Report No. 84326

CUTTING-PLANE PROOFS AND THE STABILITY
NUMBER OF A GRAPH

by

V. Chviatal®)

March 1984

*) On leave from McGill University, Montreal, Canada. Supported by Son-
derforschungsbereich 21 (DFG), Institut fir Operations Research, Universitat

Bonn, W. Germany




Institut fiir Okonometrie und Operations Research
Abteilung Operations Research

Rheinische Friedrich-Wilhelms-Universitdt Bonn
Nassestrafie 2

D-5300 Bonn 1

West Germany

Telefon (0228) 739285/86

Telex 886657 unibo d

ISSN 0724-3138

Typeset in TEX by Martina Schiller.
Printed on printer IBM 4250.

CUTTING-PLANE PROOFS AND THE STABILITY
NUMBER OF A GRAPH

by

V. Chviétal

ABSTRACT

Many claims in combinatorics can be stated by saying that cvery integer solution of a specified
system of linear inequalities satisfies another specified linear inequality. Such claims can be proved in a
certain canonical way involving the notion of cutting planes. We investigate the structure of these proofs
in the particular case where the claim is that a specified graph contains at most a specified number of

pairwise nonadjacent vertices.

1. INTRODUCTION

Many combinatorial results may be stated by saying that every intéger solution of a specified

system of linear inequalities,
Z Gy Ug (=002, (1)
j=1

must satisfy a specified linear inequality

Z ApM5T4 <ba . (2)

=1

One way of proving such results consists of exhibiting a sequence of inequalities
n
Y ayzi <b (1=1,2,... M) (3)
i=1

along with nonnegative numbers yx; (m <k < M, 1 < i < k) such that, for all k = m+1,
m+2,...,M , we have

k-1
A = Z YkiQiy = integer for alll 3= 1525005
=1

k1
LD wkibs) < e
i=1
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(with |t] standing for ¢t rounded down to the nearest integer). We shall refer to every such
sequence (3), presented along with the number yi; , as a cutting—plane proof of (2) from (1).
Obviously, if there is a cutting-plane proof of (2) from (1) then every integer solution of (1)
must satisfy (2); the following two theorems show that the converse holds as soon as certain

nonrestrictive assumptions are placed on (1).

Theorem 1.  Let the polyhedron defined by (1) be bounded. If every integer solution of (1)
satisfies (2) then there is a cutting—plane proof of (2) from (1).

Theorem 2.  Let all the numbers a;; and b; in (1) be rational, and let (1) have an integer
solution. If every integer solution of (1) satisfies (2) then there is a cutting-plane proof of (2)
from (1). '

Theorem 1 follows from Gomory’s analysis of the cutting plane algorithms [5], [6], [7]; an
alternative proof may be found in [1]. Theorem 2 is a corollary of a result of Schrijver [8], from
which Theorem 1 may be also derived. The analogue of Theorems 1 and 2 is false if no assumption
at all is placed on (1): for instance, as pointed out by Schrijver, if a is irrational then every integer

solution of
Ty —azs <0

—z;+az; <0 (5)
—z;— 22 <0

must satisfy z; + zo < 0, and yet there is no cutting-plane proof of this inequality from (5).
Similarly, every integer solution of

32:1 = 3$2 S 2
—3z; +3z2 < -1 (6)

—z;— 32 <0

must satisfy z; +z2 < 0 (in fact, (6) has no integer solutions), and yet there is no cutting—plane
proof of this inequality from (6).

We shall be concerned with finite undirected graphs. Given any such graph G , we shall
associate a variable z, with each vertex v of G , and consider the system

Z z, <1 for all cliques C in G ,
veC (7)
—z, <0 for all vertices v of G .

Clearly, the integer solutions of (7) are precisely the incidence vectors of sets § such that no two
vertices in S are adjacent. Such sets are called independent or stable; the largest size of a stable
set in G is called the stability number of G and denoted by a(G) . Thus, with V standing for
the set of all the vertices of G , every integer solution of (7) must satisfy

Z zy < a(G) . (8)

veV

The subject of this note is the structure of cutting—plane proofs of (8) from (7).
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2. DEPTH AND LENGTH OF CUTTING-PLANE PROOFS

In a way, the sequential order of the inequalities in (3) obscures the structure of the cutting—
plane proof: this structure is revealed by a directed graph with vertices 1,2,...,M ,in which a
directed edge goes from vertex ¢ to vertex k if and only if yx¢ > 0 in (4). Trivially, this graph is
acyclic; we shall refer to the number of edges in a longest path terminating at a vertex k as the
depth of the k-th incquality, and to the depth of the M—-th inequality as the depth of the proof.
Similarly, we shall refer to M in (3) as the length of the proof.

