results, using the patient cases in Brain Tumor 

Segmentation (BraTS) datasets [26]. A conclusion is presented in Section 4. 

2. Proposed Design Method and Prediction/Detection System 

Brain tumors are detected from 3D brain image data. In this section, we propose, first of all, a 2D histogram 

method to present the gray level distribution with the location information of 3D image data, and this method 

can be used to facilitate, in general, 3D object detections. The proposed system is presented in Subsections 2.2. 

It comprises the part of the prediction of the pixel distribution in the tumor regions, to which the major part of 

this subsection is dedicated, and the part of using the prediction results to precisely identify the tumor regions 

in a 3D brain image. The 2D histogram method is applied throughout the design process. 

2.1 Two-D Histogram Presenting Gray-Level and Location Distributions of 3D Data 

A tumor can appear in any location in a 3D brain structure and tumor regions can have various gray level 

distributions. The gray level distribution provides us with important statistical characters of the 3D regions, but 

without their locational information. In this subsection, we propose a 2D histogram presentation, bringing the 

locational information to the gray level distributions. 

It is known that a 3D brain image can be presented as a series of axial, coronal or sagittal slices, and each 

slice has a gray level distribution. A 2D histogram presents collectively a series of distributions given by a 

series of slices, as an example shown in Fig. 2 (a). Let H(i,j) denote such a histogram, the i-axis specifies the 

gray levels, normalized to [0, 1], and the j-axis is the slice index, i.e., one of the 3 coordinates in the 3D structure. 

If j = jo is given, H(i,jo) is the gray level distribution of the pixels in the jo
th slice, whereas if i = io, H(io,j) 

represents the locational distribution of the pixels at the gray level io over the slices in the series. Hence, a 2D 

histogram H(i,j) encompasses the gray level distribution and locational distribution of the pixels. 
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(a)                                                       (b) 

   
(c)                                                       (d) 

   
(e)                                                     (f) 

Fig. 2  Two-D histograms generated from the data of the patient case 01417 from BraTS2021 dataset. In each of them, the x-axis 

specifies the gray levels, normalized to [0, 1], the y-axis the index of slice series, the z-axis the number of pixels. (a)(b) Two-D 
histograms of the 3D brain region and the tumor region given by the axial slices, (c)(d) by the coronal slices, and (e)(f) by the 

sagittal slices.  

The 3 pairs of 2D histograms, illustrated in Fig. 2, are given by the same 3D Flair image sliced 3 times.  

The 2D histogram in Fig. 2 (a) is generated from the 155 axial slices and illustrates the pixel distribution of the 

3D brain region, whereas Fig. 2 (b) shows that of the tumor region inside the brain. Fig. 2 (b) demonstrates that 

a vast majority of the tumor pixels, i.e., the pixels in the 3D tumor regions inside the brain, are found in the 

slices indexed 70 to 130 and approximately in the gray level range (0.25, 0.5). The coordinates in the y-axis 

define the location of the tumor region in the direction perpendicular to the slices. As the axial slices are index-

numbered from the bottom up, the tumor is found in the upper part of the brain. 

The 2D histogram of the tumor region in Fig. 2 (f) is given by the 240 sagittal slices of the same patient 

case, and presents the gray level distributions, over the slices, of the pixels in the tumor area. One can notice 

that the number of the slices where the tumor pixels appear is visibly smaller than that in the axial or coronal 

series shown in Fig. 2 (b) or (d), indicating that the tumor region is thinner in this dimension. 

The three 2D histograms shown in Fig. 2 (b), (d) and (f) represent, on one hand, the three gray level 

distributions of the same tumor region in the three series, respectively. On the other hand, they indicate the 



8 

 

coordinates of the tumor location in the 3D brain image.  In other words, one can find the tumor-free axial, 

coronal or sagittal slices, respectively, in the three 2D histograms. 

It should, however, be noted that, in a real detection case, 2D histograms of tumor pixels are not available. 

Nevertheless, they are predictable. We propose a method to use the information from 2D histograms of a brain 

image to predict the gray level distribution of the tumor pixels inside the image. Based on the results of the 

prediction, the task of the brain tumor detection can be done easily and effectively to achieve a good processing 

quality. The procedure of the prediction and the detection is described in the following subsection. 

2.2 Proposed System 

The proposed system is designed to predict 2D histograms of the pixels in the tumor region in a 3D brain 

image of MRI Flair modality, and the prediction results are then used to detect brain tumor with pixel-wise 

precision. This subsection is organized as follows. In Subsection 2.2.1, the overview of the proposed system is 

presented. In Subsection 2.2.2, a method to extract tumor information by a particular measure of brain structure 

asymmetry is described. The data extracted by the asymmetry measure have a significantly higher tumor 

information density, with respect to that in the input 3D data, but need to be modulated for the prediction. A 

modulation function is proposed and described in Subsection 2.2.3. Three-step coarse prediction and the 

finalization of the tumor pixel distribution are found in Subsections 2.2.4. Subsection 2.2.5 is about the brain 

tumor mask generation based on the predicted 2D histograms. 

2.2.1 System Overview 

Of a 3D input image, the object region takes, in general, only a very small percentage of the space and thus 

the density of the object information is extremely low in the input data. In case of brain tumor detection and 

there is a thick tumor-free margin in each of the 6 sides of the 3D input. In other words, in each of the 3 series 

of slices, namely axial, coronal and sagittal series, only a small number of slices contains tumor pixels, and the 

other slices are tumor-free. However, as a tumor can be found in any place in the 3D brain, it is not easy to 

localize these slices in the series. Moreover, though a tumor region in a Flair image often looks brighter than 

its surroundings, there can be darker sub-regions in it and there is no model relating the gray level distribution 
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of the pixels inside the tumor space to that of the entire brain. Hence, it is very challenging task to predict the 

2D histograms with good precision. 

In the design of the proposed system, the 3 commonly known points are explored. 

• Though the object location is unknown, some object-free regions can be localized with some certainty. One 

can identify/remove object-free regions in multiple steps, starting from the most obvious ones, and each 

step results in a higher density of object information. 

• A higher object information density in the input data leads to a better processing quality.  

• Since a 3D input image can be sliced three times in the three different directions, i.e., x, y, z axis, resulting 

in 3 different series of slices, one can design a 3-step process and each step can be performed with a 

different series of the same 3D data. 

The processing scheme in the proposed system is shown in Fig. 3. It has 3 prediction steps interleaved with 

3 cropping operations. In each step, the 3D data is sliced in one of the 3 directions, the 2D histogram of the 

tumor pixels of this series is predicted, and the result is then applied to crop out object-free margins, i.e., tumor-

free slices. The cropped 3D data is expected to have a higher object information density, with respect to that in 

the preceding step, and are then used for the prediction in the following step. In this way, the prediction result 

can be improved step by step. 

