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the right-hand side can be rounded down to the nearest integer.
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∑ 𝑥𝑒: 𝑒 ⊆ 𝑆 ≤ ( 𝑆 − 1)/2 for all sets 𝑆 of vertices such that 𝑆 is odd.
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∑ 𝑥𝑒: 𝑒 ∋ 𝑣 ≤ 1 for all vertices 𝑣.
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−𝑥𝑒 ≤ 0 with all 𝑒 such that 𝑒 ∩ 𝑆 ≠ ∅, 𝑒 − 𝑆 ≠ ∅
0.5∑ 𝑥𝑒: 𝑒 ∋ 𝑣 ≤ 0.5 with all 𝑣 in 𝑆,
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and so the right-hand side can be rounded down to the nearest integer.
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∑ 𝑥𝑒: 𝑒 ⊆ 𝑆 ≤ 0.5 𝑆 .
Furthermore, If the 𝑥𝑒 are integers, then the left-hand side is an integer, 
and so the right-hand side can be rounded down to the nearest integer.

Generalization: If a vector 𝑥 satisfies a system 𝐴𝑥 ≤ 𝑏 of inequalities, 

then, for every nonnegative vector 𝑦, it satisfies the inequality 𝑦T𝐴 𝑥 ≤ 𝑦𝑇𝑏 .

Furthermore, If both 𝑥 and 𝑦𝑇𝐴 are integer-valued, then the left-hand side is an integer, 
and so the right-hand side can be rounded down to the nearest integer.



Fact: If a vector 𝑥 satisfies a system 𝐴𝑥 ≤ 𝑏 of inequalities, 
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and so the right-hand side can be rounded down to the nearest integer.



Definition: An inequality 𝑐𝑇𝑥 ≤ 𝑑 belongs to the elementary closure of a system 𝐴𝑥 ≤ 𝑏 if the 
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and so the right-hand side can be rounded down to the nearest integer.



Definition: An inequality 𝑐𝑇𝑥 ≤ 𝑑 belongs to the elementary closure of a system 𝐴𝑥 ≤ 𝑏 if the 
vector 𝑐 is integer-valued there is a nonnegative vector 𝑦 such that 𝑐 = 𝑦𝑇𝐴 and 𝑑 ≥ 𝑦𝑇𝑏 .

Fact: If a vector 𝑥 satisfies a system 𝐴𝑥 ≤ 𝑏 of inequalities, 

then, for every nonnegative vector 𝑦, it satisfies the inequality 𝑦T𝐴 𝑥 ≤ 𝑦𝑇𝑏 .

Furthermore, If the 𝑥𝑒 are integers, then the left-hand side is an integer, 
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Fact: Every integer solution 𝑥 of 𝐴𝑥 ≤ 𝑏 satisfies                
all inequalities in the elementary closure of 𝐴𝑥 ≤ 𝑏.
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Notation: 𝑒(Σ) denotes the set of all inequalities in the elementary closure of a system Σ.
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Furthermore, If the 𝑥𝑒 are integers, then the left-hand side is an integer, 
and so the right-hand side can be rounded down to the nearest integer.

Fact: Every integer solution 𝑥 of 𝐴𝑥 ≤ 𝑏 satisfies                
all inequalities in the elementary closure of 𝐴𝑥 ≤ 𝑏.

Notation: 𝑒(Σ) denotes the set of all inequalities in the elementary closure of a system Σ.

Given a graph 𝐺, let Σ(𝐺) denote the system
0 ≤ 𝑥𝑒 ≤ 1 for all edges 𝑒,

∑ 𝑥𝑒: 𝑒 ∋ 𝑣 ≤ 1 for all vertices 𝑣,
so that integer solutions of Σ(𝐺) are precisely the incidence vectors of matchings.
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Furthermore, If the 𝑥𝑒 are integers, then the left-hand side is an integer, 
and so the right-hand side can be rounded down to the nearest integer.

Fact: Every integer solution 𝑥 of 𝐴𝑥 ≤ 𝑏 satisfies                
all inequalities in the elementary closure of 𝐴𝑥 ≤ 𝑏.
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Given a graph 𝐺, let Σ(𝐺) denote the system
0 ≤ 𝑥𝑒 ≤ 1 for all edges 𝑒,

∑ 𝑥𝑒: 𝑒 ∋ 𝑣 ≤ 1 for all vertices 𝑣,
so that integer solutions of Σ(𝐺) are precisely the incidence vectors of matchings.

Corollary of the Matching Polyhedron Theorem: 
A linear description of the convex hull of all integer solutions of Σ(𝐺)

is contained in 𝑒 Σ 𝐺 .



Matchings in a graph 𝐺 are stable sets in its line graph 𝐻.



When 𝐺 is a graph,  Σ(𝐺) denotes the system
0 ≤ 𝑥𝑒 ≤ 1 for all edges 𝑒,

∑ 𝑥𝑒: 𝑒 ∋ 𝑣 ≤ 1 for all vertices 𝑣.

integer solutions of Σ(𝐺) are precisely 
the incidence vectors of matchings.

Matchings in a graph 𝐺 are stable sets in its line graph 𝐻.
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0 ≤ 𝑥𝑒 ≤ 1 for all edges 𝑒,

∑ 𝑥𝑒: 𝑒 ∋ 𝑣 ≤ 1 for all vertices 𝑣.

integer solutions of Σ(𝐺) are precisely 
the incidence vectors of matchings.