Theorem 3. If some cutting-plane proof of a linear inequality from a system S of linear
inequalities in n variables has depth d , then some cutting planc proof of this inequality from a

subsystem of S has length at most

1+ (n+ D)1 +n+...+n°71).

Proof. From all the cutting-plane proofs of (2) from subsystems (1) of S, whose depth is at
most d , choose one that minimizes M in (3). Note that

the k-th inequality in (3) has depth less than d whenever k < M : (9)

else the k-th inequality could be deleted from (3), contradicting minimality of M . Next, writing
y(k, 1) = Y , set '

v =y(M,i) +y(M,M - 1)y(M - 1,5) forall i=1,2,...,.M -2

and observe that
M-—2

Z viay; = ap; forall j=1,2,...,n.

=1

Having made these observations, we propose to show that

n
the system Z aijz; Sb (i=1,2,.... M- 2) has a solution. (10)

=1

To prove (10), let us assume the contrary. Now, by one of the fundamental results of linear pro-

gramming (see, for instance, Theorem 9.2 in [2]), there are nonnegative numbers wy, Wa, - .., Wr—2
such that
M—2
E Wiy =0 forall j= 1,2,...,1’].
i=1
and
M—2
Z wib; = —1
=1

Choosing a sufficiently large positive ¢ , we obtain

M-—2
Z (v + tw;)a;; = apy; forall j=1,2,...,n

=1
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and
M-=2 M-=-2
Z (‘U,' +t‘w,')bg = Z vib; —t < bpr -
Ty i=1

Thus, numbers yas; in (4) could be replaced by v; +tw; , and the next—-to-last inequality deleted
from (3): by (9), the resulting cutting-plane proof would still have depth at most d . Since this
contradicts minimality of M , claim (10) is established.

Next, we propose to establish the existence of nonnegative numbers Y; (m<k<M,
1 <14 < k), satisfying (4) in place of yx: , such that

Ui =0 whenever yi; =0, (11)
and
at most n of the numbers §, are positive
foreach k=m+1,m+2,....M -1, (12)
and
at most n + 1 of the numbers ys,; are positive. (13)

For each fixed k = m+1,m+2,...,M —1, let I consist of all the subscripts ¢ that have yx; > 0,
and consider the linear programming problem
minimize Z b;vs
s€l
subject to Z ai;yi = ag; forall j=1,2,...,n,
el
y; 20 whenever 1 €1 .

This problem has a feasible solution (y: = yx:) ; by (10), its dual has a feasible solution; hence
the problem has an optimal solution. A basic optimal solution, with at most n variables positive,

yields the desired numbers §i; . To find the numbers ys; , let I consist of all the subscripts 1
that have yas; > 0, and consider the system

Y esgi=am; (G=12...,n)

el
Z biy; = Z biyn: -
el sel

This system has a nonnegative solution (i = ym:) ; hence, by another fundamental result of
linear programming (see, for instance, Theorem 9.3 in [2]), it has a nonnegative solution with at
most n + 1 variables positive.

Finally, replace the numbers yi; in (4) by ki . By (11), the resulting cutting—plane proof
still has depth at most d . Consider the directed graph associated with this proof: by (12) and
(13), at most n directed edges enter each vertex other than M , and at most n+1 directed edges
enter vertex M . It follows that the component containing M has at most

1+ (n+1)(1+n+...+n%1) vertices.[]

CUTTING -PLANE PROOFS

(]

The upper bound in Theorem 3 can be replaced by
0 ST 57~

as soon as S has an integer solution: in this case, the entire system (3) is solvable, and so (13)
can be established with n in place of n + 1 . However, this improved upper bound does not hold
in general. For instance, the sequence
2r <3
-2z < -3
<1
T 0

with y3; = % s Ys2 =0, ya1 =0, ys2 = 1, yg3 = 3 constitutes a cutting-plane proof of the
last integrality from the first two, and the depth of this proof is two; at the same time, every
cutting-plane proof of the last integrality from a subset of the first two must have length at least
four.

