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Abstract

We present a voting protocol that protects voters’ privacy and achieves universal verifiability,
receipt-freeness, and uncoercibility without ad hoc physical assumptions or procedural con-
straints (such as untappable channels, voting booths, smart cards, third-party randomizers,
and so on). We discuss under which conditions the scheme allows voters to cast write-in bal-
lots, and we show how it can be practically implemented through voter-verified (paper) ballots.
The scheme allows voters to combine voting credentials with their chosen votes applying the
homomorphic properties of certain probabilistic cryptosystems.
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1 Introduction

Since the seminal contributions by Chaum [Cha81], Demillo, Lynch, and Merritt [DLM82], and Be-
naloh [Ben87], electronic voting protocols have satisfied important requirements: protecting voters’
privacy, ensuring election robustness, and guaranteeing universal verifiability of the correctness of
the election tally.

However, certain cornerstones of conventional elections have proved difficult to replicate in
electronic schemes. Receipt-freeness and uncoercibility imply that no voter should be able to prove
to others how she voted, and no party should be able to force another party to vote in a certain way
or abstain from voting (see [BT94]). These properties have been so far guaranteed under limiting
ad hoc physical assumptions or procedural constraints (such as untappable channels, smart cards,
voting booths, third-party randomizers, and so on). Write-in ballots are ballots in which a voter can
insert a freely chosen message - a right protected in certain legislations and jurisdictions. This ability
clashes with the need to maintain receipt-freeness in universally verifiable electronic protocols.
Lastly, the security and accountability of electronic schemes deployed in insecure environments
(such as the Internet) have recently raised significant concerns (see [Rub02], [Riv02], [Mer02],
[KSRW03], [Sha04], and [JRSW04]).

In this paper we present a voting scheme that achieves privacy, universal verifiability, receipt-
freeness, and uncoercibility without ad hoc physical assumptions that may undermine security,
flexibility, robustness, trustworthiness, or ease of use. This makes the scheme flexible and emi-
nently practical: it can be implemented in different physical configurations, from purely electronic
to mixed paper/electronic elections, in Internet voting applications as well as in physical, controlled
voting kiosks. In our scheme, (theoretical) universal verifiability is accompanied by (practical) ac-
countability, since our scheme makes it possible to have voter-verified (printed) ballots. In addition,
our protocol can be used for voting scenarios with yes/no questions (such as referenda), multiple
options or l out of t options (such as elections where voters may have to choose on several issues
or submit lists of choices), as well as to cast write-in ballots under the election design conditions
that we discuss below.

The scheme we propose is based on the homomorphic properties of certain probabilistic encryp-
tion protocols (see [Pai99] and [DJ01]). The homomorphic properties are applied by voters at the
same time to their credentials (that allow voters to make their ballots count in the tally) and their
votes. The election authorities provide shares of credentials to each voter, along with designated
verifier proofs of each share’s validity. Using homomorphic encryption, the voter assembles the
shares and combines them with her own vote, that is cast on a public bulletin board. All messages
in the bulletin board can be decrypted by a coalition of the election authorities after the voting
phase of the election is completed.

In the rest of this paper we first contrast our contribution to that of related research (Section
2). We then briefly present the cryptographic building blocks of our approach (Section 3; a more
detailed discussion is provided in the Appendix). In Section 4 we present the actual scheme, and in
Section 5 we discuss its properties and possible attacks. In particular, we discuss receipt-freeness
in Section 5.1, write-in ballots in Section 5.2, and examples of practical implementations of the
scheme with voter-verified (printed) ballots in Section 6.

2 Related Work and Contributions

Three approaches dominate the electronic voting literature.
Several voting schemes are based on Chaum’s mix-nets [Cha81], which through several permu-

tations obfuscate the link between a voter and the ballot she cast (see applications in [PIK93],
[Pfi95], [SK95], [MH96], [Abe98], [HS00], [MBC01], and [JJR02]).

Other schemes have applied Chaum’s blind signatures protocol [Cha83]. A voter encrypts and
blinds her vote before presenting it to the election authority for validation, together with her
proof of eligibility for that election. After the authority validates her vote, the voter unblinds the
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encrypted, signed message in order to reveal a signed vote that can no longer be associated to the
original encrypted message (see [Cha88], [FOO92], [HMP95], [Oka97], [CC97], and [OMA+99]).