In the proposed system, the symmetrical nature of the brain image is explored to produce an asymmetry 

map, presented as a 2D histogram, to be used to initiate the prediction. A modulation function is generated from 

the input data, as shown in Fig. 3, and used to modulate the 2D histogram in each step to produce the prediction 

result. In the present design, the same modulation function is applied to all the 3 coarse prediction steps, and a 

modified version to the finalization of the prediction. 

The progressive removals of tumor-free regions in the proposed scheme transforms the input 3D image 

into a 3D minimum bounding box, in which most of the pixels are inside the tumor region.  This minimum 

bounding box is then used to finalize the 3 predicted 2D histograms, as shown in Fig. 3. 
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Fig. 3  Block diagram of the proposed system. It receives a 3D brain image input that can be sliced into a series of nA axial slices, or a 
series of nC coronal slices or nS sagittal slices, and generates the predicted 2D histogram of the brain tumor region for each of the 

3 series of slices and a 3D tumor mask.  

The proposed system also includes a simple procedure to identify the regions of brain tumors, in which the 

predicted tumor pixel distributions are used to localize them in the minimum bounding box to generate a tumor 

mask with pixel-wise precision. 



11 

 

The quality of the final results is related to the data processing quality in each of the prediction steps. In 

particular, as the operations are performed sequentially, the first prediction and cropping are very critical. The 

design of the blocks is presented in the following subsections. 

2.2.2 Brain Image Asymmetry Measure to Extract Tumor Information 

A healthy human brain looks roughly left-right symmetrical, though its details are not really left-right 

mirrored [27], as an example shown in Fig. 4 (a). The presence of a brain tumor causes a more noticeable 

asymmetry in its structure, as shown in Fig. 4 (b) and (c). Hence, the asymmetry measures in brain images have 

been used to detect brain tumors [13,14,28]. It should, nevertheless, be noted that, though the tumor-related 

asymmetry is salient for trained human eyes, it is not prominent in an asymmetry measurement in computer 

vision. The results of the measurement can be more dominated by the elements representing the natural 

asymmetry in brain image details than those of the asymmetry caused by tumor, referred to as tumoral 

asymmetry.  

             
(a)                                 (b)                      (c) 

Fig. 4  (a) Slice of brain image without tumor. The left-right asymmetry in image details is referred to as natural asymmetry.  

(b)(c) Slice of brain image with tumor and its binary tumor mask. 

The natural asymmetry in brain images is in image details, reflecting different tissues and fluid, whereas 

the tumoral asymmetry is more in brain structure. Before all the measures, a 3D low-pass filtering is applied to 

the input and then each slice is down-sampled to erase some image details so that the elements of natural 

asymmetry are less dominant in the asymmetry measures.   

In order to make the natural asymmetry in fine image patterns less influenceable, in the proposed prediction 

process, the left-right asymmetry of a 3D brain image is measured simply by means of the difference between 

the two 2D histograms, namely Hleft(i,j) and Hright(i,j), given by the left and right halves, respectively. It is 

expressed as 

∆𝐻(𝑖, 𝑗) =  |𝐻𝑙𝑒𝑓𝑡(𝑖, 𝑗) − 𝐻𝑟𝑖𝑔ℎ𝑡(𝑖, 𝑗)|                                                      (1) 
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where i representing the gray level, scaled between 0 and 1, and j the slice index in the axial or coronal series. 

As ΔH(i,j) represents the gray level distribution of the asymmetry elements over the series, it is referred to as 

asymmetry map. 

As the gray level range of a tumor space is in an upper-level section of that of the brain region, the pixels 

having their gray levels below the mean level of the 3D brain region are not included in ΔH(i,j). In other words, 

in the asymmetry maps presented in this section, the gray scale is normalized to the range of [0,1] with i = 0 

corresponding to the mean level of the 3D brain region. 

Fig. 5 illustrates an example of Hleft(i,j), Hright(i,j) and H(i,j) obtained from a 3D Flair image of a typical 

patient case, in comparison with HT(i,j), the 2D histogram encompassing gray level distribution and location 

distribution of the true tumor region, referred to as the ground truth. Comparing Hleft(i,j) and Hright(i,j), one can 

see the right half has more pixels in the upper gray levels, indicating the presence of a tumor, which is also 

reflected in H(i,j). Comparing H(i,j) and the ground truth HT(i,j), one can clearly see that the distribution in 

the upper level range in H(i,j) is highly correlated to that of HT(i,j), but that in the lower level range is not.  

   
(a)                                                                    (b) 

   
(c)                                                                    (d) 

Fig. 5  Four 2D histograms obtained from the155 axial slices of a low-passed and down-sampled 3D Flair image from Case 01412 of 
BraTS2021 dataset. The X-axis is the normalized gray scale and the zero point corresponds to the mean value of the 3D brain 

region, excluding the pixels of gray level values below the mean.  

(a) Hleft(i,j), the 2D histogram of the left half of the 3D image,  
(b) Hright(i,j), the 2D histogram of the right half of the 3D image,  

(c) ΔH(i,j) = |Hleft(i,j) - Hright(i,j)|, and (d) HT(i,j), the ground truth of the 2D gray level distribution of the tumor region. 

Evidently, the upper-gray-level section of ΔH(i,j) is dominated by the pixels in the tumor region, 

representing more the tumoral asymmetry. The section of the lower gray levels in ΔH(i,j) is, however, more 
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relevant to the natural asymmetry. With a view to obtaining a good prediction of the gray level distribution of 

the tumor region, the data of ΔH(i,j) needs to be modulated so that the elements related to the natural asymmetry 

will be attenuated. The development of the modulation function is presented in the next subsection.  

2.2.3 Generation of the Modulation Function  

The asymmetry measurement results in a 2D histogram ΔH(i,j) representing the natural and tumoral 

asymmetries in the consecutive slices of a 3D brain image. The objective of the modulation is to transform 

ΔH(i,j) into a 2D histogram Hm(i,j) resembling the true gray level distribution of the tumor pixels. In this 

subsection, we propose a modulation function fm(i), and Hm(i,j) will simply be the product of  ΔH(i,j) ∙ fm(i). 

As mentioned previously, the elements of natural asymmetry in ΔH(i,j) are found in the lower part of the 

gray level range, while those of tumoral asymmetry in the upper gray level part. To attenuate the former and 

preserve the latter, the modulation function fm(i) should be sigmoidal, i.e., being monotonic and having a bell-

shaped first derivative dfm(i)/di. The critical point is i = iM at the peak point of dfm(i)/di. Based on iM, the gray 

level range of fm(i) is divided into 3 sections, i < iM, i ≈ iM (around iM), and i > iM, with fm(i < iM) ≈ min and 

fm(i > iM) ≈ 1. Most of the pixels in the tumor-free regions are found in the lower gray level section of i < iM, 

and the pixels in the mid-section of i ≈ iM can be found in either tumor-free or tumor regions. Hence, the key 

issues in establishing fm(i) are a) to find the point of i ≈ iM and b) to determine the width of the mid-section. 

