n×n
queen graph has the squares
of n×n
chessboard for its vertices and two such
vertices are adjacent if, and only if, queens placed on the two
squares attack each other. On page 191 of The
Unexpected Hanging And Other Mathematical Diversions, Martin
Gardner states without a proof that the n×n
queen
graph is n
-colourable whenever n
mod
6
is 1
or 5
.
The proof is easy: When the chessboard is thought of as the Cartesian
square of {0,1,...,n-1}
, colour vertex (i,j)
by (j-2i)
mod n
. This construction
is illustrated below on n=5
and on n=7
.
|
|
Verifying that (as long as n
mod 6
is
1
or 5
) no two vertices of the same colour
are adjacent is a routine exercise, but here are the details anyway.
Consider verticesThe same argument (with the "(i,j)
and(x,y)
of the same colour. By definition,(*) If the two vertices are in the same row2(x-i)
is congruent to(y-j)
modn
.(x=i)
, then (*) impliesy=j
. If the two vertices are in the same column(y=j)
, then (*) impliesx=i
sincen
is odd. If the two vertices are on the same diagonal, thenx-i=y-j
orx-i=j-y
; in the former case, (*) implies(x,y)=(i,j)
; in the latter case, (*) implies(x,y)=(i,j)
since3
does not dividen
.
x-i=y-j
or
x-i=j-y
" replaced by x-i
is congruent to
y-j
mod n
or x-i
is
congruent to j-y
mod n
) shows that
the colouring works even for more powerful queens, whose diagonal
moves wrap around the chessboard. In this toroidal variation,
the condition n
mod 6 =
1
or 5
is not only sufficient but also
necessary for the existence of an n
-colouring: proofs of
necessity have been found by
n
-queens problem are discussed in Three
Dimensional Queens Problems (L.Allison, C.N.Yee, and M.McGaughey);
a related bibliography
has been maintained by Walter Kosters; we will restrict ourselves to
the original theme on the ordinary chessboard with no wrap-arounds.
None of the n×n
queen graphs with n =
2,3,4
or 6
is n
-colourable: there is
no stable set (= set of pairwise nonadjacent vertices) of size two in
the 2×2
queen graph; there is no stable set of size
three in the 3×3
queen graph; there are precisely
two stable sets of size four in the 4×4
queen graph
and neither of them includes a corner square of the board; there are
precisely four stable sets of size six in the 6×6
queen graph and neither of them includes a corner square of the
board.
Thorold Gosset (Messenger of Mathematics, Vol. 44, July 1914,
page 48) gave an elegant proof that the 8×8
queen
graph is not 8
-colourable: Every stable set of size eight
in this graph intersects the set of twenty cells marked below by
X in at least three points (verifying this claim is greatly
facilitated by the catalog of all stable
sets of size eight in the 8×8
queen graph), and so
at most six such sets can be pairwise disjoint.
X | X | X | X | ||||
X | X | ||||||
X | X | ||||||
X | X | ||||||
X | X | ||||||
X | X | ||||||
X | X | ||||||
X | X | X | X |
A variation on Gosset's theme goes as follows: Every stable set of
size eight in the 8×8
queen graph intersects the set
of twelve cells marked below by Y in at most one point, and so
twelve such sets are required to cover every Y.
Y | Y | ||||||
Y | Y | ||||||
Y | Y | ||||||
Y | Y | ||||||
Y | Y | ||||||
Y | Y |
More generally, if numerical weights are assigned to the vertices of
the n×n
queen graph in such a way that their sum
over every stable set of size n
is at most 1
and yet the total sum exceeds n
, then the graph is not
n
-colourable.
The 9×9
queen graph is not 9
-colourable
(a fact established by the code LPCOLOR written by
Anuj Mehrotra and Michael A.Trick), but the weighting argument is not
strong enough to yield this conclusion: in the 9×9
queen graph, there is a family of 36
stable sets of size
nine such that each of the 81
vertices belongs to
precisely four stable sets in the family. This family consists of all
sets obtained from the five sets shown below by rotating the
chessboard and/or flipping it along one of its axes of symmetry.
|
|
|
|
Q | ||||||||
Q | ||||||||
Q | ||||||||
Q | ||||||||
Q | ||||||||
Q | ||||||||
Q | ||||||||
Q | ||||||||
Q |
Similarly, the 10×10
queen graph is not
10
-colourable (Michel Vasquez and Günter
Stertenbrink, independently of each other, established this fact by
computer search), but the weighting argument is not strong enough to
yield this conclusion.