Homomorphic voting schemes (see [BT94], [Ben87], [SK94], [CFSY96], [CGS97], [HS00], [BFP+01],
[LK02], [DJ01], and [DJN03]) apply certain properties of probabilistic cryptosystems where corre-
spondences can be proved to exist between operations on a certain group in the message space and
operations on the corresponding group in the ciphertext space. As new and efficient cryptosystems
with appealing homomorphic properties have been proposed in the literature (El Gamal [ElG84],
Naccache and Stern [NS97], and Paillier [Pai99], [DJ01]), voting systems based on them have re-
ceived increasing attention. In the electronic voting literature such homomorphic properties have
been used most often to tally votes as aggregates, without decrypting single votes (thus ensuring
privacy: see [CGS97]), or to combine shares of a participant’s vote (see [Ben87]).

A number of heterodox approaches to electronic voting have also been proposed. [KAGN98]
present a probabilistic election scheme, where robustness in the strong sense is not achieved, since
election results are only valid probabilistic. [RRN01] present a variation of a blind signatures
scheme, but collusion between parties can compromise receipt freeness. [MMP02] propose a protocol
that is not based on conventional cryptographic primitives and achieve informational-theoretic
privacy, but not receipt-freeness. [KY02] achieve perfect ballot secrecy, but not receipt-freeness.

Several of these protocols achieve many of the most desirable properties of an electronic voting
scheme described in Section 1 (for a complete review of desirable properties, see [FOO92], [BT94],
and [BM03]). However, certain important requirements have proved difficult to satisfy.

A first challenge for electronic protocols is the format of permissible ballots. Many of the most
robust and practical protocols were initially designed for simple binary choices. Over time, they
have been modified to support multi-candidate or l out of t selections (see [CFSY96], [CGS97],
[BFP+01], [DJ01], and [DJN03]), and, only more recently, to also allow write-in ballots (see for
example [Nef03], based on mix-nets, [KY04], based on homomorphic encryption).

A related challenge is represented by the need to guarantee receipt-freeness and uncoercibility.
With the exception of [JJ02] (that we discuss below), all electronic voting protocols have attained
those properties through ad hoc physical assumptions and trusted third parties (see [JJ02] and
[MBC01]): for example, one- or two-way untappable channels and/or anonymous or private channels
(as in [Oka97], [SK95], or [HS00]); third-party (trusted) honest verifiers (as in [LK00]); smart
cards and encryption black-boxes (as in [MBC01]); tamper-resistant machines (as in [LK02]); third
party randomizers (as in [Hir01], [BFP+01], or [KY04]); voting booths (as in [BT94] and [Nef03])
with special visual encryption tools (as in [Cha02]). Also schemes based on deniable encryption
(such as [CDNO97]), while addressing uncoercibility, are not receipt-free, because a voter may
choose to signal her vote to an observer through certain random bits inserted in her messages
(see [HS00]). Reliance on ad hoc physical assumptions or trusted third parties is problematic,
because it undermines the security, flexibility, robustness, trustworthiness, and ease of use of an
election scheme. Write-in ballots exacerbate the difficulty of guaranteeing receipt freeness: in a
randomization attack (see [JJ02]), a vote buyer or coercer can ask the voter to insert a uniquely
identifiable random string inside the ballot, so that that vote can be later recognized (or abstention
can be provably forced upon the voter).

Four recently proposed electronic schemes have made exciting progresses towards the goal of
combining receipt-freeness with universal verifiability and, in some case, write-in ballots: [JJ02],
[Cha02], [Nef03], and [KY04].

