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A classic theorem in plane geometry asserts that every noncollinear set of n points in the plane determines at least n
distinct lines. (It is easy to see that the validity of this theorem implies the validity of its extensions to Euclidean spaces of
all dimensions.) As noted by Erdés [9] in 1943, this theorem is a corollary of the Sylvester-Gallai theorem (which asserts
that for every noncollinear set V of finitely many points in the plane, some line goes through precisely two points of V); it
is also a special case of a combinatorial theorem proved by De Bruijn and Erd6s [8] in 1948. In 2006, Chen and Chvatal [5]
suggested that it might be generalized to all metric spaces. More precisely, for any two distinct points u, v in a Euclidean
space, line uv in this space can be characterized as

uv = {p : dist(p, u) + dist(u, v) = dist(p, v) or
dist(u, p) 4 dist(p, v) = dist(u, v) or dist(u, v) 4 dist(v, p) = dist(u, p)},

where dist is the Euclidean metric; in an arbitrary metric space (V, dist), the same relation may be taken for the definition
of line uv. The resulting family of lines may have strange properties: for instance, a line can be a proper subset of another
[5, p. 2102]. Nevertheless, fragments of Euclidean geometry might translate to the framework of metric spaces. In particular,
Chen and Chvatal asked:

(x) True or false? Every metric space on n points, where n > 2, either has at least n distinct lines or else has a line that is universal
in the sense of consisting of all n points.
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There is some evidence that the answer to (x) may be ‘true’. For instance, Kantor and Patkés [11] proved that

e if no two of n points (n > 2) in the plane share their x- or y-coordinate, then these n points with the L; metric either
induce at least n distinct lines or else they induce a universal line.

(For sets of n points in the plane that are allowed to share their coordinates, [11] provides a weaker conclusion: these n points
with the L; metric either induce at least n/37 distinct lines or else they induce a universal line.) Chvatal [7] proved that

e every metric space on n points where n > 2 and each nonzero distance equals 1 or 2 either has at least n distinct lines or
else has a universal line.

Every connected undirected graph induces a metric space on its vertex set, where dist(u, v) is the usual graph-theoretic
distance between vertices u and v (defined as the smallest number of edges in a path from u to v). It is easy to see that

e every metric space induced by a connected bipartite graph on n vertices, where n > 2, has a universal line.

A chordal graph is a graph that contains no induced cycle of length four or more. Beaudou, Bondy, Chen, Chiniforooshan,
Chudnovsky, Chvatal, Fraiman, and Zwols [2] proved that

e every metric space induced by a connected chordal graph on n vertices, where n > 2 either has at least n distinct lines
or else has a universal line.

A distance-hereditary graph is a graph G such that, for every connected induced subgraph H of G and for every pair u, v of ver-
tices of H, the distance between u and v in H equals the distance between u and v in G. Aboulker and Kapadia [ 1] proved that

e every metric space induced by a connected distance-hereditary graph on n vertices, where n > 2, either has at least n
distinct lines or else has a universal line.

Chiniforooshan and Chvatal [6] proved that
e every metric space induced by a connected graph on n vertices either has £2(n%/7) distinct lines or else has a universal line;

recently, Pierre Aboulker, Rohan Kapadia, and Cathryn Supko improved the exponent 2/7 to 1/2. (Their manuscript is in
preparation.)

A hypergraph is an ordered pair (V, H) such that V is a set and H is a family of subsets of V; elements of V are the vertices
of the hypergraph and members of H are its hyperedges; a hypergraph is called k-uniform if each of its hyperedges consists
of k vertices. The definition of lines in a metric space (V, dist) that was our starting point depends only on the 3-uniform
hypergraph (V, H) where H = {{a, b, c} : dist(a, b) 4 dist(b, c) = dist(a, c)}: we have

uv = {u,v}U{p: {u, v, p} € H}.

Chen and Chvatal [5] proposed to take this relation for the definition of line uv in an arbitrary 3-uniform hypergraph (V, H).
With this definition, the combinatorial theorem of De Bruijn and Erdés [8] can be stated as follows:

e if no four vertices in a 3-uniform hypergraph carry two or three hyperedges, then, except when one of the lines in this
hypergraph is universal, the number of lines is at least the number of vertices and the two numbers are equal if and only
if the hypergraph belongs to one of two simply described families.

Here, four vertices u, v, w, x are said to carry a hyperedge if this hyperedge is one of {u, v, w}, {u, v, x}, {u, w, x}, {v, w, x};
the assumption of the theorem can be rephrased by saying that every four vertices carrying at least one hyperedge carry
precisely one hyperedge or four of them.

Beaudou, Bondy, Chen, Chiniforooshan, Chudnovsky, Chvatal, Fraiman, and Zwols [3] generalized the De Bruijn-Erdds
theorem by allowing any four vertices to carry three hyperedges:

e if no four vertices in a 3-uniform hypergraph carry two hyperedges, then, except when one of the lines in this hypergraph
is universal, the number of lines is at least the number of vertices and the two numbers are equal if and only if the
hypergraph belongs to one of three simply described families.