Condition n
mod 6 = 1
or
5
 , sufficient for n
-colourability of the
n×n
queen graph, is also necessary when
n<12
. However, this condition is not necessary for all
n
: counterexamples were found by Michel Vasquez and
Günter Stertenbrink, independently of each other. Vasquez's
counterexamples with n=12
and n=14
appear in
the manuscript
New Results on the Queens n2 Graph Coloring
Problems, submitted in June 2003 to Journal
of Heuristics and published in its Volume 10, Number 4 (July
2004), pp. 407 -- 413; his additional counterexamples have
n=15,16,18,20,24,28
and (counterexamples found in January
2004, February 2004, and May 2004, respectively) n=21
,
n=22
, and n=32
. Stertenbrink's
counterexamples have n=12
, n=14
, and
n=16
; they were found in September 2003. Some of these
counterexamples are reproduced below; Vasquez's counterexample with
n=28
and n=32
appear on his web page.
0 | 5 | 9 | 6 | 3 | 8 | 4 | 1 | 10 | 11 | 7 | 2 |
7 | 11 | 4 | 2 | 1 | 6 | 10 | 3 | 0 | 8 | 9 | 5 |
8 | 1 | 10 | 9 | 5 | 2 | 0 | 7 | 11 | 6 | 3 | 4 |
10 | 0 | 3 | 8 | 7 | 11 | 9 | 5 | 4 | 1 | 2 | 6 |
5 | 6 | 11 | 4 | 2 | 1 | 3 | 0 | 8 | 9 | 10 | 7 |
11 | 7 | 0 | 1 | 10 | 4 | 8 | 6 | 3 | 2 | 5 | 9 |
2 | 8 | 6 | 3 | 9 | 5 | 7 | 11 | 1 | 10 | 4 | 0 |
3 | 4 | 5 | 0 | 11 | 10 | 6 | 9 | 2 | 7 | 8 | 1 |
9 | 2 | 1 | 10 | 4 | 7 | 5 | 8 | 6 | 3 | 0 | 11 |
4 | 10 | 7 | 11 | 0 | 3 | 1 | 2 | 9 | 5 | 6 | 8 |
6 | 3 | 2 | 5 | 8 | 9 | 11 | 4 | 7 | 0 | 1 | 10 |
1 | 9 | 8 | 7 | 6 | 0 | 2 | 10 | 5 | 4 | 11 | 3 |
12
-colouring of the 12×12
queen graph
1 | 9 | 11 | 7 | 5 | 13 | 3 | 2 | 12 | 4 | 6 | 10 | 8 | 0 |
7 | 12 | 4 | 8 | 3 | 0 | 11 | 10 | 1 | 2 | 9 | 5 | 13 | 6 |
6 | 3 | 13 | 10 | 1 | 4 | 8 | 9 | 5 | 0 | 11 | 12 | 2 | 7 |
5 | 10 | 1 | 9 | 13 | 2 | 6 | 7 | 3 | 12 | 8 | 0 | 11 | 4 |
4 | 0 | 2 | 6 | 11 | 12 | 9 | 8 | 13 | 10 | 7 | 3 | 1 | 5 |
2 | 8 | 7 | 13 | 0 | 10 | 5 | 4 | 11 | 1 | 12 | 6 | 9 | 3 |
12 | 1 | 5 | 3 | 8 | 11 | 7 | 6 | 10 | 9 | 2 | 4 | 0 | 13 |
0 | 6 | 10 | 12 | 2 | 9 | 4 | 5 | 8 | 3 | 13 | 11 | 7 | 1 |
9 | 11 | 3 | 4 | 6 | 1 | 12 | 13 | 0 | 7 | 5 | 2 | 10 | 8 |
8 | 4 | 12 | 1 | 7 | 3 | 10 | 11 | 2 | 6 | 0 | 13 | 5 | 9 |
11 | 7 | 0 | 2 | 9 | 5 | 13 | 12 | 4 | 8 | 3 | 1 | 6 | 10 |
13 | 2 | 9 | 11 | 4 | 7 | 0 | 1 | 6 | 5 | 10 | 8 | 3 | 12 |
10 | 5 | 8 | 0 | 12 | 6 | 2 | 3 | 7 | 13 | 1 | 9 | 4 | 11 |