Juels and Jakobsson [JJ02] directly address the problem of achieving receipt-freeness and un-
coercibility without “unpractical” assumptions. Their scheme is the most similar to the one we
propose in this paper, in that it relies on a mix of authorities issuing shares of credentials that
voters can use to vote (or to fake votes in order to cheat coercers and vote-buyers). Also similarly
to our approach, Juels and Jakobsson’s authorities tally an election’s result by comparing a list of
encrypted credentials to a list of encrypted votes. Our scheme, however, departs from [JJ02] in
several respects. In terms of design, [JJ02]’s properties are achieved through mixing and blinding
of credential shares. In our protocol (which may be implemented through different homomorphic
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cryptosystems, such as El Gamal and Paillier), the desirable properties are achieved through mixing
and homomorphic encryption - in particular, our scheme is based on the novel concept of allowing
the voter to cryptographically combine her own vote together with her shares of credentials. In
terms of functionality, this different design generates certain advantages compared to [JJ02]’s pro-
tocol. First, it shields our protocol against a possible attack on receipt-freeness in [JJ02] that we
have not seen discussed elsewhere and therefore present here. In [JJ02]’s protocol, “[the authority]
removes all but one ballot sharing the same [credential.]” (p. 12) and “[the voter] includes NIZK
proofs of knowledge of [the credential and the ballot]” to her message. Because proofs of correct-
ness of credentials are first verified and then duplicate ballots (associated to valid credentials) are
removed, it is possible for a coercer to force a voter to submit x times the same (valid) credential
with the vote chosen by the coercer. If the coercer observes the Authority removing x− 1 ballots
sharing the same representative in the list of credential that passed the zeroknowledge test, then
the coercer acquires potentially identifying information about the presence of the vote he bought
or coerced in the pool of accepted votes. For comparison, in our scheme a voter could simply oblige
and send several times a false credential (see Section 5.2). Furthermore, since duplicate creden-
tials are removed “[a]ccording to some pre-determined policy, e.g., timestamps on postings to the
bulletin board” (p. 12), such timestamps, coupled with the NIZK proofs of knowledge that the
voter may show to the coercer, offer a form of identification of what submitted ballots have been
accepted by the election authority, that a coercer may exploit to recognize the vote he wanted to
buy or coerce. For comparison, while our protocol allows only one vote to be counted per valid
credential, it does not place limits to the number of (real or fake) ballots the voter may submit.
Second, in [JJ02]’s protocol, each voter needs to attach a zero-knowledge proof of validity for the
credential and the vote she wants to use - this computational burden is not necessary for the voter
in the scheme we present. Our protocol is in some sense “open-ended,” in that the voter can attach
whatever she wants to the shares by using homomorphic encryption. So allowing write-in ballots
is straightforward. On the other side, the conformity of a voter’s ballot to the listed candidate
slate, proved by the voter in zeroknowledge fashion in [JJ02] (p. 11), may create difficulties to
the application of Juels and Jakobsson’s schemes to write-in elections. While [JJ02] do not openly
discuss the possibility of write-in ballots, allowing voters to choose their ballots would leave their
scheme exposed to a forced-abstention attack based on randomization. The reason is that a coercer
could force a voter to associate her one only credential to a ballot containing in fact a unique,
secretely chosen string, that can be recognized by the coercer after the tally but cannot be counted
in the election. As discussed above, our protocol instead allows only one vote to be counted per
credential, but does not place limits to the number of (real or fake) ballots the voter attempts to
submit. In addition, to be counted, a vote needs to be composed of all credential shares the voter
has received, as well as the vote she has chosen to cast, rather than being based on a credential
generated by a threshold of authorities.

David Chaum’s most recent protocol [Cha02] satisfies several important properties. In this
protocol, a voter casts her ballot inside a voting station and receives a printed receipt, whose
encryption is based on visual cryptography. The receipt can be tested for authenticity and its
presence in the batch of ballots about to be tallied can be verified. However, since the content
of the receipt is encrypted, receipt-freeness (which refers to the inability to prove to others a
certain vote) is still satisfied. There are three differences between our scheme and [Cha02]’s. While
[Cha02]’s scheme addresses receipt-freeness and write-in properties, it is tied to a specific physical
implementation (consisting of voting stations and visual cryptography) which may constrain its
adoption, unlike the scheme we propose here, that does not rely on ad hoc physical assumptions.
In addition, Chaum’s protocol is not deterministically fair, in the sense that (as noted by the
author) it is possible for a voting station to change the vote cast by a voter, with a 50 per cent
probability of this manipulation being detected. [Cha02] notes however that this probability makes
it extremely unlikely that a malicious voting station could alter several votes. However, robustness
then becomes a concern. To explain why, we present here a robustness attack that we have not
found discussed elsewhere. Imagine that a malicious voting station wants to disrupt an election.
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Since a voting station’s attempt to alter a vote can be detected only after the vote is cast, and since
there is a 50 per cent probability that the manipulation will not be discovered, a malicious voting
station should wait till near the end of the election to start manipulating votes. As it manipulates
more and more votes, the probability increases that one manipulated vote will be detected, and the
voting station will be exposed as a malicious party. But that is precisely what the malicious station
wants to happen. Now, in fact, it becomes unclear what policy should be implemented with regard
to votes cast at that voting station prior to that moment. For external observers, a few, some,
many (although with decreasing probabilities), conceivably all (with negligible probability) of the
votes cast before that moment could have been manipulated. There is no way to detect which ones
and how many. Should the voting station be replaced and all voters called back to vote again at a
different station? So, although in this protocol altering the results of an election may be difficult,
disrupting it could be more likely. For comparison, in the scheme we present, eventual attempts
to manipulate votes can be detected with 100 per cent probability before the vote is actually cast.
Hence, they can be corrected without disrupting the election. Finally, [Cha02]’s protocol may be
exposed to a forced abstention attack (see below), since each voter can only submit one ballot,
and the write-in ballot content, once publicly verified, may expose the unique string chosen by the
coercer to make the vote invalid but identifiable. This attack is instead neutralized in our approach.