3. SHORT AND SHALLOW PROOFS

Either of Theorems 1 and 2 guarantees that, for every graph G , there is a cutting-plane
proof of (8) from (7). In this section, we shall present two easy results bounding from above the
minimum length and the minimum depth of such proofs.

Throughout the remainder of this note, we shall reserve the letters n , « , and V for the
number of vertices, the stability number, and the set of all the vertices, respectively, of a graph
G . We shall say that an inequality

n

Z a;z; < b

i=1

is a linear combination of inequalities
n
zaijzjsbi (z=1,2,,m)
=1
if there are nonnegative numbers y;,¥2,. - -, Ym such that

iy,-a,-j=aj forallj,a.nd iyibi=b-

t=1 =1

The stability number of a graph can be always determined by examining all the sets of at
most « vertices; the following theorem shows that there are always cutting—plane proofs of (8)
from a subsystem of (7) of comparable complexity.
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Theorem 4.  For every graph G , there is a cutting-plane proof of (8) from a subsystem of (7)
whose length is at most ('"2"1) +(2) . ’

(=

Proof. Since the case of n < 2 is trivial, we may assume that n > 3 . Now there is a family C of
at most (2) cliques in G such that each edge of G belongs to some clique in C and such that each
vertex of G belongs to some clique in C . For each subset R of V , let a(R) stand for the largest

size of a stable subset of B . We claim that, for each nonempty R , there is a cutting- plane proof
of
Y zy < ofRB) (14)
vER

from
Z T, <1 whenever C (.
veC (15)
~z, <0 whenever veV ,

in which the number of inequalities not belonging to (15) is at most ( l(R‘,i)) .

This claim will be justified by induction on |R| . If @(R — w) < «(R) for some vertex w in
R then the conclusion is immediate, for the inequality z,, < 1 is a linear combination of (15).
Thus, we may assume that

a(R — w) = a(R)

whenever w € R ; in particular, each vertex in R has at least one neighbour in B . Choose a
vertex w in R that belongs to some stable set of a(R) verticesin R ,set P= R — w , and let Q
stand for the subset of P obtained by deleting all the neighbours of w . The induction hypothesis
guarantees that (15) extends into a cutting—plane proof of

2z <a(P) (16)

veEP

from (15) by a sequence P* of at most (uf;:,l)) inequalities, and that (15) extends into a cutting-
plane proof of

PBEREL (@) (17)

veQ

from (15) by a sequence P* of at most (al(ﬂg)) inequalities. Since |P|=|R|-1,|Q|<|R| -2,
a(P) = a(R) , and o(Q) = «(R) — 1 , we have

1< () = 191 (o) = (o 1) -+

Pl +1Q7] < (a'gl)) .

Now we only need exhibit a linear combination of (15), (16), (17) that reads

and so

>z <b (18)

CUTTING PLANE PROOFS s

with b < a(R) + 1 , for then the concatenation of (1), P*, Q* , and (14) will constitute the
desired cutting-plane proof.

Since each vertex in P — @ is a neighbour of w , and since the inequality T, + Z,» < 1is a
linear combination of (15) for each neighbour v of w , the inequality

IP-Qlzu+ Y, z.5|P-Q| (19)
vEP-Q
is a linear combination of (15). Adding |P — Q| — 1 times (16) to the sum of (17) and (19), we
obtain the inequality

P-@Ql- Y 2 <(IP-Ql - Da(R) + («(R) - ) + P =@} .

veV

Hence (18) with
1

b:a(R)-Fl—IP—_"E"

is a linear combination of (15), (16), (17). O
In the following theorem, as usual, [t] stands for ¢ rounded up to the nearest integer, and

In stands for the natural logarithm.