Matchings in a graph 𝐺 are stable sets in its line graph 𝐻.

integer solutions of 𝑇(𝐻) are precisely 
the incidence vectors of stable sets.

When 𝐻 is a graph,  𝑇(𝐻) denotes the system
0 ≤ 𝑥𝑣 ≤ 1 for all vertices 𝑣,

∑ 𝑥𝑣: 𝑣 ∈ 𝐶 ≤ 1 for all cliques 𝐶.
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∑ 𝑥𝑒: 𝑒 ∋ 𝑣 ≤ 1 for all vertices 𝑣.

integer solutions of Σ(𝐺) are precisely 
the incidence vectors of matchings.

Matchings in a graph 𝐺 are stable sets in its line graph 𝐻.

integer solutions of 𝑇(𝐻) are precisely 
the incidence vectors of stable sets.

When 𝐻 is a graph,  𝑇(𝐻) denotes the system
0 ≤ 𝑥𝑣 ≤ 1 for all vertices 𝑣,

∑ 𝑥𝑣: 𝑣 ∈ 𝐶 ≤ 1 for all cliques 𝐶.

If 𝐻 is a line graph of 𝐺 , then
𝑇(𝐻) subsumes Σ(𝐺)



When 𝐺 is a graph,  Σ(𝐺) denotes the system
0 ≤ 𝑥𝑒 ≤ 1 for all edges 𝑒,

∑ 𝑥𝑒: 𝑒 ∋ 𝑣 ≤ 1 for all vertices 𝑣.

integer solutions of Σ(𝐺) are precisely 
the incidence vectors of matchings.

Matchings in a graph 𝐺 are stable sets in its line graph 𝐻.

integer solutions of 𝑇(𝐻) are precisely 
the incidence vectors of stable sets.

Corollary of the Matching Polyhedron Theorem: 
A linear description of the 
convex hull of all integer solutions of Σ(𝐺)

is contained in 𝑒 Σ 𝐺 .

When 𝐻 is a graph,  𝑇(𝐻) denotes the system
0 ≤ 𝑥𝑣 ≤ 1 for all vertices 𝑣,

∑ 𝑥𝑣: 𝑣 ∈ 𝐶 ≤ 1 for all cliques 𝐶.

If 𝐻 is a line graph of 𝐺 , then
𝑇(𝐻) subsumes Σ 𝐺 .



When 𝐺 is a graph,  Σ(𝐺) denotes the system
0 ≤ 𝑥𝑒 ≤ 1 for all edges 𝑒,

∑ 𝑥𝑒: 𝑒 ∋ 𝑣 ≤ 1 for all vertices 𝑣.

integer solutions of Σ(𝐺) are precisely 
the incidence vectors of matchings.

Matchings in a graph 𝐺 are stable sets in its line graph 𝐻.

integer solutions of 𝑇(𝐻) are precisely 
the incidence vectors of stable sets.

Corollary of the Matching Polyhedron Theorem: 
A linear description of the 
convex hull of all integer solutions of Σ(𝐺)

is contained in 𝑒 Σ 𝐺 .

When 𝐻 is a graph,  𝑇(𝐻) denotes the system
0 ≤ 𝑥𝑣 ≤ 1 for all vertices 𝑣,

∑ 𝑥𝑣: 𝑣 ∈ 𝐶 ≤ 1 for all cliques 𝐶.

If 𝐻 is a line graph of 𝐺 , then
𝑇(𝐻) subsumes Σ(𝐺), and so 
a linear description of the 
convex hull of all integer solutions of 𝑇(𝐻)

is contained in 𝑒 𝑇 𝐻 .



integer solutions of 𝑇(𝐻) are precisely 
the incidence vectors of stable sets.

When 𝐻 is a graph,  𝑇(𝐻) denotes the system
0 ≤ 𝑥𝑣 ≤ 1 for all vertices 𝑣,

∑ 𝑥𝑣: 𝑣 ∈ 𝐶 ≤ 1 for all cliques 𝐶.

If 𝐻 is a line graph, then
a linear description of the 
convex hull of all integer solutions of 𝑇(𝐻)

is contained in 𝑒 𝑇 𝐻 .



integer solutions of 𝑇(𝐺) are precisely 
the incidence vectors of stable sets.

When 𝐺 is a graph,  𝑇(𝐺) denotes the system
0 ≤ 𝑥𝑣 ≤ 1 for all vertices 𝑣,

∑ 𝑥𝑣: 𝑣 ∈ 𝐶 ≤ 1 for all cliques 𝐶.

If 𝐺 is a line graph, then
a linear description of the 
convex hull of all integer solutions of 𝑇(𝐺)

is contained in 𝑒 𝑇 𝐺 .



Be wise: Generalize!

integer solutions of 𝑇(𝐺) are precisely 
the incidence vectors of stable sets.

When 𝐺 is a graph,  𝑇(𝐺) denotes the system
0 ≤ 𝑥𝑣 ≤ 1 for all vertices 𝑣,

∑ 𝑥𝑣: 𝑣 ∈ 𝐶 ≤ 1 for all cliques 𝐶.

If 𝐺 is a line graph, then
a linear description of the 
convex hull of all integer solutions of 𝑇(𝐺)

is contained in 𝑒 𝑇 𝐺 .

How about arbitrary graphs ???