[Nef03] has proposed a new efficient voting scheme based on his shuffle mix-net protocol [Nef01].
Neff’s protocol is efficient and also allows write-in ballots. However, receipt-freeness in Neff’s
protocol depends on procedural, physical conditions: the voter must be monitored by an election
authority so that she does not bring outside the voting booth a “codebook” which confirms the
“unique, publicly verifiable correspondence” between the election codes and the voter’s preferences
(see [NA03], p. 9, footnote 11, and [Nef03], p. 7, Step v1). If the voter succeeded in bringing
the codebook out of the voting booth, she would be able to prove to another party her vote.
Furthermore, procedural assumptions are also needed to prevent the voting machine to recognize
whether a user is a voter or an observer - without such assumptions, cheating is possible (see [NA03],
p. 9). By converse, our protocol relies on designate verifier proofs to achieve receipt-freeness, and
cheating by an observer is not possible (see Sections 5 and 6).

Finally, [KY04] have recently proposed a novel vector-ballot approach that can be instantiated
over any homomorphic encryption function. As in our scheme, [KY04] make it possible for the
voter to cast write-in ballots. However, unlike the scheme we propose, their protocol cannot achieve
receipt-freeness without ad hoc physical assumptions such as a randomizer (p. 5).

Most theoretical protocols have focused on the concept of universal verifiability rather than
on practical, voter-verified accountability.1 This is not surprising - researchers know that univer-
sal verifiability also implies voter-verifiability, and therefore focus on the former. However, recent
critiques of electronic systems have specifically pointed to the (real or psychological) need for phys-
ical ballots and auditable trails in actual implementations of electronic elections (see [JRSW04]).
Criticisms have also pointed to the need for ballots and mechanisms that a human being could
easily understand (see, for example, [Mer02]). While it is not immediately evident that a paper
ballot cast through an electronic voting machine would offer higher guarantees and security than
purely electronic ballots (the physical ballot could get lost, be manipulated, or be destroyed on
its way to the tallying authority; see also [Sha04]), and while an human’s ability to understand
the printed receipt of a ballot cast by an electronic machine does not alter the underlying (digi-
tal) representation of the ballot inside the machine (non-human readable), some of the universally
verifiable schemes proposed in the literature could be easily adapted to produce printed receipts.
The underlying problem, however, is to provide a receipt which satisfies receipt freeness: in other
words, a (possibly printed) receipt that satisfies the voter’s verification needs, but nobody else’s.
Satisfying this requirement, as discussed above, has so far required additional ad hoc assumptions.