3 | 13 | 6 | 5 | 10 | 8 | 1 | 0 | 9 | 11 | 4 | 7 | 12 | 2 |
14
-colouring of the 14×14
queen graph
1 | 10 | 2 | 3 | 8 | 4 | 11 | 12 | 7 | 14 | 13 | 0 | 9 | 6 | 5 |
13 | 3 | 1 | 6 | 2 | 5 | 0 | 10 | 8 | 9 | 12 | 11 | 14 | 7 | 4 |
0 | 7 | 5 | 11 | 1 | 9 | 14 | 2 | 6 | 4 | 3 | 13 | 12 | 10 | 8 |
9 | 12 | 14 | 7 | 6 | 8 | 1 | 4 | 5 | 2 | 11 | 10 | 0 | 3 | 13 |
11 | 6 | 3 | 4 | 9 | 0 | 12 | 13 | 10 | 8 | 14 | 1 | 5 | 2 | 7 |
12 | 14 | 8 | 13 | 3 | 11 | 2 | 5 | 4 | 1 | 6 | 7 | 10 | 0 | 9 |
4 | 2 | 12 | 5 | 10 | 6 | 13 | 7 | 3 | 11 | 0 | 9 | 8 | 14 | 1 |
5 | 11 | 4 | 1 | 7 | 14 | 10 | 0 | 9 | 13 | 8 | 2 | 3 | 12 | 6 |
2 | 13 | 7 | 10 | 0 | 12 | 4 | 8 | 14 | 5 | 9 | 6 | 11 | 1 | 3 |
10 | 0 | 9 | 8 | 5 | 2 | 3 | 6 | 1 | 12 | 4 | 14 | 7 | 13 | 11 |
8 | 1 | 6 | 2 | 13 | 7 | 9 | 14 | 11 | 0 | 10 | 3 | 4 | 5 | 12 |
14 | 4 | 0 | 9 | 12 | 1 | 6 | 3 | 2 | 7 | 5 | 8 | 13 | 11 | 10 |
7 | 9 | 11 | 14 | 4 | 3 | 5 | 1 | 13 | 10 | 2 | 12 | 6 | 8 | 0 |
3 | 8 | 13 | 12 | 11 | 10 | 7 | 9 | 0 | 6 | 1 | 5 | 2 | 4 | 14 |
6 | 5 | 10 | 0 | 14 | 13 | 8 | 11 | 12 | 3 | 7 | 4 | 1 | 9 | 2 |
15
-colouring of the 15×15
queen graph
0 | 4 | 12 | 8 | 11 | 15 | 2 | 6 | 7 | 3 | 14 | 10 | 9 | 13 | 5 | 1 |
1 | 8 | 11 | 3 | 6 | 12 | 14 | 5 | 4 | 15 | 13 | 7 | 2 | 10 | 9 | 0 |
7 | 5 | 15 | 0 | 8 | 11 | 13 | 2 | 3 | 12 | 10 | 9 | 1 | 14 | 4 | 6 |
9 | 13 | 2 | 14 | 5 | 6 | 1 | 10 | 11 | 0 | 7 | 4 | 15 | 3 | 12 | 8 |
4 | 14 | 6 | 13 | 1 | 10 | 9 | 3 | 2 | 8 | 11 | 0 | 12 | 7 | 15 | 5 |
10 | 3 | 1 | 9 | 12 | 5 | 7 | 15 | 14 | 6 | 4 | 13 | 8 | 0 | 2 | 11 |
15 | 9 | 10 | 7 | 2 | 0 | 4 | 12 | 13 | 5 | 1 | 3 | 6 | 11 | 8 | 14 |
12 | 2 | 5 | 6 | 15 | 1 | 10 | 9 | 8 | 11 | 0 | 14 | 7 | 4 | 3 | 13 |
14 | 0 | 7 | 4 | 13 | 3 | 8 | 11 | 10 | 9 | 2 | 12 | 5 | 6 | 1 | 15 |
13 | 11 | 8 | 5 | 0 | 2 | 6 | 14 | 15 | 7 | 3 | 1 | 4 | 9 | 10 | 12 |
8 | 1 | 3 | 11 | 14 | 7 | 5 | 13 | 12 | 4 | 6 | 15 | 10 | 2 | 0 | 9 |
6 | 12 | 4 | 15 | 3 | 8 | 11 | 1 | 0 | 10 | 9 | 2 | 14 | 5 | 13 | 7 |
11 | 15 | 0 | 12 | 7 | 4 | 3 | 8 | 9 | 2 | 5 | 6 | 13 | 1 | 14 | 10 |
5 | 7 | 13 | 2 | 10 | 9 | 15 | 0 | 1 | 14 | 8 | 11 | 3 | 12 | 6 | 4 |
3 | 10 | 9 | 1 | 4 | 14 | 12 | 7 | 6 | 13 | 15 | 5 | 0 | 8 | 11 | 2 |
2 | 6 | 14 | 10 | 9 | 13 | 0 | 4 | 5 | 1 | 12 | 8 | 11 | 15 | 7 | 3 |
16
-colouring of the
16×16
queen graph