When 𝐺 is a graph,  𝑇(𝐺) denotes the system
0 ≤ 𝑥𝑣 ≤ 1 for all vertices 𝑣,

∑ 𝑥𝑣: 𝑣 ∈ 𝐶 ≤ 1 for all cliques 𝐶.



When 𝐺 is a graph,  𝑇(𝐺) denotes the system
0 ≤ 𝑥𝑣 ≤ 1 for all vertices 𝑣,

∑ 𝑥𝑣: 𝑣 ∈ 𝐶 ≤ 1 for all cliques 𝐶.



When 𝐺 is a graph,  𝑇(𝐺) denotes the system
0 ≤ 𝑥𝑣 ≤ 1 for all vertices 𝑣,

∑ 𝑥𝑣: 𝑣 ∈ 𝐶 ≤ 1 for all cliques 𝐶.

When 𝐺 is this graph, 𝑇 𝐺 consists of the eight 
inequalities  −𝑥𝑗 ≤ 0, the eight inequalities 𝑥𝑗 ≤ 1

and the ten inequalities 𝑥𝑗 + 𝑥𝑘 ≤ 1. 



When 𝐺 is a graph,  𝑇(𝐺) denotes the system
0 ≤ 𝑥𝑣 ≤ 1 for all vertices 𝑣,

∑ 𝑥𝑣: 𝑣 ∈ 𝐶 ≤ 1 for all cliques 𝐶.

When 𝐺 is this graph, 𝑇 𝐺 consists of the eight 
inequalities  −𝑥𝑗 ≤ 0, the eight inequalities 𝑥𝑗 ≤ 1

and the ten inequalities 𝑥𝑗 + 𝑥𝑘 ≤ 1. Four of the 

inequalities added in 𝑒 𝑇 𝐺 read

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 ≤ 2,
𝑥1 + 𝑥5+ 𝑥6 + 𝑥7 + 𝑥8 ≤ 2,
𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥8 ≤ 2,
𝑥4 + 𝑥5 + 𝑥6 + 𝑥7 + 𝑥8 ≤ 2.



When 𝐺 is a graph,  𝑇(𝐺) denotes the system
0 ≤ 𝑥𝑣 ≤ 1 for all vertices 𝑣,

∑ 𝑥𝑣: 𝑣 ∈ 𝐶 ≤ 1 for all cliques 𝐶.

When 𝐺 is this graph, 𝑇 𝐺 consists of the eight 
inequalities  −𝑥𝑗 ≤ 0, the eight inequalities 𝑥𝑗 ≤ 1

and the ten inequalities 𝑥𝑗 + 𝑥𝑘 ≤ 1. Four of the 

inequalities added in 𝑒 𝑇 𝐺 read

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 ≤ 2,
𝑥1 + 𝑥5+ 𝑥6 + 𝑥7 + 𝑥8 ≤ 2,
𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥8 ≤ 2,
𝑥4 + 𝑥5 + 𝑥6 + 𝑥7 + 𝑥8 ≤ 2.

Actually, all inequalities in 𝑒 𝑇 𝐺 are linear 

combinations of these 30 inequalities.



The largest stable set in this 𝐺 has  three vertices.



The largest stable set in this 𝐺 has  three vertices, 

but the maximum of 𝑥1 + 𝑥2 +⋯𝑥8 subject to 𝑒 𝑇 𝐺 is bigger than 3:

𝑥1 = 𝑥4 = 𝑥5 = 𝑥8 =
1

3
and 𝑥2 = 𝑥3 = 𝑥6 = 𝑥7 =

1

2
satisfy 𝑒 𝑇 𝐺 and 

make 𝑥1+𝑥2 +⋯+ 𝑥8 = 3
1

3
.



The largest stable set in this 𝐺 has  three vertices, 

but the maximum of 𝑥1 + 𝑥2 +⋯𝑥8 subject to 𝑒 𝑇 𝐺 is bigger than 3:

𝑥1 = 𝑥4 = 𝑥5 = 𝑥8 =
1

3
and 𝑥2 = 𝑥3 = 𝑥6 = 𝑥7 =

1

2
satisfy 𝑒 𝑇 𝐺 and 

make 𝑥1+𝑥2 +⋯+ 𝑥8 = 3
1

3
.

Hence the inequality 𝑥1 + 𝑥2 +⋯+ 𝑥8 ≤ 3 is not a linear combination of 

inequalities in 𝑒 𝑇 𝐺 .



The largest stable set in this 𝐺 has  three vertices, 

but the maximum of 𝑥1 + 𝑥2 +⋯𝑥8 subject to 𝑒 𝑇 𝐺 is bigger than 3:

𝑥1 = 𝑥4 = 𝑥5 = 𝑥8 =
1

3
and 𝑥2 = 𝑥3 = 𝑥6 = 𝑥7 =

1

2
satisfy 𝑒 𝑇 𝐺 and 

make 𝑥1+𝑥2 +⋯+ 𝑥8 = 3
1

3
.

Hence the inequality 𝑥1 + 𝑥2 +⋯+ 𝑥8 ≤ 3 is not a linear combination of 

inequalities in 𝑒 𝑇 𝐺 .