1An exception is in fact [Cha02], whose explicit goal is to produce receipts which are not verifiable by vote-buyers
or coercers.
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2.1 Our Contributions

Our protocol contributes to the literature mainly by presenting a scheme which guarantees receipt
freeness and uncoercibility without ad hoc physical assumptions (like those in [Cha02], [Nef03],
and [KY04]) and by addressing some of the issues in [JJ02]. By this we mean that there are no
additional physical components created specifically to ensure receipt-freeness and that could fail,
be attacked, or collude with malicious agents. Obviously, the absence of such ad hoc physical
assumptions does not imply that physical considerations become irrelevant to the security of this
electronic scheme when actually implemented. No electronic voting scheme can yet be securely
deployed in insecure environments such as PCs and the Internet (see [Rub02], [Riv02], [KSRW03],
and [JRSW04]). However, because our protocol relies on fewer physical constraints to achieve its
properties, it is more reliable, efficient, less relying on trusted equipment to avoid the risk of vote
buying, coercing, and force abstention, and can be deployed in a variety of physical configurations,
depending on needs and available tools (from completely electronic voting to paper-based voting;
from Internet voting to voting kiosks). This is a second, practical strength of our protocol.

In addition, our protocol allows for flexible ballot formats to be used, including write-in ballots
without the specific procedural constraints or physical assumptions needed in [Cha02] and [Nef03].
Granted, as in [Cha02], [Nef03], and [KY04], when write-in ballots are allowed our protocol becomes
exposed to randomization attacks meant to force a voter to vote in a certain way. However, unlike
[Cha02], [Nef03], and [KY04], our protocol can at least neutralize forced abstention randomization
attacks (see Section 5.1). In addition, our protocol makes it straightforward to add election design
conditions (rather than cryptographic scheme conditions) in order to combine write-in ballots with
receipt freeness (see Section 5.2).

Because receipt-freeness is guaranteed without physical constraints, the private steps in the
protocol can be documented through voter-verified, even physical ballots, while the public steps
can be stored (and therefore be auditable) on a public bulletin board, making the whole election
verifiable. In a physical implementation through voting kiosks, for example, a voter could print out
a receipt of her vote at the kiosk. Such receipt would not prove to others the choice made by the
voter, but the voter could later compare it to the list of ballots about to be tallied on the bulletin
board (or the election website) to make sure it is there (see Section 6).

Finally, the protocol proposes a somewhat novel voting application of the homomorphic prop-
erties of certain cryptosystems, in which shares of credentials (that allow voters to cast ballots that
will be tallied) are combined by the voter to her own vote.

3 Cryptographic Primitives

In this section we briefly describe the cryptographic primitives we use in our scheme. (A much
more detailed and formal discussion is presented for the interested reader in the Appendix, together
with some of the proofs we apply in the protocol.)

Our election scheme is based on the homomorphic properties of probabilistic cryptosystems,
and in particular the Paillier cryptosystem [Pai99].2 The protocol applies Chaum’s bulletin board
and mix-nets [Cha81].

The Paillier cryptosystem is a probabilistic encryption system with two properties that we use
in our election scheme: self-blinding (any Paillier ciphertext may be re-encrypted with a new ran-
dom factor without altering the plaintext), and additive homomorphic properties (loosely speaking,
product operations on a set of ciphertexts correspond to addition operations in the corresponding
message space). More precisely, in the protocol we apply a threshold version of the Paillier cryp-
tosystem (in which the private key that decrypts a group of ciphertexts can be a secret shared by
several entities). We also apply [BFP+01]’s proof of knowledge that two ciphertexts are encryption
of the same plaintext in a designated verifier proof form (see [JSI96] and [HS00]).

2An implementation under the El Gamal cryptosystem [ElG84] is also possible and it is sketched in the Appendix.
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A bulletin board is a public broadcast channel with memory where a party may write information
that any party may read. The re-encryption mix network [Cha81] that guarantees privacy is a
distributed protocol that takes as input a set of messages and returns an output consisting of the
re-encrypted messages permuted according to a secret function (see Appendix).

4 A Receipt Free Electronic Voting Scheme

4.1 Voting Scheme Overview

The election Authority (or ‘Authority’) is composed of independent servers (or ‘authorities’) that
supervise registration and tallying of votes through a bulletin board. Each authority creates a series
of random numbers (one for each eligible voter), which represent shares of the voting credential
a voter needs to associate to her vote in order to have it tallied. Each server posts on a bulletin
board copies of the shares of credentials it creates, encrypted with a set of Paillier public parameters.
Each server also provides voters with the same shares of credential, encrypted under a different set
of Paillier public parameters. The server also attaches to its message a designated verifier proof
of the equivalence between the encrypted share it has posted on the bulletin board and the one
the voter has received. Each server also creates random numbers that are used as shares for the
permissible ballots voters can cast in the election (effectively, the possible yes/no, multi-candidate,
t out of l choices, or any countable set of choices that the voter can select). Those shares are
also encrypted under the two different Paillier public parameters. Both resulting sets of encrypted
shares of permissible ballots are posted on the bulletin board together with zero-knowledge proofs
that each pair of ciphertexts are encryptions of the same underlying share of ballot, and are then
signed by the Authority.3