They should match the true gray level distribution of the pixels in the tumor-free region. In the absence of such 

ground truth data, we need to find the information from the data of the input brain image. 

In 3D brain images, since a tumor region usually appears in the left or right half, the half involving the 

tumor will have its histogram more populated in the upper gray levels than the other half. Let us call the first 

half tumor-half and the other tumor-free-half, and htumor-half and htumor-free-half denote their 1D histograms, 

respectively. Fig. 6 (a) and (b) illustrate htumor-half and htumor-free-half given by 2 very different patient cases, and 

each pair is superimposed with the ground truth htumor-free, the normalized gray level distribution of the pixels 

outside the tumor space in the entire 3D brain region. One can find, in each of these 2 cases, a high degree of 

similarity between htumor-free-half and htumor-free. It indicates that, in the half that is less affected by the tumor, the 
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statistical characters of the data are not much different from those of the entire tumor-free regions of the brain. 

Thus, htumor-free-half can be used to emulate htumor-free to determine the mid-section of the modulation function fm(i). 

 
(a)                                                                (b) 

Fig. 6  Gray level distributions given by patient cases 01412 and 01414 from BraTS 2021 dataset. In the 2 graphs, htumor-free-half, the 

distribution of the pixels from the tumor-free half is compared with htumor-half, that of the tumor half and htumor-free, that of the true 

tumor-free region inside the entire brain region.  

Of the 1251 patient cases available in BraTS2021 datasets, approximately 94% have tumors developed in 

either left or right half, and the above observation/analysis is valid for a vast majority of patient cases. Even 

though a tumor grows in the middle, its region can hardly straddle the left and right halves symmetrically. 

Hence, the histogram of the half having fewer tumor pixels bears a similitude of htumor-free and thus can substitute 

it to determine fm(i). 

The procedure to generate the modulation function fm(i) from the distribution of the pixels in the tumor-

free half has 2 steps. The first step is to identify which of the 2 halves is more likely to be tumor-free, and the 

second step is to transform the distribution of the pixels of the identified half into a desired fm(i). 

As the pixels in tumor regions are in the upper-gray-level section, the tumor-free half of the 3D brain image 

should have a smaller number of high-gray-level pixels with respect to the other half. Hence, the identification 

is done by simply counting the number of pixels in the upper-gray-level section. In case of samples from 

BraTS2021, this section is defined as [0.55, 1] in the normalized gray scale, in which the point i = 0 corresponds 

to the mean value of the pixels in the brain region.  

Once the tumor-free half is identified, the 1D distribution of its pixels, denoted by htf(i), can be generated. 

Transforming htf(i) into a desired fm(i) is done mainly by truncation and inversion. A block diagram of the 

transformation presented in Fig. 7 (a), and the curves of the data in this process is visualized in Fig. 7 (b). The 
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input htf(i), plotted in blue, is truncated to limit the heights of its bins, resulting in hT(i) plotted in cyan. The 

curve of 1/hT(i), plotted in black, can be adjusted to approach the expected fm(i), plotted in magenta. In this 

process, low-pass filtering operations are applied before and after the inversion to remove the discontinuity in 

the curves. The mathematic expressions used in the transformation process are as follows. 

ℎ𝑇(𝑖) = {

max𝑇 ,       ℎ𝑡𝑓(𝑖) > 𝑚𝑎𝑥𝑇                

ℎ𝑡𝑓(𝑖),     𝑚𝑖𝑛𝑇 ≤ ℎ𝑡𝑓(𝑖) ≤ max𝑇

min𝑇 ,       ℎ𝑡𝑓(𝑖) < 𝑚𝑖𝑛𝑇                 

                                                (2) 

𝑓𝑚(𝑖) = [
1

ℎ𝑇(𝑖)
]

𝛾

+ 𝛼                                                                                       (3) 

where maxT and minT are the pre-determined highest and lowest bin-heights, γ is a correction factor, and α is a 

constant. 

htf(i)

Truncation 
& low-pass filtering

hT(i)

fm(i)

Inverting 
& low-pass filtering

1/hT(i)

Correction
 with γ and α 

           
(a)                                                                (b)  

Fig. 7  (a) Block diagram of the procedure to transform htf(i) to fm(i). (b) Graph of htf(i) of a 3D Flair image, hT(i), truncated htf(i) with 
maxT ≈ 0.5, minT ≈ 0.05, 1/hT(i) and fm(i) given by Eq. (3) with γ = 1.8 and α = 0.02.  

The modulation function fm(i) can be fine-turn by means of the four parameters, maxT and minT, γ, and α. 

One can use maxT and minT to fine-tune, respectively, the 2 particular points where dfm(i)/di = 1, and these 2 

points define mid-section of fm(i) curve. The parameter γ can be used to modify dfm(i)/di in this section, and α 

<< 1 to maintain a minimum value of fm(i). For example, increasing the values of maxT and minT shifts the mid-

section slightly left-wards, making the modulation "milder", i.e., attenuating less the elements in mid gray level 

range. 

In summary, the modulation function fm(i) is generated from the input data of each patient case and it is 

able to adapt to the distributions of individual cases. Its effectiveness in attenuating the element irrelevant to 
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the tumor regions, while preserving those relevant to the tumors, will be confirmed in the design and test of the 

proposed system presented in the following subsections. 

2.2.4 Prediction of the Tumor Pixel Distribution 

The core of the proposed system is the procedure of 3 coarse predictions of the 2D histograms of the tumor 

pixels interleaved with 3 cropping operations, as shown in Fig. 3. The 3 coarse predictions are performed with 

axial, coronal and sagittal slice series, respectively. The objective of each prediction is to find the concentration 

of likely tumor pixels in order to identify the likely tumor-free slices that are then removed, i.e., cropped out, 

from the slice series.  

The processing in the first 2 steps are performed with the axial and coronal slices, respectively, as each of 

them reflects the left-right symmetry of brain structure, allowing to generate an asymmetry map ΔH(i,j), 

whereas that in the third step is with a series of cropped sagittal slices. After the 3-step prediction and cropping, 

the input 3D image is reduced to a minimum bounding box, from which the predicted distribution of the tumor 

region is refined. The details of the prediction and cropping operations are presented in the following 

subsections. 