Nevertheless, this inequality belongs to 𝑒(𝑒 𝑇 𝐺 ): the sum of

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 ≤ 2,
𝑥1 + 𝑥5+ 𝑥6 + 𝑥7 + 𝑥8 ≤ 2,
𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥8 ≤ 2,
𝑥4 + 𝑥5 + 𝑥6 + 𝑥7 + 𝑥8 ≤ 2,

𝑥2+𝑥3 ≤ 1,
𝑥6 + 𝑥7 ≤ 1

reads 3(𝑥1 + 𝑥2 +⋯+ 𝑥8) ≤ 10, which scales to  𝑥1+𝑥2 +⋯+ 𝑥8 ≤ 3
1

3
.



The inequality 𝑥1 + 𝑥2 +⋯+ 𝑥8 ≤ 3 is not a linear combination of inequalities 

in 𝑒 𝑇 𝐺 , but it belongs to 𝑒(𝑒 𝑇 𝐺 ).



The inequality 𝑥1 + 𝑥2 +⋯+ 𝑥8 ≤ 3 is not a linear combination of inequalities 

in 𝑒 𝑇 𝐺 , but it belongs to 𝑒(𝑒 𝑇 𝐺 ).

𝑥1 + 𝑥2 ≤ 1,
𝑥2 + 𝑥3 ≤ 1
𝑥3 + 𝑥4 ≤ 1
𝑥4 + 𝑥5 ≤ 1
𝑥5 + 𝑥6 ≤ 1
𝑥6 + 𝑥7 ≤ 1
𝑥7 + 𝑥8 ≤ 1
𝑥8 + 𝑥1 ≤ 1
𝑥1 + 𝑥5 ≤ 1
𝑥8 + 𝑥4 ≤ 1 ….. inequalities in 𝑇(𝐺)



The inequality 𝑥1 + 𝑥2 +⋯+ 𝑥8 ≤ 3 is not a linear combination of inequalities 

in 𝑒 𝑇 𝐺 , but it belongs to 𝑒(𝑒 𝑇 𝐺 ).

𝑥1 + 𝑥2 ≤ 1,
𝑥2 + 𝑥3 ≤ 1
𝑥3 + 𝑥4 ≤ 1
𝑥4 + 𝑥5 ≤ 1
𝑥5 + 𝑥6 ≤ 1
𝑥6 + 𝑥7 ≤ 1
𝑥7 + 𝑥8 ≤ 1
𝑥8 + 𝑥1 ≤ 1
𝑥1 + 𝑥5 ≤ 1
𝑥8 + 𝑥4 ≤ 1 ….. inequalities in 𝑇(𝐺)

𝑥1 + 𝑥2+ 𝑥3 + 𝑥4 + 𝑥5 ≤ 2
𝑥1 + 𝑥5+ 𝑥6 + 𝑥7 + 𝑥8 ≤ 2
𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥8 ≤ 2
𝑥4 + 𝑥5 + 𝑥6 + 𝑥7 + 𝑥8 ≤ 2 ….. inequalities in 𝑒(𝑇 𝐺 )



𝑥1 + 𝑥2 ≤ 1,
𝑥2 + 𝑥3 ≤ 1
𝑥3 + 𝑥4 ≤ 1
𝑥4 + 𝑥5 ≤ 1
𝑥5 + 𝑥6 ≤ 1
𝑥6 + 𝑥7 ≤ 1
𝑥7 + 𝑥8 ≤ 1
𝑥8 + 𝑥1 ≤ 1
𝑥1 + 𝑥5 ≤ 1
𝑥8 + 𝑥4 ≤ 1 ….. inequalities in 𝑇(𝐺)

𝑥1 + 𝑥2+ 𝑥3 + 𝑥4 + 𝑥5 ≤ 2
𝑥1 + 𝑥5+ 𝑥6 + 𝑥7 + 𝑥8 ≤ 2
𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥8 ≤ 2
𝑥4 + 𝑥5 + 𝑥6 + 𝑥7 + 𝑥8 ≤ 2 ….. inequalities in 𝑒(𝑇 𝐺 )

𝑥1+𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6 + 𝑥7 + 𝑥8 ≤ 3 inequality in 𝑒(𝑒 𝑇 𝐺 )
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𝑒0 𝑇 = 𝑇 and, for every positive integer 𝑘,
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𝑥6 + 𝑥7 ≤ 1
𝑥7 + 𝑥8 ≤ 1
𝑥8 + 𝑥1 ≤ 1
𝑥1 + 𝑥5 ≤ 1
𝑥8 + 𝑥4 ≤ 1 ….. inequalities in 𝑒0(𝑇(𝐺)) = rank 0 inequalities

𝑥1 + 𝑥2+ 𝑥3 + 𝑥4 + 𝑥5 ≤ 2
𝑥1 + 𝑥5+ 𝑥6 + 𝑥7 + 𝑥8 ≤ 2
𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥8 ≤ 2
𝑥4 + 𝑥5 + 𝑥6 + 𝑥7 + 𝑥8 ≤ 2 ….. inequalities in 𝑒1(𝑇(𝐺)) = rank 1 inequalities

𝑥1+𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6 + 𝑥7 + 𝑥8 ≤ 3 inequality in 𝑒2 𝑇 𝐺 = rank 2 inequality

Given a system 𝑇 of linear inequalities, we set 
𝑒0 𝑇 = 𝑇 and, for every positive integer 𝑘,
𝑒𝑘 𝑇 = 𝑒(𝑇 ∪ 𝑒𝑘−1(𝑇)).

The rank of an inequality is defined as
the smallest 𝑘 such that 𝑒𝑘 𝑇 includes this ineq.