Using Paillier encryption, each voter multiplies the shares she has received from each authority
together with the encrypted shares of the ballot, which she has selected from the board. Because
of the homomorphic properties of Paillier cryptosystems, the resulting ciphertext includes the sum
of those shares (which represents the voter’s credential) and the ballot’s shares (which represents
her vote). The resulting ciphertext is sent to the bulletin board.

After the voting deadline expires, all ciphertexts posted by allegedly eligible voters are mixed
by the authorities. The shares of credentials posted by the authorities are also combined (for each
voter) and then mixed.

The authorities thus obtain two lists: a list of encrypted, mixed credentials the authorities
themselves had originally posted on the board; and a set of encrypted, mixed sums of credentials
and ballots, posted on the board by the voters. The two lists have been encrypted with different
Paillier public parameters. Using threshold protocols for the corresponding sets of private keys,
the authorities decrypt the elements in each list and then compare them through a simple search
algorithm: for each credential they know to be valid, they seek which message (if any) cast by a
voter includes such credential combined to a permissible ballot.

A simplified view of entities and flows of information in this protocol is presented in Figure 1.

4.2 Definitions and Assumptions

Formally, we define the election Authority A as composed of s authorities A1, ..., Ai, ..., As. The
authorities create and dispense shares of the credentials necessary to have ballots tallied, act as
mixes in a mix-net, and tally the votes cast through the bulletin board BB.

The election Authority has a list of eligible voters for which it knows or has come to know the
respective public keys.4 The l eligible voters are indicated by vj = v1, ..., vj , ..., vl. Their names are

3The extension to write-in ballots is discussed in Section 5.2.
4It is not necessary for such public key to be the permanent or main public key of the voter. It could have been

created on the fly during the initial interaction and registration with the election Authority. We discuss this further
in Section 5.1
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printed on the bulletin board BB.
Ballot shares are defined as bt

i, where i = 1, ..., s represents the various authorities that create
their shares of ballots and t = 1, ..., T represents different choices for a vote: for example, a yes/no
election may have t = 2 and b1 = “yes,” b2 = “no.” T can be arbitrarily large. The permissible
ballots are the sum of the individual ballots shares across all authorities. Hence, to avoid clutter,
we will refer to the actual ballots simply as Bt =

�
i=1,...,s bt

i.
We highlight the following assumptions. We assume that k < s authorities may be corrupt

(see Section 5). We define y as the number of authorities needed to decrypt a message encrypted
under the threshold cryptosystem used for the election, and we assume that y authorities will
collaborate. We also assume that k < y, that is, the number of corrupt authorities is less than the
number needed to decrypt the ciphertexts. We assume that the private key of a voter remains, in
fact, private.5 Finally, we assume that an attacker cannot control every possible communication
between the voter and an authority. A simple way to satisfy this assumption is through anonymous
broadcasting (see [SA99]) or Chaum’s mix-nets.6

4.3 The Scheme

Before the election, two sets of public/private Paillier keys are generated by A under the threshold
cryptosystem described in A.1.2:

• One set for the credentials, PKC , SKC
i , VKC , and VKC

i

• One set for the votes, PKV , SKV
i , VKV , and VKV

i

The two sets of keys ‘C’ and ‘V’ are based on nV,C RSA moduli nV = pV qV and nC = pCqC
respectively, where pV,C and qV,C are large primes, as described in A.1 in the Appendix. For short,
we will write EC() and EV () to represent respectively encryption with the credentials and votes
public keys under the Paillier cryptosystem.7

A also generates a third set of public/private keys under the threshold version of a non homo-
morphic cryptosystem: PKS , SKS

i , VKS , and VKS
i . We will write ES() to represent encryption

with this cryptosystem, which does not display homomorphic properties and whose domain must
be bigger than the domain of the Paillier’s schemes used for credentials and votes. A possible choice
is an RSA in s, with s > nV,C . All public keys are posted on BB.