2.2.4.1 First Two Coarse Predictions and Cropping Operations 

In the proposed system, the first coarse prediction is performed on the axial slices. Let ΔHa(i,j) denote the 

asymmetry map generated from the axial slices and Hma(i,j) denote the coarsely predicted distribution of the 

tumor pixels over the axial slices, we have Hma(i,j) = ΔHa(i,j) ∙ fm1(i). The modulation function fm1(i) is defined 

by Eqs. (2) and (3), described in Subsection 2.2.3, generated from the data of the tumor-free half of the original 

3D input.  

The modulated 2D histogram Hma(i,j) represents the asymmetry in the upper gray levels, where most of the 

pixels in the tumor region are found. Thus, it is highly correlated with HTa(i,j), the 2D histogram of the pixels 

in the tumor region given by the ground truth. 
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Fig. 8 (a) and (b) illustrates an example of the first prediction results, in which ΔHa(i,j) and Hma(i,j) are 

obtained from the same patient case shown in Fig. 5.  Comparing Hma(i,j) with HTa(i,j) shown in Fig. 8 (c), one 

can observe that 1) Hma(i,j) emulates well the distribution of most pixels in the tumor region and 2) it indicates 

a slice-index range, very similar to that in HTa(i,j), where the tumor pixels are located. The same degree of 

similarity is also observed in the prediction results of a vast majority of the 1251 patient cases in BraTS2021 

dataset. Thus, in the absence of HTa(i,j), Hma(i,j) can be considered as a coarsely predicted 2D histogram of the 

tumor pixels in the consecutive axial slices. 

     
(a)                                                         (b)                                                          (c) 

Fig. 8  (a) Asymmetry map ΔHa(i,j), generated with the axial slice series of the patient case 01412 from BraTS2021 dataset.  
(b) Modulated 2D histogram of the axial slice series, Hma(i,j), to be used as a coarsely predicted 2D histogram of the tumor region.  

(c) True 2D histogram of the tumor pixels, HTa(i,j), over the axial slices.  

To identify the tumor-free axial slices, we have hLa(j)=∑i Hma(i,j) representing the locational distribution 

of the tumor pixels in the axial slice. An example of hLa(j) shown in Fig. 9 (b) is obtained from Hma(i,j) shown 

in Fig. 9 (a). High magnitudes in hLa(j) indicate the concentration of pixels of interest, i.e., tumor pixels, in the 

corresponding slices. The index range of these slices is determined by the two local minima in hLa(j) curve. The 

slices indexed between them are considered slices with tumor, and the others tumor-free. One can see in Fig. 9 

(b) that the set of the axial slices identified as tumor slices are almost identical to that in the ground truth. The 

tumor-free slices, found on the top and bottom of the input 3D image, constitute two tumor-free margins and 

are then effectively cropped out. 

By the first cropping operation, the size of the 3D image is reduced significantly. Of the 1251 patient cases 

in BraTS2021, it results in a removal of more than 60% axial slices from the 3D brain region, while losing only 

less than 4% of the tumor pixels.  
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(a)                                                                   (b) 

Fig. 9  (a) Coarsely predicted 2D histogram of the tumor region, Hma(i,j), over a series of axial slices.  

(b) Predicted locational distribution of the tumor pixels over the series of axial slices, hLa(j), plotted in blue. The 2 local minima 
define the 2 boundaries of the predicted set of consecutive tumor slices, specified by the green frame, in comparison with the 

ground truth framed in red. The data sample is from the patient case 01412 of BraTS2021. 

The second coarse prediction is then applied to the cropped 3D image presented as a series of coronal slices. 

The number of slices in this series is the same as that of the original Flair image, but the number of non-zero 

pixels per slice is much smaller because the predicted tumor-free top and bottom margins of the input 3D image 

have been cropped out in the first step of prediction/cropping, as examples shown in Fig. 10. Nevertheless, the 

overall left-right symmetry is preserved in the tumor-free coronal slices, and a coronal asymmetry map ΔHc(i,j) 

can be generated to represent the distribution of asymmetrical elements from the cropped coronal slices. 

 
(a)                        (b)                       (c) 

Fig. 10 Coronal slices sampled from a 3D image, after the tumor-free axial slices are removed in the first cropping. (a)(c) Cropped 

coronal slice without tumor and (b) that with tumor. The left-right asymmetry in (b) is much more noticeable than that in (a) or 
(c). 

The procedure of the second prediction is the same as the first one. The same modulation function fm1(i) is 

applied to the coronal asymmetry map ΔHc(i,j) obtained from the coronal slices to generate the second predicted 

tumor pixel distribution Hmc(i,j). 

The cropping operation following the second coarse prediction is identical to that in the first step, resulting 

in the removal of 2 sets of coronal slices that are considered tumor-free. At that point, the predicted tumor-free 

margins in the top, bottom, back and front sides of the original 3D input have been cropped out. Fig. 11 

illustrates a few examples of cropped sagittal slices, in comparison with the original ones. The series of such 

sagittal slices is then ready for the next step of prediction and cropping. 
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(a) 

 
(b) 

Fig. 11 Sagittal slices samples (a) before the 2 cropping operations, (b) after the cropping operations applied to the axial and coronal 
slices. The slice in the center involves a tumor region and the other 2 are tumor-free. 

2.2.4.2 Third Coarse Prediction & Cropping and the Final Prediction 

The objective of the 3rd coarse prediction and cropping is to identify tumor-free sagittal slices and to 

remove them. As a sagittal slice does not feature left-right symmetry, no asymmetry map can be generated in 

this step. It should, however, be noted that the percentage of tumor pixels in this sagittal slice series is evidently 

much higher than that of the original 3D input. The prediction in this 3rd step is done by modulating Hs(i,j), the 

2D histogram of a sagittal series of a 3D brain image already cropped twice. The coarsely predicted 2D 

histogram of the tumor pixels over the sagittal slices is denoted as Hms(i,j) =  Hs(i,j) ∙ fm1(i), with the same fm1(i) 

used in the 2 previous coarse prediction steps. Similar to the modulations in the 2 previous steps, the elements 

in the lower-gray-level section of Hs(i,j) are attenuated, resulting in Hms(i,j) resembling the true 2D histogram 

of the tumor pixels over the sagittal slices. 

The cropping operation in this step is identical to that in the other steps. It results in the removal of the 2 

sets of tumor-free sagittal slices, i.e., the tumor-free margins in the left and right sides of the 3D input. By the 

3-step cropping, the original 3D input is reduced to a 3D minimum bounding box, in which most of the pixels 

are found in the tumor region. 

The operation of the fine prediction is applied to the data of the 3D minimum bounding box. Its axial, 

coronal and sagittal slice series give three 2D histograms, denoted by Hba(i,j), Hbc(i,j) and Hbs(i,j), respectively. 