𝑥1 + 𝑥2 ≤ 1,
𝑥2 + 𝑥3 ≤ 1
𝑥3 + 𝑥4 ≤ 1
𝑥4 + 𝑥5 ≤ 1
𝑥5 + 𝑥6 ≤ 1
𝑥6 + 𝑥7 ≤ 1
𝑥7 + 𝑥8 ≤ 1
𝑥8 + 𝑥1 ≤ 1
𝑥1 + 𝑥5 ≤ 1
𝑥8 + 𝑥4 ≤ 1 ….. inequalities in 𝑒0(𝑇(𝐺)) = rank 0 inequalities

𝑥1 + 𝑥2+ 𝑥3 + 𝑥4 + 𝑥5 ≤ 2
𝑥1 + 𝑥5+ 𝑥6 + 𝑥7 + 𝑥8 ≤ 2
𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥8 ≤ 2
𝑥4 + 𝑥5 + 𝑥6 + 𝑥7 + 𝑥8 ≤ 2 ….. inequalities in 𝑒1(𝑇(𝐺)) = rank 1 inequalities

𝑥1+𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6 + 𝑥7 + 𝑥8 ≤ 3 inequality in 𝑒2 𝑇 𝐺 = rank 2 inequality

Given a system 𝑇 of linear inequalities, we set 
𝑒0 𝑇 = 𝑇 and, for every positive integer 𝑘,
𝑒𝑘 𝑇 = 𝑒(𝑇 ∪ 𝑒𝑘−1(𝑇)).

The rank of an inequality is defined as
the smallest 𝑘 such that 𝑒𝑘 𝑇 includes this ineq.
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of 𝑇 satisfies 𝐼. In the spring of 1972, I proved that the converse is valid, too, under a not-much-
restrictive condition:
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each of which belongs to 𝑇 or to the elementary closure of inequalities preceding it,
such that 𝐼 is the last inequality in this sequence. 

Obviously, if there is a cutting-plane proof of  𝐼 from 𝑇, then every integer solution 
of 𝑇 satisfies 𝐼. In the spring of 1972, I proved that the converse is valid, too, under a not-much-
restrictive condition:

THEOREM. Let a system 𝑇 of linear inequalities describe a bounded polyhedron. If every integer 
solution of 𝑇 satisfies a linear inequality 𝐼, then there is a cutting-plane proof of  𝐼 from 𝑇.

When I showed my proof to Jack, he said “But doesn’t this follow from Gomory’s algorithm”?

And he was right: Ralph E. Gomory, “An algorithm for integer solutions to linear 
programs, Recent advances in mathematical programming (R.L. Graves and P. Wolfe, eds.), 
McGraw-Hill, 1963, pp. 269-302. An algorithm for integer solutions to linear programs, in: R.L. Graves and P. Wolfe,

eds., Recent Advances in Mathematical Programming (McGraw-Hill, New York, 1963) 269-302.
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A cutting-plane proof of a linear inequality 𝐼 from a system 𝑇 is a sequence of linear inequalities, 
each of which belongs to 𝑇 or to the elementary closure of inequalities preceding it,
such that 𝐼 is the last inequality in this sequence.   

This notion has appeared in
[1] Edmonds polytopes and a hierarchy of combinatorial problems, Discrete Mathematics 4
(1973), 305-337 nameless, but in complete generality.

This paper also includes the following observation: If a linear inequality 𝐼 has rank 𝑘
with respect to a system 𝑇 of linear inequalities 𝐼, then it has a cutting-plane proof 
consisting of at most 1 + 𝑛 +⋯+ 𝑛𝑘+1 inequalities. 

[2] Some linear programming aspects of combinatorics, Congressus Numerantium 13 (1975), 2-
30 under the name of ILP proofs and restricted to 𝑇 = 𝑇(𝐺) and ∑𝑥𝑣 ≤ 𝛼(𝐺) in place of 𝐼;
[3] Determining the stability number of a graph, SIAM Journal on Computing 6 (1977), 643-662 
under the name of cutting-plane proofs, but in the same restricted context ;
[4] Cutting-plane proofs and the stability number of a graph, Report No. 84326-OR, Institut für
Ökonometrie und Operations Research, Universität Bonn, March 1984 and in
[5] Cutting planes in combinatorics, European Journal of Combinatorics 6 (1985), 217-226 under 
the name of cutting-plane proofs and in complete generality.
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the intersection of distinct 𝑆𝑖 and 𝑆𝑗 does not depend on 𝑖, 𝑗.
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sets of size 𝑘 must be a strong ∆-system.



Definitions: ∆-system is a family of sets 𝑆1, 𝑆2, … 𝑆𝑚 such that
the intersection of distinct 𝑆𝑖 and 𝑆𝑗 does not depend on 𝑖, 𝑗.

Weak ∆-system is a family of sets 𝑆1, 𝑆2, … 𝑆𝑚 such that the size of the 
intersection of distinct 𝑆𝑖 and 𝑆𝑗 does not depend on 𝑖, 𝑗.

Michel Deza pointed out in 1973 that validity of this conjecture
follows easily from a theorem of his own published in 1969 in Russian 
and later also in French (Discrete Mathematics 6 (1973), 343-352).

Erdős-Lovász conjecture (1973): Every weak ∆-system of  𝑘2 − 𝑘 + 2
sets of size 𝑘 must be a strong ∆-system.