Before the election, the list of permissible ballots Bt is created. Each election authority Ai
creates its own share of ballot for each of the permissible ballots, bt

i. Each Ai encrypts bt
i once

using PKC and appropriate secret randomization, and a second time using PKV and appropriate
secret randomization. Both resulting encrypted ballot shares (let us call them EC(bt

i) and EV (bt
i))

are signed by the authority, that also posts a public zero-knowledge proof that EC(bt
i) and EV (bt

i)
are encryption of the same plaintext bt

i (the proof is described in Section B in the Appendix). All
ballot shares pairs are published on BB on an area reserved for the permissible ballots, that clearly
shows which shares have been encrypted under PKC and which have been encrypted under PKV ,
and which actual “choice” t do those shares refer to and are associated with. While the set of
possible choices t may be arbitrarily large, we consider here the case where they are all known in
advance. We discuss in Section 5.2 the extension to write-in ballots.

The actual election takes place in three phases:

1. Preparation
5We relax this assumption in Section 5.1.
6This assumption is not needed to ensure privacy, which is guaranteed even if voters’ messages are not anonymous.

This assumption is needed to protect voters against forced-abstention attacks. See Section 5.
7The EC() notation is preferred to the more traditional EC(), as it makes the overall description clearer in the

rest of the scheme.

9



2. Voting

3. Tallying

1. Preparation

Every authority Ai in A creates l random numbers c, representing shares of credentials, for
each eligible voter vj . We represent each share as ci,j , with j = 1, ..., l for each Ai. We also want:
ci,j , bt

i < nV,C/2s.8 For each ci,j it creates, Ai performs two operations: first, it encrypts ci,j using
PKC and appropriate secret randomization, signs the resulting ciphertext with SKC

i , and publishes
it on BB on a row publicly reserved for the shares of credential of voter vj :

(EC(ci,j))SKAi
(1)

SKAi represents the signature of authority Ai.
Second, each Ai also encrypts ci,j using PKV and appropriate secret randomization, without

signing it, but attaching to it a designated verifier proof Pvj of equality of plaintexts EC(ci,j) and
EV (ci,j) derived from Section B in the Appendix. The proof is designated to be verifiable by voter
vj , whose public key is known by or has been revealed to the Authority (see Section 4.2 and Section
5.1 for a discussion of the receipt-freeness property associated with this design). Each Ai encrypts
this second message with vj ’s public key and sends it vj without signing it:

Evj (EV (ci,j), Pvj ) (2)

Evj represents RSA encryption under vj ’s public key. The reserved area of BB can be imagined
as a table l by s: one row for each eligible voter and s encrypted shares of credentials on each row.

2. Voting

For each encrypted share of credential she receives, a voter vj verifies the designated verifier proof
of equality between EV (ci,j) and the corresponding EC(ci,j) that has been signed and published in
her reserved area of BB. Upon successful verification, she multiplies together the shares EV (ci,j):

�

j=j,i=1,...,s

(EV (ci,j)) = EV (
�

j=j,i=1,...,s

ci,j) ≡ EV (CJ) (3)

where with Cj we define the sum, mod n2, of the various shares of credentials in the hands of
the voter.

The voter then chooses the ballot shares EV (bt
1), ..., EV (bt

s) (encrypted with the votes key)
which correspond to her vote choice t from the list of permissible ballot published on the board,
multiplies all the encrypted shares together in order to obtain the encrypted ballot Bt (thanks to
the additive homomorphic properties of the Paillier’s cryptosystem), that we will define as EV (Bt

j).
Finally, the voter multiplies the resulting ciphertext times EV (Cj), obtaining:

EV (CJ)EV (Bt
j) = EV (

�

i=1,...,s

ci,j +
�

i=1,...,s

bt
i,j) ≡ EV (CJ + Bt

J) (4)

With (CJ +Bt
J) we define the sum, mod n2, of the various shares of credential voter vj received,

plus the (sum of the shares of the) chosen ballot. The voter wraps the resulting ciphertext with
the non-homomorphic RSA public key, PKS , and sends ES(EV (CJ + Bt

J)) to the bulletin board.
For short, we will loosely refer to a message ES(EV (CJ + Bt