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
8 | 4 | 5 | 6 | 1 | 10 | 17 | 3 | 2 | 15 | 14 | 0 | 7 | 16 | 11 | 12 | 13 | 9 |
10 | 13 | 8 | 14 | 0 | 6 | 15 | 12 | 16 | 1 | 5 | 2 | 11 | 17 | 3 | 9 | 4 | 7 |
16 | 7 | 17 | 13 | 8 | 11 | 5 | 14 | 15 | 2 | 3 | 12 | 6 | 9 | 4 | 0 | 10 | 1 |
2 | 8 | 12 | 1 | 7 | 13 | 3 | 0 | 11 | 6 | 17 | 14 | 4 | 10 | 16 | 5 | 9 | 15 |
6 | 14 | 10 | 16 | 15 | 17 | 12 | 13 | 9 | 8 | 4 | 5 | 0 | 2 | 1 | 7 | 3 | 11 |
5 | 16 | 0 | 11 | 9 | 2 | 14 | 10 | 4 | 13 | 7 | 3 | 15 | 8 | 6 | 17 | 1 | 12 |
11 | 2 | 3 | 12 | 17 | 4 | 16 | 9 | 7 | 10 | 8 | 1 | 13 | 0 | 5 | 14 | 15 | 6 |
9 | 17 | 4 | 7 | 3 | 1 | 2 | 5 | 6 | 11 | 12 | 15 | 16 | 14 | 10 | 13 | 0 | 8 |
4 | 11 | 9 | 10 | 12 | 15 | 0 | 1 | 14 | 3 | 16 | 17 | 2 | 5 | 7 | 8 | 6 | 13 |
7 | 3 | 16 | 0 | 13 | 9 | 11 | 2 | 5 | 12 | 15 | 6 | 8 | 4 | 17 | 1 | 14 | 10 |
13 | 9 | 15 | 5 | 10 | 0 | 1 | 6 | 3 | 14 | 11 | 16 | 17 | 7 | 12 | 2 | 8 | 4 |
15 | 5 | 6 | 8 | 14 | 16 | 7 | 17 | 13 | 4 | 0 | 10 | 1 | 3 | 9 | 11 | 12 | 2 |
14 | 0 | 1 | 2 | 5 | 8 | 4 | 11 | 10 | 7 | 6 | 13 | 9 | 12 | 15 | 16 | 17 | 3 |
1 | 12 | 13 | 15 | 11 | 14 | 10 | 8 | 17 | 0 | 9 | 7 | 3 | 6 | 2 | 4 | 5 | 16 |
3 | 15 | 7 | 17 | 6 | 12 | 9 | 4 | 1 | 16 | 13 | 8 | 5 | 11 | 0 | 10 | 2 | 14 |
17 | 6 | 14 | 9 | 2 | 7 | 13 | 16 | 12 | 5 | 1 | 4 | 10 | 15 | 8 | 3 | 11 | 0 |
12 | 10 | 11 | 4 | 16 | 3 | 8 | 15 | 0 | 17 | 2 | 9 | 14 | 1 | 13 | 6 | 7 | 5 |
18
-colouring of the
18×18
queen graph
0 | 4 | 8 | 12 | 11 | 16 | 6 | 19 | 15 | 3 | 2 | 14 | 18 | 7 | 17 | 10 | 13 | 9 | 5 | 1 |
8 | 15 | 0 | 4 | 18 | 12 | 2 | 11 | 6 | 17 | 16 | 7 | 10 | 3 | 13 | 19 | 5 | 1 | 14 | 9 |
4 | 18 | 17 | 8 | 0 | 10 | 3 | 15 | 12 | 7 | 6 | 13 | 14 | 2 | 11 | 1 | 9 | 16 | 19 | 5 |
11 | 0 | 4 | 13 | 14 | 2 | 7 | 8 | 19 | 16 | 17 | 18 | 9 | 6 | 3 | 15 | 12 | 5 | 1 | 10 |
13 | 19 | 14 | 0 | 4 | 9 | 16 | 2 | 10 | 6 | 7 | 11 | 3 | 17 | 8 | 5 | 1 | 15 | 18 | 12 |
14 | 10 | 18 | 17 | 5 | 6 | 13 | 1 | 9 | 2 | 3 | 8 | 0 | 12 | 7 | 4 | 16 | 19 | 11 | 15 |
18 | 3 | 7 | 16 | 10 | 1 | 9 | 12 | 5 | 14 | 15 | 4 | 13 | 8 | 0 | 11 | 17 | 6 | 2 | 19 |
7 | 9 | 13 | 5 | 3 | 15 | 19 | 16 | 1 | 10 | 11 | 0 | 17 | 18 | 14 | 2 | 4 | 12 | 8 | 6 |
19 | 12 | 1 | 11 | 17 | 5 | 8 | 6 | 2 | 15 | 14 | 3 | 7 | 9 | 4 | 16 | 10 | 0 | 13 | 18 |
1 | 7 | 9 | 3 | 15 | 19 | 12 | 5 | 16 | 11 | 10 | 17 | 4 | 13 | 18 | 14 | 2 | 8 | 6 | 0 |