The conjecture can be formulated in integer linear programming terms
and this formulation leads to a way of proving it.
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OOPS!!! The last constraint is a quadratic equation.



Integer linear programming formulation of the Erdős-Lovász conjecture:
Each of the 𝑚 sets 𝑆𝑖 → its incidence vector 𝑥𝑖.
Constraint 𝑆𝑖 = 𝑘→ 𝑒𝑇𝑥𝑖 = 𝑘.

Constraint 𝑆𝑖 ∩ 𝑆𝑗 = λ→ 𝑥𝑖
𝑇
𝑥𝑗 = λ.

OOPS!!! The last constraint is a quadratic equation.

False start. Back to the drawing board.



𝑆3

𝑆1 𝑆2
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𝑥{2}𝑥{1}

𝑥{3}
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𝑥{1,3} 𝑥{2,3}

𝑥{2}𝑥{1}

𝑥{3}

𝑆3

𝑆1 𝑆2

A family of sets 𝑆1, 𝑆2, … 𝑆𝑚
is described by the sizes of its         
2𝑚 − 1 atoms.



∆-system 
if and only if

𝑥{1,2,3}

𝑥{1,2}

𝑥{1,3} 𝑥{2,3}

𝑥{2}𝑥{1}

𝑥{3}

𝑆3

𝑆1 𝑆2

𝑥{1,2} = 𝑥{1,3} = 𝑥{2,3} = 0
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if and only if

Weak ∆-system 
if and only if𝑥{1,2,3}
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𝑥{2}𝑥{1}

𝑥{3}

𝑆3

𝑆1 𝑆2

𝑥{1,2} = 𝑥{1,3} = 𝑥{2,3} = 0

𝑥{1,2}+ 𝑥{1,2,3} = λ

𝑥{1,3}+ 𝑥{1,2,3} = λ

𝑥{2,3}+ 𝑥{1,2,3} = λ



𝑥{1,2} = 𝑥{1,3} = 𝑥{2,3} = 0

∆-system 
if and only if



𝑥{1,2} = 𝑥{1,3} = 𝑥{2,3} = 0

∆-system 
if and only if

𝑥𝐴 = 0 1 < 𝐴 < 𝑚whenever∆-system iff
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∑ 𝑥𝐴: 𝐴 ∋ 𝑖, 𝑗 = 𝜆Weak ∆-system iff 1 ≤ 𝑖 < 𝑗 ≤ 𝑚whenever



Atom sizes 𝑥𝐴 describe:
a weak ∆−system iff ∑ 𝑥𝐴: 𝐴 ∋ 𝑖, 𝑗 = λ whenever 1 ≤ 𝑖 < 𝑗 ≤ 𝑚,

a ∆−system iff 𝑥𝐴 = 0 whenever 1 < 𝐴 < 𝑚.



Erdős-Lovász conjecture: When 𝑚 = 𝑘2 − 𝑘 + 2, every weak ∆-system 
of  𝑚 sets of size 𝑘 must be a strong ∆-system.
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a weak ∆−system iff ∑ 𝑥𝐴: 𝐴 ∋ 𝑖, 𝑗 = λ whenever 1 ≤ 𝑖 < 𝑗 ≤ 𝑚,

a ∆−system iff 𝑥𝐴 = 0 whenever 1 < 𝐴 < 𝑚.
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of  𝑚 sets of size 𝑘 must be a strong ∆-system.
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a ∆−system iff 𝑥𝐴 = 0 whenever 1 < 𝐴 < 𝑚.

Its ILP formulation: When 𝑚 = 𝑘2 − 𝑘 + 2, every integer solution of
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∑ 𝑥𝐴: 𝐴 ∋ 𝑖 = 𝑘 whenever 1 ≤ 𝑖 ≤ 𝑚,
∑ 𝑥𝐴: 𝐴 ∋ 𝑖, 𝑗 = λ whenever 1 ≤ 𝑖 < 𝑗 ≤ 𝑚

satisfies 𝑥𝐴= 0 whenever 1 < 𝐴 < 𝑚.
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such that 1 < 𝐵 < 𝑚, the optimum value of the problem
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∑ 𝑥𝐴: 𝐴 ∋ 𝑖, 𝑗 = λ whenever 1 ≤ 𝑖 < 𝑗 ≤ 𝑚,

𝑥𝐴= integer for all 𝐴
is 0.
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Battle plan: Drop the integrality constraint and solve the resulting 
LP relaxation. If its optimum value is less than 1, then the optimum 
value of the ILP problem is zero.
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Maximize 𝑥𝐵 subject to 
𝑥𝐴 ≥ 0 for all subsets 𝐴 of {1,2, …𝑚},

∑ 𝑥𝐴: 𝐴 ∋ 𝑖 = 𝑘 whenever 1 ≤ 𝑖 ≤ 𝑚,
∑ 𝑥𝐴: 𝐴 ∋ 𝑖, 𝑗 = λ whenever 1 ≤ 𝑖 < 𝑗 ≤ 𝑚,
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(and hope that the maximum is less than 1).