Theorem 5. For every graph G withn < o + 2 thereis a cutting-plane proof of (8) from (7)
whose depth is at mostn —a—1;ifn 2 2a+1 then the upper bound can be replaced by

1

+ [(2a+ 1) In —
o < n20:+1

of integers by setting n; = a + 2 and letting

Proof. Let us define a sequence ny, nz, 73,..-
cach ny with k > 1 be the largest integer smaller than (o4 1)nk—1/a . We claim that, for every

set A of at most k vertices, there is a cutting-plane proof of
Z z, S a (20)

vEA

from (7) of depth at most k . This claim is easy to justify by induction on k ; only two observations
are required. First, each inequality (20) with |A| € @+ 1 is a linear combination of (7); second,

if a < b then each inequality
b
E ]
a

veB
with |B| = b is a linear combination of all the inequalities (20) with [A[=a .
Now we only need prove that the smallest k with ng > n satisfies k <n—a— 1 and, in case

n>2a+1,

e

For this purpose, we first use induction on k to show that ng

n
k<a+ [(2a+1)ln2a+l
>a+k+1foralk. Then,
observing that

1 k— a+1 1 k—1—-o
= a s =
(2a+ 1)(1+ 20t) +1< - (2a+1)(1+ 20[)
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whenever k > a , we use further induction on k to show that

1
nk2(2a+1){1+£)“““) forall k=a, a+l, a+2,....

Since

2 exTp )

1
1 =il
+20: 204+ 1

the desired conclusion follows. [J

4. LOWER BOUNDS ON DEPTH

This section contains our main results; a large part of the argument involved in their proofs
may be summarized as follows.

Lemma Let G be a graph and let k, s be positive integers such that k < s and such that every
subgraph of G with s vertices is k—colorable. Then every cutting—plane proof of (8) from (7) has

depth at least

] n
—In— .

k  ak

Proof. We shall establish a stronger conclusion: if some cutting-plane proof of an inequality

Z ATy < b (21)
veV
from (7) has depth at most d then
1. “s
b> — ¢ ;
2al=) u}e__‘; ay (22)

This will be done by induction on d .

The case of d = 0 is trivial, since G has no clique with more than k vertices. Now assume
that d > 0 and note that each a, in (21) is an integer. Let us show at once that
b2

Z a, whenever |W|<s: (23)
vEW

& =

since the subgraph of G induced by W is k—colorable, there are numbers z;, (1<i<k,ve W)
such that

k

z Tip =1 forall w,
i=1

Z By Ty <h foriall 7,
vEW
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and so

k
Z a”:ZZ 0,Ziy < kb .

veW t=1veEW
Now, we shall distinguish between two cases.

Case 1: Fewer than s vertices v have a, > 0 . In this case, (23) implies
b2=Y a
) 2 k v

which is stronger than (22).
Case 2: At least s vertices v have a, > 0. In this case, (23) implies b > s/k , and so

§

b >
T s+ k

(b+1). (24)

By assumption, there are inequalities

Z aiuzvsbi (1:1,2,,171)

vEV

whose cutting—plane proofs from (7) have depth at most d—1 , and there are nonnegative numbers

Y1, Y2,---, Ym such that
m
Z Yi®iy = @, Wwhenever vE€V |
i=1
Z yib; <b+1.
=1

By the induction hypothesis, we have

1 S \d-1 ;
ol e B E sore forall a=12, .., . m,
b2 £ (5% = °
and so
o St gy = —(—— y -
41> 3 ub> A ST e - T

Now (22) follows from (24) and (25). U

It is an open question whether for every graph G there is a cutting-plane proof of (8) from
(7) whose length is only (14 0(1))™ . The first of our two main results shows that an affirmative
answer to this question cannot be justified by simply appealing to Theorem 3.

Theorem 6.  There are arbitrarily large graphs G and a positive constant € such that the depth
of every cutting—plane proof of (8) from (7) exceeds en .

Proof. Erdas [4] has proved that for every positive ¢ there is a positive § with the following
property: there are arbitrarily large graphs G in which a < n/c , and yet every subgraph of G
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with at most én vertices is 3—colorable. Any ¢ greater than 3 will do for our purpose: we only
need set k = 3 and s = |én] in the Lemma. [

Theorem 4 guarantees that for every graph G with a = 2 there is a cutting—plane proof of
(8) from (7) whose length is at most n? . Yet, as we are about to show, no constant bounds from
above the depth of such cutting-plane proofs.

Theorem 7.  There are arbitrarily large g_raphs G with a = 2 such that the depth of every
cutting-plane proof of (8) from (7) exceeds jinn. '
Proof. Erdés (3] has proved that, for some positive ¢ , there are arbitrarily large graphs G in
which & = 2 and yet every clique has at most cn? Inn vertices. Now we only need use the Lemma
with & equal to the largest size of a clique in G and withs=k+1.0

Note that, by Theorem 5, the lower bounds of Theorems 6 and 7 cannot be improved beyond
a constant factor. '
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