3 | 5 | 11 | 1 | 13 | 17 | 14 | 7 | 18 | 9 | 8 | 19 | 6 | 15 | 16 | 12 | 0 | 10 | 4 | 2 |
17 | 14 | 3 | 9 | 19 | 7 | 10 | 4 | 0 | 13 | 12 | 1 | 5 | 11 | 6 | 18 | 8 | 2 | 15 | 16 |
5 | 11 | 15 | 7 | 1 | 13 | 17 | 18 | 3 | 8 | 9 | 2 | 19 | 16 | 12 | 0 | 6 | 14 | 10 | 4 |
16 | 1 | 5 | 18 | 8 | 3 | 11 | 14 | 7 | 12 | 13 | 6 | 15 | 10 | 2 | 9 | 19 | 4 | 0 | 17 |
12 | 8 | 16 | 19 | 7 | 4 | 15 | 3 | 11 | 0 | 1 | 10 | 2 | 14 | 5 | 6 | 18 | 17 | 9 | 13 |
15 | 17 | 12 | 2 | 6 | 11 | 18 | 0 | 8 | 4 | 5 | 9 | 1 | 19 | 10 | 7 | 3 | 13 | 16 | 14 |
9 | 2 | 6 | 15 | 12 | 0 | 5 | 10 | 17 | 18 | 19 | 16 | 11 | 4 | 1 | 13 | 14 | 7 | 3 | 8 |
6 | 16 | 19 | 10 | 2 | 8 | 1 | 13 | 14 | 5 | 4 | 15 | 12 | 0 | 9 | 3 | 11 | 18 | 17 | 7 |
10 | 13 | 2 | 6 | 16 | 14 | 0 | 9 | 4 | 19 | 18 | 5 | 8 | 1 | 15 | 17 | 7 | 3 | 12 | 11 |
2 | 6 | 10 | 14 | 9 | 18 | 4 | 17 | 13 | 1 | 0 | 12 | 16 | 5 | 19 | 8 | 15 | 11 | 7 | 3 |
20
-colouring of the
20×20
queen graph
3 | 7 | 11 | 15 | 13 | 14 | 8 | 12 | 1 | 19 | 5 | 9 | 4 | 20 | 16 | 17 | 0 | 10 | 6 | 18 | 2 |
19 | 12 | 3 | 7 | 16 | 5 | 1 | 10 | 9 | 4 | 0 | 18 | 14 | 17 | 13 | 8 | 11 | 2 | 20 | 15 | 6 |
7 | 20 | 19 | 9 | 3 | 8 | 17 | 13 | 0 | 5 | 16 | 1 | 15 | 11 | 12 | 4 | 14 | 6 | 18 | 2 | 10 |
11 | 3 | 7 | 18 | 10 | 12 | 5 | 1 | 20 | 9 | 4 | 0 | 16 | 13 | 15 | 19 | 2 | 17 | 8 | 6 | 14 |
1 | 8 | 15 | 3 | 7 | 11 | 20 | 4 | 14 | 0 | 13 | 10 | 5 | 18 | 17 | 16 | 6 | 9 | 2 | 19 | 12 |
18 | 9 | 5 | 16 | 17 | 2 | 6 | 0 | 3 | 7 | 8 | 20 | 19 | 12 | 14 | 1 | 10 | 15 | 11 | 4 | 13 |
17 | 14 | 13 | 12 | 18 | 15 | 10 | 8 | 2 | 6 | 19 | 3 | 7 | 1 | 9 | 5 | 20 | 4 | 16 | 0 | 11 |
20 | 18 | 8 | 14 | 19 | 13 | 2 | 6 | 4 | 10 | 1 | 16 | 17 | 5 | 11 | 3 | 7 | 0 | 12 | 9 | 15 |
5 | 15 | 12 | 17 | 6 | 16 | 4 | 18 | 11 | 14 | 9 | 19 | 10 | 7 | 1 | 2 | 13 | 20 | 3 | 8 | 0 |
10 | 19 | 2 | 1 | 11 | 20 | 0 | 17 | 16 | 15 | 12 | 14 | 13 | 9 | 5 | 6 | 3 | 8 | 4 | 7 | 18 |
6 | 1 | 17 | 5 | 14 | 9 | 16 | 2 | 10 | 13 | 20 | 15 | 8 | 0 | 18 | 11 | 12 | 7 | 19 | 3 | 4 |
16 | 5 | 6 | 10 | 1 | 4 | 7 | 11 | 15 | 12 | 14 | 13 | 18 | 19 | 2 | 20 | 9 | 3 | 0 | 17 | 8 |
2 | 10 | 1 | 20 | 15 | 0 | 3 | 5 | 8 | 17 | 11 | 12 | 9 | 16 | 6 | 18 | 4 | 19 | 14 | 13 | 7 |
13 | 11 | 14 | 2 | 5 | 1 | 9 | 7 | 19 | 18 | 3 | 8 | 6 | 4 | 0 | 15 | 17 | 12 | 10 | 16 | 20 |