An example is illustrated in Fig. 12 (a) (d) and (g). Comparing the 3 histograms with the ground truth of the 

tumor pixel distributions illustrated in Fig. 12 (c) (f) and (i), one can notice that 1) the 2 sets are very similar in 

the upper-gray-level section and 2) their differences are found in the lower and mid gray level sections, as the 

minimum bounding box involves tumor-free regions. Hence, like the coarse predictions, the operation for the 
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fine prediction is to attenuate the elements of Hba(i,j), Hbc(i,j) and Hbs(i,j) in the mid and lower-gray-level 

sections by a simple modulation.  

 
(a)                                       (b)                                        (c) 

 
(d)                                       (e)                                        (f) 

 
(g)                                       (h)                                        (i) 

Fig. 12 (a)(d)(g) Two-D histograms of the axial, coronal and sagittal slice series given by the minimum bounding box.  
(b)(e)(h) Predicted 2D histograms of tumor pixels in the axial, coronal and sagittal slice series.  

(c)(f)(i) Ground truth of the 2D histograms in (b)(e)(h).  

The data sample is from the patient case 01412 in BraTS2021.  

It should, however, be noticed that the gray levels of the pixels in tumor regions can cover a wide range. 

Though a majority of the tumor pixels is found in the upper-gray-level section, a non-negligible minority is 

found in the mid and lower sections, which should be taken into consideration in the fine prediction. Hence, the 

modulation function in this stage is adjusted to attenuate less elements in the mid and lower gray-level ranges, 

with respect to that in the coarse prediction steps. 

The final prediction results in the three 2D histograms, denoted as Hpa(i,j), Hpc(i,j) and Hps(i,j), indicating 

the gray level distribution of the tumor pixels over the axial, coronal, and sagittal slice series, respectively. They 

are expressed as follows. 

{

𝐻𝑝𝑎(𝑖, 𝑗) = 𝐻𝑏𝑎(𝑖, 𝑗)  ∙ 𝑓𝑚2(𝑖)

𝐻𝑝𝑐(𝑖, 𝑗) = 𝐻𝑏𝑐(𝑖, 𝑗)  ∙ 𝑓𝑚2(𝑖)

𝐻𝑝𝑠(𝑖, 𝑗) = 𝐻𝑏𝑠(𝑖, 𝑗)  ∙ 𝑓𝑚2(𝑖)

                                                          (4) 

where fm2(i) is defined by Eqs. (2) and (3). Compared to fm1(i), the characteristic of fm2 is slightly left-wards 

shifted, the slope, dfm2(i)/di, in mid-section is gentler, and the minimum value of fm2(i) is increased to preserve 
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more pixels in the lower and mid gray-level range. It is done by i) slightly increasing maxT and minT, ii) reducing 

γ and iii) increasing α. 

An example of the 3 predicted 2D histograms are presented in Fig. 12 (b)(e)(h). The ground truth data of 

the tumor distributions are presented in Fig. 12 (c)(f)(i). One can find that, the predicted tumor distributions are 

very similar to the ground truth. They can be used, for example, to detect the whole tumor regions with pixel-

wise precision in the brain image. 

2.2.5 Brain Tumor Mask Generation 

In the proposed system, illustrated in Fig. 3, the input data of the block labeled “Tumor mask generation”, 

is the 3D bounding box after the 6 tumor-free margins are cropped out from an original 3D brain image of Flair 

modality. The gray level distribution of the tumor pixels has been predicted, but their precise locations in this 

bounding box are not specified. The processing in this detection block is to transform the bounding box into a 

3D binary tumor mask with pixel-wise precision. The transformation is done by 2 very simple operations, i.e., 

pixel binarization by gray level thresholding and morphological process by low-pass filtering. 

The binarization is to divide, coarsely by a simple gray level thresholding, the pixels in the bounding box 

into 2 groups, those inside the tumor region and those outside. The threshold should be determined with 2 issues 

taken into consideration. 

• It should adapt to the gray level distribution of the pixels in each individual case.  

• The gray level range of the pixels in the tumor region can overlap completely that of the tumor-free regions, 

as the example shown in Fig. 13 (a). The threshold is determined in such a way that most of the tumor-free 

pixels are put in one side and most of tumor pixels on the other side, resulting in unavoidably a 

misplacement of a minority of the pixels in each side. 

In practice, it is reasonable to allows, e.g., 20% of tumor pixels to be misplaced if their misplacement is 

insignificant enough to be corrected in the following processing. In this case, the threshold is found at the gray 

level point corresponding to 20% in the cumulative distribution function (CDF) of the tumor pixel population, 

as shown in Fig. 13 (b). The thresholds defined in this manner can be adaptive to the various distributions of 



22 

 

individual cases. Since the true distribution of the tumor area is not available, the predicted one is used to 

determine the threshold. 

Threshold = 0.44

 
(a)                                                 (b) 

Fig. 13 (a) Gray level distributions of the tumoral or tumor-free pixels in a 3D minimum bounding box. The solid curves are given by the 

ground truth, and the dashed curves by the predicted distributions. The blue dashed line indicates an assumed gray level threshold.  
(b) CDF derived from the predicted distribution of the tumor pixels. The point of CDF = 20% determines the gray level threshold 

of 0.44 in this patient case.  

The binarization by means of a simple thresholding results in a coarse binary tumor mask with a minority 

of the pixels misplaced. A slice of such a 3D mask is illustrated in  Fig. 14 (b). To correct the misplacement, a 

morphological operation is applied. In this design, it is done by (i) a convolution with a simple 3D averaging 

kernel of 5×5×5 pixels and (ii) assigning the logic-1 value to all the pixels having their gray levels grater than 

a pre-determined floor and logic-0 to the others. Fig. 14 (c) illustrates the slice generated by such a 

morphological operation, in comparison with the ground truth illustrated in Fig. 14 (d). 

 
(a)        (b)        (c)       (d) 

Fig. 14 (a) Slice from a 3D minimum bounding box generated from the data of the patient case 01418 of BraTS2021 dataset.  
(b) Slice of the coarse mask after the binarization.  

(c) Slice of the final binary mask after the morphological operation.  

(d) Slice of the true tumor mask.  

This tumor mask generation is done by the 2 very simple operations, as it is performed on the data of the 

predicted 3D minimum bounding boxes of tumors and the predicted tumor pixel distribution. Hence it is an 

application of the prediction results, and the quality of the operations depends very much on the quality of the 

prediction. Various quality measures have been conducted to evaluate the performance of the proposed system. 

The results are presented in the next section. 
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3. Performance Evaluation 

The performance of the proposed system has been evaluated with the available patient cases in BraTS 

datasets. The quality of the prediction of the tumor pixel distribution in a 3D brain image has been assessed. So 

has the quality of the brain tumor detection. The information about the datasets is found in Subsection 3.1. The 

performance measurements and ablation study are found in Subsection 3.2, and the performance comparison is 

presented in Subsection 3.3. 