In particular, if the ‘metric space’ in (*) is replaced by ‘3-uniform hypergraph where no four vertices carry two hyper-
edges’, then the answer is ‘true’. Without the assumption that no four vertices carry two hyperedges, the answer is ‘false’
[5, Theorem 3]: there are arbitrarily large 3-uniform hypergraphs where no line is universal and yet the number of lines is
only exp(O(+/Inn)). Nevertheless, even this variation of (x) can be answered ‘true’ if the desired lower bound on the number
of lines is weakened enough [5, Theorem 4]:

e Every 3-uniform hypergraph with n vertices either has at least Ign + % Iglgn + % lg 7 — o(1) distinct lines or else has a
universal line.

(We follow the convention of letting Ig stand for the logarithm to base 2.) The purpose of our note is to improve this lower
bound by a factor of 2 — o(1).

All our hypergraphs are 3-uniform. We let V denote the vertex set, we let .£ denote the line set,and we writen = |V|, m =
|£]. The number of hyperedges, which we call hedges, is irrelevant to us. We assume throughout that no line is universal.
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Let us define mappings o, 8 : V — 2£ by
ax)={Le L:xel} and B(x) = {xw: w # x}.
Note that 8(x) € «a(x) for all x. The proof of the lower bound
m>lgn (1)

in [5, Theorem 4] relies on the observation that « is one-to-one. This observation can be generalized as follows.

Lemma 1. If f : V — 2% is a mapping such that B(x) C f(x) € a(x) forallx, thenx #y — f(x) Z f(¥).

Proof. We only need to prove that 8(x) — «(y) # @ whenever x # y. To do this, we use the assumption that Xy is not
universal: there is a point z such that z € Xxy. This means that {x, y, z} is not a hedge, and soxz € f(x) — a(y). O

Lemma 2. If x, y, z are vertices such that Xy = xz, then a(y) N B(x) = a(z) N B(X).

Proof. If y € xw, then {x, w, y} is a hedge, and so w € Xy = Xz, and so {x, z, w} is a hedge, andsoz € xw. O

We define the span of a subset S of V to be Uycs B(x).

Lemma 3. If n > 2 and a nonempty set of s vertices has a span of t lines, then

m—t>lg(n—s)—slgt.
Proof. Given a nonempty set of s vertices and its span T of t lines, enumerate the vertices in S as x1, xa, . . ., X;. Note that
t > 0(sincen > 2 and s > 0) and define a mapping » : (V —S) — T® by

Y (v) = (X1, %20, ..., XsV).

Ify, z are vertices in V — S such that ¥/ (y) = ¥ (z), then Lemma 2 guarantees that «(y) N 8(x;) = a(z) NB(x;) forevery x; inS
and so (since T = U}_; B(x;))) a(¥y) N'T = a(z) NT. This and Lemma 1 (with f = &) together imply thata(y) =T # a(z) — T
whenever ¥ (y) = ¥ (z) and y # z. It follows that |C| < 2™~! for every subset C of V — S on which v is constant. Since at
least one of these sets C has at least (n — s)/t* points, we conclude that (n — s)/tS < 2™, O

Lemma 4. For every positive ¢, there is a positive § such that
N eN L
Z ) < 2% forall positive integers N.
ion \ 1

Proof. A special case of an inequality proved first by Bernstein [4,10] asserts that

k N N k N N—k
N _ forallk=0,1,..., [N/2];
=\ i k N —k

setting x = k/(N — k) in the inequality 1 4 x < €*, we find that

NN/ N " senyK
— - < | — 3
k N —k “\k
Since lim;_, o (1 + Int)/t = 0, there is ty such that

Int
t>ty=

<¢ln2,

and so

k
k§t§1N=><%> :exp(N-%M)fZSN. 0O
k

Theorem 1. m > (2 —o(1)) Ign.

Proof. Given any positive €, we will prove that m > (2 —4¢) Ign for all sufficiently large n. To do this, let § be as in Lemma 4
and consider a largest set S of vertices whose span T has at least (0.56 Ign) - |S| lines (this S may be empty). Writing s = |S|
and t = |T|, we may assume that

t<2lgn
(else we are done since m > t),and so s < 4/5. Now

m—t=>(1—o0(1))lgn:
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this follows from Lemma 3 when t > 0 and from (1) when t = 0. In turn, we may assume that
t <0.5m

(else0.5m > m—t > (1—o0(1)) Ignand we are done). Finally, consider a largest set R of vertices such that 8 (y)NT = B(z)NT
whenevery, z € Rand note for future reference that |R| > n/2°. Since 8 is one-to-one (Lemma 1), all the sets 8(y) — T with
y € R are distinct; by maximality of S, each of them includes less than 0.5§ Ig n lines (else y could be added to S); it follows
that (when n is large enough to make 0.5 Ign less than m — t)

we 3 ()= Z (7)) smam

i<0.58Ign i<é(m—t)
and so

n< 2t|R| < 2t+sm < 2(0,5+s)m < 2m/(274s)' 0O
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