9 | 2 | 18 | 6 | 20 | 7 | 11 | 3 | 5 | 1 | 17 | 4 | 0 | 10 | 8 | 13 | 16 | 14 | 15 | 12 | 19 |
15 | 6 | 9 | 13 | 8 | 3 | 12 | 14 | 17 | 20 | 10 | 5 | 1 | 2 | 4 | 0 | 19 | 18 | 7 | 11 | 16 |
14 | 17 | 0 | 11 | 4 | 18 | 19 | 16 | 7 | 8 | 15 | 2 | 12 | 6 | 20 | 9 | 5 | 1 | 13 | 10 | 3 |
12 | 4 | 10 | 19 | 0 | 17 | 13 | 15 | 18 | 2 | 6 | 11 | 20 | 3 | 7 | 14 | 8 | 16 | 5 | 1 | 9 |
8 | 0 | 16 | 4 | 12 | 6 | 14 | 9 | 13 | 3 | 18 | 7 | 2 | 15 | 19 | 10 | 1 | 11 | 17 | 20 | 5 |
4 | 13 | 20 | 0 | 9 | 10 | 15 | 19 | 12 | 16 | 2 | 6 | 11 | 8 | 3 | 7 | 18 | 5 | 1 | 14 | 17 |
0 | 16 | 4 | 8 | 2 | 19 | 18 | 20 | 6 | 11 | 7 | 17 | 3 | 14 | 10 | 12 | 15 | 13 | 9 | 5 | 1 |
21
-colouring of the
21×21
queen graph
0 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 21 | 19 | 17 | 15 | 13 | 11 | 9 | 7 | 5 | 3 | 1 |
4 | 6 | 8 | 2 | 1 | 21 | 17 | 10 | 12 | 15 | 19 | 18 | 14 | 13 | 11 | 16 | 20 | 0 | 3 | 9 | 7 | 5 |
2 | 0 | 10 | 4 | 6 | 8 | 19 | 13 | 14 | 20 | 17 | 16 | 21 | 15 | 12 | 18 | 9 | 7 | 5 | 11 | 1 | 3 |
17 | 4 | 2 | 8 | 0 | 14 | 11 | 6 | 18 | 13 | 21 | 20 | 12 | 19 | 7 | 10 | 15 | 1 | 9 | 3 | 5 | 16 |
6 | 15 | 0 | 16 | 2 | 20 | 8 | 4 | 10 | 12 | 18 | 19 | 13 | 11 | 5 | 9 | 21 | 3 | 17 | 1 | 14 | 7 |
12 | 11 | 19 | 17 | 21 | 9 | 15 | 0 | 7 | 2 | 4 | 5 | 3 | 6 | 1 | 14 | 8 | 20 | 16 | 18 | 10 | 13 |
14 | 20 | 18 | 0 | 13 | 7 | 5 | 11 | 3 | 16 | 9 | 8 | 17 | 2 | 10 | 4 | 6 | 12 | 1 | 19 | 21 | 15 |
10 | 13 | 16 | 7 | 5 | 3 | 20 | 19 | 9 | 1 | 14 | 15 | 0 | 8 | 18 | 21 | 2 | 4 | 6 | 17 | 12 | 11 |
9 | 7 | 3 | 13 | 20 | 18 | 1 | 17 | 15 | 5 | 11 | 10 | 4 | 14 | 16 | 0 | 19 | 21 | 12 | 2 | 6 | 8 |
19 | 5 | 11 | 1 | 9 | 16 | 14 | 21 | 6 | 3 | 13 | 12 | 2 | 7 | 20 | 15 | 17 | 8 | 0 | 10 | 4 | 18 |
1 | 9 | 14 | 3 | 7 | 5 | 10 | 12 | 20 | 19 | 16 | 17 | 18 | 21 | 13 | 11 | 4 | 6 | 2 | 15 | 8 | 0 |
3 | 12 | 5 | 11 | 18 | 17 | 21 | 1 | 8 | 7 | 15 | 14 | 6 | 9 | 0 | 20 | 16 | 19 | 10 | 4 | 13 | 2 |
7 | 1 | 9 | 10 | 3 | 15 | 4 | 18 | 17 | 21 | 12 | 13 | 20 | 16 | 19 | 5 | 14 | 2 | 11 | 8 | 0 | 6 |
15 | 8 | 7 | 20 | 4 | 13 | 16 | 2 | 19 | 0 | 10 | 11 | 1 | 18 | 3 | 17 | 12 | 5 | 21 | 6 | 9 | 14 |
5 | 3 | 6 | 19 | 16 | 12 | 0 | 20 | 11 | 14 | 8 | 9 | 15 | 10 | 21 | 1 | 13 | 17 | 18 | 7 | 2 | 4 |
21 | 14 | 1 | 12 | 17 | 19 | 6 | 8 | 4 | 10 | 3 | 2 | 11 | 5 | 9 | 7 | 18 | 16 | 13 | 0 | 15 | 20 |