3.1 Dataset  

The processing quality of the proposed system has been measured with the data of BraTS2021 [26]. There 

are 1251 patient cases of MRI scanning and each is accompanied by a ground-truth tumor mask approved by 

medical specialists.  As the system does not need training, the data of all the 1251 patient cases have been used 

to measure the processing quality of both the prediction of the tumor pixel distributions and the brain tumor 

detection. 

In BraTS2021 dataset there are additional 219 patient cases, referred to as the validation samples, of which 

the ground truth data is not accessible for public. They have also been used to evaluate the tumor detection 

quality of the proposed system, by means of the online platform Synapse [29] where the assessment is a standard 

process with data from the Cancer Imaging Archive [30-33]. 

In order to compare the performance of the proposed system, in terms of brain tumor detection, with those 

published in recent years, earlier versions of BraTS datasets, namely BraTS2013, BraTS2017,  BraTS2018 [34], 

BraTS2019 [35] and BraTS2020 [36] have also been used for the evaluation. The number of patient cases in 

each of the datasets is specified in Table 1. In case of testing on the validation samples of these datasets, the 

tumor detection results have been evaluated by the online platform, Center for Biomedical Image Computing 

and Analytics Image Processing Portal (CBICA IPP) [37]. 

Table 1 Numbers of patient cases in BraTS datasets 
 BraTS 

2013 

BraTS 

2017 

BraTS 

2018 

BraTS 

2019 

BraTS 

2020 

BraTS 

2021 

Training set 30 285 285 335 369 1251 

Validation set N.A. N.A. 66 125 125 219 
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3.2 Performance Measurements 

The quantitative measurements of the performance have been done mainly with the data of the 1251 patient 

cases of MRI scanning, including the ground truth data, in BraTS2021 dataset. In this subsection, the description 

of the performance metrics is found in Subsection 3.2.1, the results of the comprehensive tests of the prediction 

and detection in Subsection 3.2.2 and Subsection 3.2.3, respectively, and the ablation study in Subsection 3.2.4. 

3.2.1 Performance Metrics 

As the proposed system is designed to predict the gray level distributions of tumor pixels and to detect 

tumors, the performance metrics involve 2 kinds of measures, for the prediction and the detection, respectively. 

The prediction quality can be measured by the degree of similarity between the predicted and true 

histograms. Correlation coefficient (CC), mean squared error (MSE) and structural similarity index measure 

(SSIM) [38] are commonly used for similarity measurement. SSIM is defined as follows. 

SSIM(𝒙, 𝒚) = [𝑙(𝒙, 𝒚)]𝛼 ∙ [𝑐(𝒙, 𝒚)]𝛽 ∙ [𝑠(𝒙, 𝒚)]𝛾                                           (5) 

where  

𝑙(𝒙, 𝒚) =  
2𝜇𝑥𝜇𝑦+𝐶1

𝜇𝑥
2+𝜇𝑦

2+𝐶1
,    𝑐(𝒙, 𝒚) =  

2𝜎𝑥𝜎𝑦+𝐶2

𝜎𝑥
2+𝜎𝑦

2+𝐶2
,    𝑠(𝒙, 𝒚) =  

𝜎𝑥𝑦+𝐶3

𝜎𝑥𝜎𝑦+𝐶3
 

(x, y) are two sets of data, (µx, µy) denote the mean values of x and y, (σx, σy) are the standard deviations, σxy is 

the correlation coefficient, (α, β, γ) are set to be (1, 1, 1), and (C1, C2, C3) are small non-zero constants to 

stabilize the division with weak denominator.  

The detection quality can be measured in Dice score indicating how much a predicted object mask and the 

true object mask are overlapped. It is defined as 

𝐷𝑖𝑐𝑒(𝑋, 𝑌) =
2𝑇𝑃

(𝑇𝑃+𝐹𝑁)+(𝑇𝑃+𝐹𝑃)
                                                             (6) 

where TP (true positive) is the overlapped part of the predicted and true object masks, FN (false negative) is 

the part of the true object mask that is not covered by the predicted mask. The entire true object mask is 

represented by (TP + FN) and the predicted one by (TP + FP). 

Sensitivity (Sens) and false discovery rate (FDR) [39], defined as 
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𝑆𝑒𝑛𝑠 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                    (7) 

𝐹𝐷𝑅 =
𝐹𝑃

𝑇𝑃+𝐹𝑃
                                                                                      (8) 

can also be used to measure the detection quality, as complements to Dice score. 

3.2.2 Prediction Results 

To evaluate the prediction quality of the proposed system, the similarity between the predicted 2D 

histogram of the tumor pixels in each of the axial, coronal and sagittal series and its ground truth has been 

measured on the 1251 patient cases from BraTS 2021 dataset. Large varieties of tumors appear in these 1251 

cases, and some are more difficult to detect than others. The test results, presented as statistic values of SSIM, 

CC and MSE measures, are shown in Table 2. The following two points are observed. 

• Overall, the proposed system is able to deliver predicted 2D histograms of good quality, confirmed by the 

overall average SSIM of 84.3% and MSE of 0.004 on the 1251 cases.  

• The median SSIM value of 2D histograms, obtained from axial, coronal or sagittal series, is visibly higher 

than the mean value, and even the 25-quantile is around 80%. It is confirmed that the proposed prediction 

method yields a good result for a large majority of patient cases. 

Table 2 Similarity between the predicted and true gray level distributions. The data are generated by testing 

the 1251 patient cases of BraTS2021 dataset 

  Predicted 2D gray level  

distributions of tumor pixels 
Predicted CDF  
of tumor pixels   Axial Coronal Sagittal 

SSIM 

mean 0.841 0.837 0.851 0.944 

median 0.944 0.942 0.947 0.967 

25quantile 0.798 0.796 0.818 0.945 

75quantile 0.979 0.978 0.980 0.973 

CC 

mean 0.878 0.872 0.887 0.958 

median 0.956 0.954 0.958 0.971 

25quantile 0.856 0.855 0.874 0.960 
75quantile 0.982 0.981 0.983 0.974 

MSE 

mean 0.0049 0.0038 0.0028 0.0113 

median 0.0016 0.0013 0.0009 0.0027 
25quantile 0.0006 0.0005 0.0004 0.0007 

75quantile 0.0054 0.0041 0.0031 0.0101 

The prediction results have been applied to detect brain tumor by means of a block with very simple 

thresholding and filtering operations. The test results of the tumor detection are presented in the following 

subsection. 
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3.2.3 Tumor Detection Results 

As the proposed system does not need training, the data samples in both validation and training sets have 

been used to assess its quality of the brain tumor detection delivered by the proposed system. It is done in the 

following 2 approaches. 