LP duality → want a linear combination of the constraints that reads 
∑𝑐𝐴𝑥𝐴 ≤ 𝑑 with 𝑐𝐴 ≥ 0 for all 𝐴 and 𝑐𝐵 = 1 and 𝑑 < 1.
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Battle plan: Given a subset 𝐵 of {1,2, …𝑚},
maximize 𝑥𝐵 subject to 

𝑥𝐴 ≥ 0 for all subsets 𝐴 of {1,2, …𝑚},
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Battle plan: Given a subset 𝐵 of {1,2, …𝑚},
maximize 𝑥𝐵 subject to 

𝑥𝐴 ≥ 0 for all subsets 𝐴 of {1,2, …𝑚},
∑ 𝑥𝐴: 𝐴 ∋ 𝑖 = 𝑘 whenever 1 ≤ 𝑖 ≤ 𝑚,
∑ 𝑥𝐴: 𝐴 ∋ 𝑖, 𝑗 = λ whenever 1 ≤ 𝑖 < 𝑗 ≤ 𝑚

(and hope that the maximum is less than 1).

Symmetry to the rescue:
multiplier 𝑝 at each ∑ 𝑥𝐴: 𝐴 ∋ 𝑖 = 𝑘 with 𝑖 ∈ 𝐵,
multiplier 𝑞 at each ∑ 𝑥𝐴: 𝐴 ∋ 𝑖 = 𝑘 with 𝑖 ∉ 𝐵,
multiplier 𝑟 at each ∑ 𝑥𝐴: 𝐴 ∋ 𝑖, 𝑗 = 𝜆 with 𝑖 ∈ 𝐵, 𝑗 ∈ 𝐵,
multiplier 𝑠 at each ∑ 𝑥𝐴: 𝐴 ∋ 𝑖, 𝑗 = 𝜆 with 𝑖 ∉ 𝐵, 𝑗 ∉ 𝐵,
multiplier 𝑡 at each ∑ 𝑥𝐴: 𝐴 ∋ 𝑖, 𝑗 = 𝜆 with 𝑖 ∈ 𝐵, 𝑗 ∉ 𝐵.

LP duality → want a linear combination of the constraints that reads 
∑𝑐𝐴𝑥𝐴 ≤ 𝑑 with 𝑐𝐴 ≥ 0 for all 𝐴 and 𝑐𝐵 = 1 and 𝑑 < 1.

We have to handle 𝑚 +𝑚(𝑚 − 1)/2 multipliers, a daunting number. 



Revised battle plan: Given a subset 𝐵 of {1,2, …𝑚}, find
multiplier 𝑝 at each ∑ 𝑥𝐴: 𝐴 ∋ 𝑖 = 𝑘 with 𝑖 ∈ 𝐵,
multiplier 𝑞 at each ∑ 𝑥𝐴: 𝐴 ∋ 𝑖 = 𝑘 with 𝑖 ∉ 𝐵,
multiplier 𝑟 at each ∑ 𝑥𝐴: 𝐴 ∋ 𝑖, 𝑗 = 𝜆 with 𝑖 ∈ 𝐵, 𝑗 ∈ 𝐵, and 𝑖 ≠ 𝑗,
multiplier 𝑠 at each ∑ 𝑥𝐴: 𝐴 ∋ 𝑖, 𝑗 = 𝜆 with 𝑖 ∉ 𝐵, 𝑗 ∉ 𝐵, and 𝑖 ≠ 𝑗,
multiplier 𝑡 at each ∑ 𝑥𝐴: 𝐴 ∋ 𝑖, 𝑗 = 𝜆 with 𝑖 ∈ 𝐵, 𝑗 ∉ 𝐵, and 𝑖 ≠ 𝑗,

such that the resulting linear combination of the constraints reads 
∑𝑐𝐴𝑥𝐴 ≤ 𝑑 with 𝑑 minimized subject to 𝑐𝐴 ≥ 0 for all 𝐴 and 𝑐𝐵 = 1.
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multiplier 𝑝 at each ∑ 𝑥𝐴: 𝐴 ∋ 𝑖 = 𝑘 with 𝑖 ∈ 𝐵,
multiplier 𝑞 at each ∑ 𝑥𝐴: 𝐴 ∋ 𝑖 = 𝑘 with 𝑖 ∉ 𝐵,
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multiplier 𝑡 at each ∑ 𝑥𝐴: 𝐴 ∋ 𝑖, 𝑗 = 𝜆 with 𝑖 ∈ 𝐵, 𝑗 ∉ 𝐵, and 𝑖 ≠ 𝑗,

such that the resulting linear combination of the constraints reads 
∑𝑐𝐴𝑥𝐴 ≤ 𝑑 with 𝑑 minimized subject to 𝑐𝐴 ≥ 0 for all 𝐴 and 𝑐𝐵 = 1.

Now 𝑐𝐴 = 𝑟 𝐴 ∩ 𝐵 2 + 𝑠 𝐴 − 𝐵 2

+𝑡 𝐴 ∩ 𝐵 𝐴 − 𝐵 +(𝑝 − 𝑟) 𝐴 ∩ 𝐵 + 𝑞 − 𝑠 |𝐴 − 𝐵|
and 𝑑 = 𝜆𝑟 𝐵 2 + 𝜆𝑠(𝑚 − |𝐵|)2

+𝜆𝑡 𝐵 (𝑚 − |𝐵|) + (𝑝𝑘 − 𝑟𝜆) 𝐵 + 𝑞𝑘 − 𝑠𝜆 (𝑚 − |𝐵|)



Current battle plan with 𝑐𝐴 = 𝑟 𝐴 ∩ 𝐵 2 + 𝑠 𝐴 − 𝐵 2
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+𝜆𝑡 𝐵 (𝑚 − |𝐵|) + (𝑝𝑘 − 𝑟𝜆) 𝐵 + 𝑞𝑘 − 𝑠𝜆 (𝑚 − |𝐵|):
Minimize 𝑑 subject to 𝑐𝐴 ≥ 0 for all 𝐴 and 𝑐𝐵 = 1.
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An effortless way out of the wilderness of the constraints 𝑐𝐴 ≥ 0 for all 𝐴 is to 
make each 𝑐𝐴 a square: 𝑐𝐴 = 𝑣 𝐴 ∩ 𝐵 + 𝑤 𝐴 − 𝐵 2.
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At least six years before the appearance of Cook’s epoch-making paper, 
Edmonds discussed the classes P and NP ( the latter in terms of an “absolute supervisor”).