18 | 17 | 21 | 14 | 11 | 0 | 13 | 7 | 2 | 8 | 5 | 4 | 9 | 3 | 6 | 12 | 1 | 10 | 15 | 20 | 16 | 19 |
16 | 19 | 20 | 15 | 10 | 2 | 9 | 5 | 13 | 6 | 1 | 0 | 7 | 12 | 4 | 8 | 3 | 11 | 14 | 21 | 18 | 17 |
8 | 21 | 13 | 5 | 19 | 11 | 3 | 15 | 0 | 17 | 7 | 6 | 16 | 1 | 14 | 2 | 10 | 18 | 4 | 12 | 20 | 9 |
11 | 18 | 12 | 9 | 15 | 6 | 2 | 16 | 21 | 4 | 0 | 1 | 5 | 20 | 17 | 3 | 7 | 14 | 8 | 13 | 19 | 10 |
20 | 16 | 15 | 18 | 12 | 4 | 7 | 9 | 1 | 11 | 2 | 3 | 10 | 0 | 8 | 6 | 5 | 13 | 19 | 14 | 17 | 21 |
13 | 10 | 17 | 21 | 14 | 1 | 18 | 3 | 5 | 9 | 6 | 7 | 8 | 4 | 2 | 19 | 0 | 15 | 20 | 16 | 11 | 12 |
22
-colouring of the
22×22
queen graph
0 | 4 | 8 | 12 | 16 | 20 | 19 | 23 | 14 | 3 | 7 | 10 | 11 | 6 | 2 | 15 | 22 | 18 | 21 | 17 | 13 | 9 | 5 | 1 |
8 | 11 | 0 | 4 | 15 | 12 | 6 | 3 | 20 | 19 | 23 | 17 | 16 | 22 | 18 | 21 | 2 | 7 | 13 | 14 | 5 | 1 | 10 | 9 |
4 | 19 | 12 | 8 | 0 | 7 | 2 | 16 | 11 | 14 | 22 | 21 | 20 | 23 | 15 | 10 | 17 | 3 | 6 | 1 | 9 | 13 | 18 | 5 |
22 | 0 | 4 | 18 | 12 | 21 | 8 | 17 | 7 | 15 | 11 | 3 | 2 | 10 | 14 | 6 | 16 | 9 | 20 | 13 | 19 | 5 | 1 | 23 |
14 | 23 | 20 | 0 | 4 | 18 | 16 | 13 | 3 | 8 | 10 | 7 | 6 | 11 | 9 | 2 | 12 | 17 | 19 | 5 | 1 | 21 | 22 | 15 |
18 | 8 | 17 | 15 | 23 | 6 | 21 | 10 | 0 | 4 | 13 | 2 | 3 | 12 | 5 | 1 | 11 | 20 | 7 | 22 | 14 | 16 | 9 | 19 |
15 | 13 | 16 | 19 | 10 | 9 | 20 | 2 | 6 | 22 | 0 | 4 | 5 | 1 | 23 | 7 | 3 | 21 | 8 | 11 | 18 | 17 | 12 | 14 |
11 | 7 | 15 | 22 | 20 | 2 | 13 | 9 | 17 | 5 | 1 | 18 | 19 | 0 | 4 | 16 | 8 | 12 | 3 | 21 | 23 | 14 | 6 | 10 |
17 | 22 | 21 | 3 | 5 | 10 | 1 | 6 | 13 | 9 | 19 | 14 | 15 | 18 | 8 | 12 | 7 | 0 | 11 | 4 | 2 | 20 | 23 | 16 |
21 | 18 | 1 | 23 | 9 | 13 | 5 | 14 | 16 | 2 | 6 | 11 | 10 | 7 | 3 | 17 | 15 | 4 | 12 | 8 | 22 | 0 | 19 | 20 |
3 | 12 | 9 | 5 | 19 | 1 | 11 | 7 | 23 | 21 | 16 | 15 | 14 | 17 | 20 | 22 | 6 | 10 | 0 | 18 | 4 | 8 | 13 | 2 |
5 | 1 | 7 | 11 | 3 | 17 | 12 | 20 | 8 | 18 | 14 | 22 | 23 | 15 | 19 | 9 | 21 | 13 | 16 | 2 | 10 | 6 | 0 | 4 |
7 | 3 | 5 | 9 | 1 | 19 | 14 | 22 | 10 | 16 | 12 | 20 | 21 | 13 | 17 | 11 | 23 | 15 | 18 | 0 | 8 | 4 | 2 | 6 |
1 | 14 | 11 | 7 | 17 | 3 | 9 | 5 | 21 | 23 | 18 | 13 | 12 | 19 | 22 | 20 | 4 | 8 | 2 | 16 | 6 | 10 | 15 | 0 |
23 | 16 | 3 | 21 | 11 | 15 | 7 | 12 | 18 | 0 | 4 | 9 | 8 | 5 | 1 | 19 | 13 | 6 | 14 | 10 | 20 | 2 | 17 | 22 |