• Testing on the 3 validation sets from BraTS 2018, 2019, 2020 and 2021 datasets, respectively, as the 

validation sets of BraTS2019 and BraTS2020 are identical. Then using the online validation tools, namely 

CBICA IPP [37] and Synapse [29], to get the results. 

• Testing on the 4 training sets from the same datasets and measuring the detection quality with the available 

ground truth data. The advantage of this approach is that the test is done on a large number of data samples. 

For example, one can test on the 1251 patient cases in the training set, instead of 219 in the validation set, 

of BraTS2021 dataset. Thus, the test has been done quite comprehensively. 

In total, there are 7 tests, each on a different set of patient cases. The test results, measured in Dice score, 

Sensitivity and FDR, are summarized in Table 3, presented in 7 columns. One can see that, in all the columns, 

the mean Dice scores are higher than 0.80 and the median values are higher than 0.86. In the right-most column, 

given by the test performed extensively on the 1251 patient cases, the Dice scores of 25 quantile is 0.767, 

indicating that the Dice scores of 75% of the cases are 0.767 or more. It has been confirmed that the proposed 

detection method, applying the results of the predicted tumor pixel distributions, is very effective to detect most 

brain tumors, despite the vast variations in their locations, shapes, sizes and texture patterns in the tumor areas. 

The same test results are also visualized in Fig. 15 by means of boxplots. 

It should be underlined that, as the parameters of the proposed system are not determined by training, 

neither the problem of randomness in training nor the problem of reproducibility could arise.  Hence the 

performance is robust and reliable. 
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Table 3 Dice score, sensitivity and FDR of tumor detected by the proposed system 
Flair  

mono-modality input 
Test on validation set 

(assessed by online portal) 
Test on training set 

BraTS dataset 2018 2019/2020 2021 2018 2019 2020 2021 

Number of patient cases 66 125 219 285 335 369 1251 

Dice 

mean 0.843 0.816 0.812 0.814 0.816 0.818 0.802 

median 0.884 0.881 0.874 0.869 0.873 0.872 0.876 
25quantile 0.807 0.771 0.769 0.772 0.786 0.786 0.767 

75quantile 0.914 0.917 0.915 0.913 0.914 0.914 0.920 

Sens 

mean 0.850 0.819 0.824 0.825 0.835 0.834 0.827 

median 0.896 0.877 0.885 0.881 0.896 0.893 0.904 

25quantile 0.815 0.756 0.777 0.777 0.787 0.778 0.785 

75quantile 0.940 0.928 0.941 0.944 0.949 0.948 0.955 

FDR 

mean 0.127 0.138 0.154 0.150 0.154 0.150 0.162 

median 0.102 0.097 0.102 0.091 0.100 0.092 0.101 

25quantile 0.175 0.176 0.188 0.190 0.190 0.183 0.190 

75quantile 0.044 0.033 0.048 0.037 0.042 0.042 0.049 

 

 

Fig. 15 Boxplots illustration of the results in Table 3. The tests have been done on 7 different sets of data samples. 

3.2.4 Ablation Study 

The proposed system, shown in Fig. 3, has 2 important characters for the prediction of the tumor pixel 

distribution and the tumor detection. 

• Modulation of the asymmetry maps and the 2D histograms. The modulation functions are made adaptive 

to each patient case as they are generated from the original data of the case. 

• Progressive prediction and cropping. The 3D data sample is cropped following each of the 3 coarse 

predictions of tumor pixel distribution. The final prediction is done after most of the tumor-free pixels are 

removed by the cropping operations. 

The ablation study has been done by 2 trials related to the 2 characters. The 2 trials have been conducted 

with the data of all the 1251 patient cases of BraTS2021. The results comprise the similarity, measured in SSIM, 

between the predicted and true 2D histograms and Dice score of tumor detection. 
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The first trial is to test if the adaptability of the modulation functions fm1 and fm2 contribute positively to the 

performance of the proposed system. To this end, the system is modified by replacing fm1 and fm2 by a unit-step 

function u(i-0.3), suppressing all the elements in the lower 30% gray level section, regardless the original pixel 

distributions. The test result of this modified system is presented in the first part of Table 4, in comparison with 

that of the proposed one. One can see a significant difference between the two, proving the effectiveness of the 

proposed adaptive modulation functions and the necessity to apply them to achieve a good processing quality 

in the prediction and the detection. 

Table 4 Similarity (SSIM) of histogram prediction and Dice score of tumor detection obtained in the ablation 

study of Trial 1 and 2 

Trials # Descriptions 

Histogram, SSIM* Tumor 

mask, 
Dice* 

Axial Coronal Sagittal Mean 

Trial 1. Modulation 
of the 2D histograms 

A 

Step function u(i-0.3) 

replacing the adaptive 
modulations 

0.3 Gray level i
 

0.777 0.775 0.785 0.779 0.762 

P 

Proposed modulation 

functions fm1(i) and fm2(i) 

adapting to individual 
cases Gray level i

 

0.841 0.837 0.851 0.843 0.802 

Trial 2. Prediction 

with or without 
cropping operations 

B No cropping 0.669 0.669 0.689 0.676 0.482 

C Only first cropping 0.789 0.778 0.794 0.787 0.613 

D First and second cropping 0.842 0.836 0.839 0.839 0.735 

P Proposed (cropping in all the 3 dimensions) 0.841 0.837 0.851 0.843 0.802 

*: Mean values obtained by testing the 1251 patient cases of BraTS2021 

#: Experiment label 

In the proposed system, the prediction is done step-by-step while the regions of non-interest, i.e., tumor-

free regions, are cropped out progressively, improving the density of object information and prediction quality. 

Trial 2 has been conducted to prove the contribution of the cropping operations to the system performance. In 

this trial, the system is modified 3 times, resulting in 3 modified versions. In the first one, there is no cropping 

at all, in the second one only tumor-free axial slices are cropped out before the final prediction, and in the 3rd 

one there are only 2 cropping operations for axial and coronal slices, instead of 3 in the proposed system. The 

3 versions have been tested and the results are presented in the second half of Table 4. One can see that, the 

more the tumor-free regions are cropped out, the higher information density in the data to be processed in the 

next step, and the better the quality for the prediction and the detection. The best result is evidently given by 

the proposed system with 3 cropping operations. The ablation study results are also visualized in Fig. 16. 
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Fig. 16 Bar charts of the results of the ablation study performed on 5 different versions labelled A, B, C, D and P. The same results are 

presented in Table 4.  