Where we say today that recognizing pairs 𝐺, 𝑘 such that 𝛼 𝐺 ≥ 𝑘 is a problem in NP,
Edmonds would have said that there is a good characterization of such pairs.
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Paper [2] Some linear programming aspects of combinatorics, Congressus Numerantium 13 (1975), 2-30 

contains the following conjecture, where 𝑐(𝐺) stands for the minimum length of a cutting-plane 
proof of 𝛼 𝐺 ≤ 𝑘 from 𝑇 𝐺 :



In 1971, Stephen Cook (“The complexity of theorem proving procedures”, Proceedings of the 
Third Annual ACM Symposium on Theory of Computing. pp. 151–158) introduced the notion 
of NP-complete problems. Two of his examples are

3-SAT
INPUT: A set of clauses with three literals per clause
PROPERTY: The set of these clauses is satisfiable.

STABLE SET
INPUT: Graph 𝐺 and positive integer 𝑑
PROPERTY: 𝐺 has 𝑑 pairwise nonadjacent vertices.
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In 1972, Richard Karp (Reducibility Among Combinatorial Problems, in: Complexity of 
Computer Computations (R.E. Miller and J.W. Thatcher, eds.), Plenum Press, pp. 85–103) 
added others, including

PARTITION
INPUT: Integers 𝑎1, 𝑎2, … , 𝑎𝑛
PROPERTY: Some partition of {1,2,…𝑛} into disjoint 𝑆, 𝑇 has ∑ 𝑐𝑗: 𝑗 ∈ 𝑆 = ∑ 𝑐𝑗: 𝑗 ∈ 𝑇 .

STABLE SET
INPUT: Graph 𝐺 and positive integer 𝑑
PROPERTY: 𝐺 has 𝑑 pairwise nonadjacent vertices.
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does not belong to NP, which means that there are pairs (𝐺, 𝑑) with arbitrarily large 𝐺 such 
that 𝛼 𝐺 < 𝑑 and such that validity of 𝛼 𝐺 < 𝑑 is hard to certify.



One way of proving that NP≠coNP would be proving that a particular NP-complete problem,
such as

STABLE SET
INPUT: Graph 𝐺 and positive integer 𝑑
PROPERTY: 𝐺 has 𝑑 pairwise nonadjacent vertices

does not belong to coNP.

Proving that  STABLE SET does not belong to coNP means proving that the problem
INPUT: Graph 𝐺 and positive integer 𝑑
PROPERTY: 𝐺 has no 𝑑 pairwise nonadjacent vertices

does not belong to NP, which means that there are pairs (𝐺, 𝑑) with arbitrarily large 𝐺 such 
that 𝛼 𝐺 < 𝑑 and such that validity of 𝛼 𝐺 < 𝑑 is hard to certify.

Exhibiting such pairs explicitly would be paradoxical (you would certify that 𝛼 𝐺 < 𝑑 and at 
the same time prove that such a certification is hard).



One way of proving that NP≠coNP would be proving that a particular NP-complete problem,
such as

STABLE SET
INPUT: Graph 𝐺 and positive integer 𝑑
PROPERTY: 𝐺 has 𝑑 pairwise nonadjacent vertices

does not belong to coNP.

Proving that  STABLE SET does not belong to coNP means proving that the problem
INPUT: Graph 𝐺 and positive integer 𝑑
PROPERTY: 𝐺 has no 𝑑 pairwise nonadjacent vertices

does not belong to NP, which means that there are pairs (𝐺, 𝑑) with arbitrarily large 𝐺 such 
that 𝛼 𝐺 < 𝑑 and such that validity of 𝛼 𝐺 < 𝑑 is hard to certify.

Exhibiting such pairs explicitly would be paradoxical (you would certify that 𝛼 𝐺 < 𝑑 and at 
the same time prove that such a certification is hard), but proving their existence is a 
different matter. In particular, it is tempting to conjecture that, under some probability 
distribution, almost all pairs (𝐺, 𝑑) have the desired properties.
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THEOREM (Pavel Pudlák, “Lower Bounds for Resolution and Cutting Plane Proofs and 
Monotone Computations”, The Journal of Symbolic Logic 62 (1997), 981- 998):

For arbitrarily large integers 𝑛 there are unsatisfiable sets of 𝑂 𝑛7/6 clauses 

in 𝑛 variables such that every cutting-plane proof of 0 ≥ 1 from
0 ≤ 𝑥 ≤ 1 for all 𝑥,

∑ 𝑥: 𝑥 ∈ 𝐶 ≥ 1 for all clauses 𝐶
has length exp(Ω(𝑛1/6)).
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