19 | 20 | 23 | 1 | 7 | 8 | 3 | 4 | 15 | 11 | 17 | 12 | 13 | 16 | 10 | 14 | 5 | 2 | 9 | 6 | 0 | 22 | 21 | 18 |
9 | 5 | 13 | 20 | 22 | 0 | 15 | 11 | 19 | 7 | 3 | 16 | 17 | 2 | 6 | 18 | 10 | 14 | 1 | 23 | 21 | 12 | 4 | 8 |
13 | 15 | 18 | 17 | 8 | 11 | 22 | 0 | 4 | 20 | 2 | 6 | 7 | 3 | 21 | 5 | 1 | 23 | 10 | 9 | 16 | 19 | 14 | 12 |
16 | 10 | 19 | 13 | 21 | 4 | 23 | 8 | 2 | 6 | 15 | 0 | 1 | 14 | 7 | 3 | 9 | 22 | 5 | 20 | 12 | 18 | 11 | 17 |
12 | 21 | 22 | 2 | 6 | 16 | 18 | 15 | 1 | 10 | 8 | 5 | 4 | 9 | 11 | 0 | 14 | 19 | 17 | 7 | 3 | 23 | 20 | 13 |
20 | 2 | 6 | 16 | 14 | 23 | 10 | 19 | 5 | 13 | 9 | 1 | 0 | 8 | 12 | 4 | 18 | 11 | 22 | 15 | 17 | 7 | 3 | 21 |
6 | 17 | 14 | 10 | 2 | 5 | 0 | 18 | 9 | 12 | 20 | 23 | 22 | 21 | 13 | 8 | 19 | 1 | 4 | 3 | 11 | 15 | 16 | 7 |
10 | 9 | 2 | 6 | 13 | 14 | 4 | 1 | 22 | 17 | 21 | 19 | 18 | 20 | 16 | 23 | 0 | 5 | 15 | 12 | 7 | 3 | 8 | 11 |
2 | 6 | 10 | 14 | 18 | 22 | 17 | 21 | 12 | 1 | 5 | 8 | 9 | 4 | 0 | 13 | 20 | 16 | 23 | 19 | 15 | 11 | 7 | 3 |
24
-colouring of the
24×24
queen graph
In July 2005, Vasquez found a 26
-colouring of the
26×26
queen graph.
Problem 1. Is the 27×27
queen graph
27
-colourable?
In some cases an r
-colouring of the r×r
queen graph and an s
-colouring of the
s×s
queen graph can be composed to yield an
rs
-colouring of the rs×rs
queen graph.
The idea appears in B. Abramson and M. M. Yung, Construction
through decomposition: a divide-and-conquer algorithm for the N-queens
problem, Fall Joint Computer Conference Nov 1986, pp. 620-628:
The rs×rs
chessboard may be thought of as an
s×s
board of compound squares, each of which is an
r×r
chessboard in its own right; given a colouring
f
of the r×r
queen graph by colours
0,1,...,r-1
and given a colouring g
of the
s×s
queen graph by colours 0,1,...,s-1
,
we assign to each square u
of the rs×rs
chessboard the integer h(u)
defined by
h(u) = rg(w) + f(v),
w
is the compound square that contains
u
and where v
specifies the location of
u
within the r×r
chessboard
w
. This construction, with r=5
,
s=12
, and with f,g
as defined on this page,
is illustrated on a separate
page; in this particular case (as pointed out by Günter
Stertenbrink), it happens to produce a 60
-colouring of the
60×60
queen graph.
Problem 2. True or false? For all sufficiently large
n
, the n×n
queen graph is
n
-colourable.