In summary, the results of the two trials in this ablation study confirm the essentiality and the effectiveness 

of the proposed modulation and the progressively predicting/cropping operations. These 2 operations combined 

make it possible to obtain a high-quality prediction and tumor detection by an extremely simple computation 

process. 

3.3 Performance Comparison 

The performance of the proposed system, in terms of detection quality, has been compared with that of 

other systems reported in reputed journals. As no data about the prediction of tumor pixel distributions are 

available, this performance comparison is in the aspect of brain tumor detection. To make the comparison 

meaningful, the test results of these systems should be produced, in principle, under the same conditions, i.e., 

testing on the same data samples and using the same performance metrics. 

The comparison results of the proposed system with 2 non-CNN systems are presented in Table 5. These 

2 systems were chosen for the comparison because their detection quality was assessed with BraTS datasets 

and the test conditions were the same as those of the proposed system. 

Table 5 Comparison of the results of the proposed system with those of other non-CNN systems  
 

Dataset Systems 
# cases  

for testing 
Modality Dice 

BraTS 
2013 

Lim and Mandava 2018 [10] 20H T1c, T2 0.701 

Lim and Mandava 2018 [10] 10L T1c, T2 0.692 
Proposed 20H Flair 0.777 

Proposed 10L Flair 0.709 

BraTS 

2017 

Bonte et al. 2018 [12] 210H Flair, T1c 0.762 
Bonte et al. 2018 [12] 75L Flair, T1c 0.656 

Proposed 210H Flair 0.829 

Proposed 75L Flair 0.772 

BraTS 
2021 

Proposed 1251 Flair 0.802 

H: High-grade glioma (HGG),       L: Low-grade glioma (LGG) 
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Table 6 summarizes the comparison of the detection quality between the proposed system and 4 CNNs 

reported recently. In order to make the test results comparable to these CNN systems, the proposed system has 

been tested on BraTS 2018 and 2019 datasets, besides BraTS 2021 dataset. It should, however, be mentioned 

that, the test conditions of the proposed systems are much more rigorous, as the test has been done on all the 

available patient cases of each dataset, instead of a small number of cases sampled from the training pools of 

the datasets. Also, the test has been done on the BraTS validation sets and the Dice scores have been generated 

by a 3rd-party platform CBICA IPP [37], whereas the corresponding data of the other systems listed in the table 

are not available. 

Table 6 Comparison of the results of the proposed system with those of CNN systems 
Dataset Systems # cases for testing Modality Dice 

BraTS2018 
Training set 

Wu et al. 2021 [3] 143 out of the 285 T2 0.619 
Zhou et al. 2021 [23] 57 out of the 285 Flair 0.737 

Yang et al. 2022 [24] 95 out of the 285 Flair 0.842 

Rahimpour et al. 2021 [25] 57 out of the 285 T1 0.790 
Proposed All the 285 cases Flair 0.814 

BraTS2019 

Training set 

Zhou et al. 2021 [23] 67 out of 335 Flair 0.743 

Proposed All the 335 Flair 0.816 

BraTS2018 
Validation set 

Proposed All the 66* Flair 0.843 

BraTS2019 

Validation set 
Proposed All the 125* Flair 0.816 

BraTS2021 

Training set 
Proposed All the 1251  Flair 0.802 

* Testing on the official validation set, and the results are assessed by CBICA IPP [37] 

The data presented in Table 5 and Table 6 demonstrate the high performance of the proposed system, 

specified in the following aspects.  

• Processing quality measured in Dice scores. It outperforms the other systems, CNN or non-CNN, under 

the same or more tougher test conditions. 

• Performance robustness and reproducibility. On one hand, the results of performance evaluation are 

obtained by testing extensively with a very large number of patient cases. They are much more 

comprehensive and reliable than those given by the other systems. On the other hand, as it is a deterministic 

system, its results are completely reproduceable. 

• Computation cost. It is so low that one can run the computation procedure for the prediction and detection 

in an ordinary laptop or desktop. In case of laptop of i7-11800H CPU with clock of 4.6 GHz, it takes only 

0.85 seconds to process a patient case. 
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It should be mentioned that the proposed system is developed analytically and the processing are modeled 

mathematically. The functions implemented in the system, such as the 2D histogram modulation or the gray 

level thresholding for the mask generation, are adaptive to the statistical image features of individual patient 

cases. Very little tuning is needed. Thus, users can be applied it easily, without "trial and error". 

4. Conclusion 

The challenges in brain tumor detection, like in all kinds of object detections, are often related to the 

extremely low density of object information in the input data and the enormous variations of the objects. In this 

paper, we have proposed a system that predicts the gray level distributions of tumor pixels, i.e., pixels in the 

tumor regions, of a 3D MRI brain scan of Flair modality, and detects precisely tumor locations in the 3D scan. 

We have proposed (i) 2D histogram presentations of the data in the axial, coronal and sagittal slice series of a 

3D image, comprehending the distributions of the gray levels of the pixels with their locations, (ii) extraction 

of brain tumor information by exploiting the left-right asymmetry of a brain structure, (iii) histogram 

modulation, automatically on a case-by-case basis, to enhance the structural asymmetry related to the presence 

of tumors and to attenuate that due to non-pathological causes, (iv) step-by-step prediction of tumor pixel 

distribution, accompanied by step-by-step cropping out the areas of non-interest to improve the signal density, 

and (v) tumor mask generation process consisting of a simple thresholding, based on the prediction results, and 

a low-pass filtering for morphological purpose. 

The proposed system does not need training. It has been tested extensively with the data of more than one 

thousand patient cases in BraTS 2018~2021 datasets. The test results demonstrate that, with the input data of 

only Flair modality, the predicted 2D histograms have a high degree of similarity with respect to the true ones. 

Also, the tumor detection performed by the system is also of high-quality. Moreover, as the system parameters 

are determined without randomness, its performance is completely reproduceable. It is worth mentioning that 

the good performance of the proposed system has been achieved at an extremely low computation cost that may 

be negligible with respect to those of other state-of-the-art systems. 
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Though the system has been designed to process the data of MRI brain scanning, it can also be used if the 

3D data are from CT scanning. The design principle can also be applied to develop systems detecting 3D objects 

in a symmetrical environment. 

Needless to say, the proposed system is not perfect. As it takes the input data produced by MRI Flair 

scanning to minimize the data volume in the process, its ability to identify some types of tumor regions, in 

particular in some low-grade glioma (LGG) cases, may be limited.  Also, like many other exiting systems, the 

performance may be reduced if the input images are of poor quality. The future work can be in 2 avenues. The 

first avenue is the input data pre-processing to improve the image quality. The other avenue is to incorporate 

CNN and knowledge-based processing blocks to further improve the processing quality. In this case, there will 

be new challenges of limitation of data samples and the risk of randomness in system training. 
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