J)) as the voter’s vote.
8We do not want the sum of s credential and ballot shares to be larger than the cryptosystem’s domain. Possible

attacks by malicious servers that attempt to create longer shares can be detected by simple observation of the size of
the encrypted share, or by asking the authorities to attach proofs that an encrypted messages lies in a given set of
messages - see [BFP+01].
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3. Tallying

When the voting deadline is met, the election Authority signs the bulletin board,9 A multiplies
together the shares EC(ci,j) for each voter vj (similarly to what each voter has done with the shares
she received):

∀j,
�

i=1,...,s

(EC(ci,j)) = EC(
�

i=1,...,s

ci,j) ≡ EC(CJ) (5)

Then, it mixes all EC(CJ), for J = 1, ..., l, by re-encrypting (and self-blinding) the original
ciphertexts using the credentials public parameters, PKC .

Separately, A decrypts the ES(EV (CJ +Bt
J)), with J = 1, ...l, ...x which have been posted on the

bulletin board by allegedly eligible voters using the threshold non-homomorphic cryptosystem keys
SKS

i , VKS , and VKS
i . The number of ballots could be x > l because some eligible or ineligible voters

may have used invalid credentials or re-used valid ones. A then mixes the resulting ciphertexts, by
re-encrypting (and self-blinding) the original ciphertexts using the votes public parameters, PKV .

The election Authority thus obtains two lists: a list of encrypted, mixed credentials posted on
the board by the authorities, EC(Cφ(J)); and a set of encrypted, mixed sums of credentials and
ballots, posted on the board by the allegedly eligible voters, EV (Cφ(J) + Bt

φ(J)). The φ() operation
refers to the mixing described in Section A.3, which hides the relation between a given J and the
mixed ciphertexts.

The election Authority also selects each ballot choice t at a time and multiplies together all
the associated encrypted shares EC(bt

1), ..., EC(bt
s) (encrypted with the credentials key) in order to

obtain the encrypted ballots EC(Bt).
Under the threshold cryptosystem described in A.1.2, y < s authorities may decrypt all elements

in both lists using the respective private keys. Ballots cast with eligible credentials are retrieved
by an algorithm that compares the EV (Cφ(J) + Bt

φ(J))’s list on one side, and the EC(Cφ(J))’s list
together with the list of permissible ballots Bt on the other side.

More precisely, recall that D(EV (Cφ(J) +Bt
φ(J)) mod n2

V ) =
�

i=1,...,s ci +
�

i=1,...,s bt
i mod nV ,

and that D(EC(Cφ(J)) mod n2
C) =

�
i=1,...,s(ci) mod nC (see A.1.1). Then the search algorithm

for the election authority involves:

1. Choosing a credential Cφ(J) from the still encrypted list EC(Cφ(J)).

2. For each credential Cφ(J), choosing a still encrypted ballot EC(Bt) from the list of all pos-
sible permissible ballots encrypted with the credentials key, and test whether there exists a
submitted vote for which:
D(EC(Cφ(J))EC(Bt) mod n2

C) ≡
�

i=1,...,s cC
i +

�
i=1,...,s bt

i mod nC = D(EV (Cφ(J)+Bt
φ(J))

mod n2
V ) ≡

�
i=1,...,s cV

i +
�

i=1,...,s bt
i mod nV

3. If in step 2 a match is found, a vote for t is counted in the tally, the credential Cφ(J) and
the submitted vote EV (Cφ(J) + Bt

φ(J)) are removed from the lists, and the algorithm restarts
from 1. If in step 2 no match is found, the algorithm restarts from 2 with a different EC(Bt).

4. When all credentials Cφ(J) have been considered, the tallying is complete.

9The content of the board could actually be signed at regular intervals, so that voters can verify their messages
have been received by the Authority. See Section 6.
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5 Properties and Attacks

We discuss in this section properties and possible attacks on the scheme, with particular attention
to write-in and voter-verified ballots properties.
Privacy. Voter’s privacy is achieved through the use of Paillier’s cryptosystem and the mixing
of voters’ credentials EC(CJ) (on the board) and cast ballots EV (CJ + Bt

J). Privacy is preserved
also when ballots are not cast anonymously, because no single authority actually sees all shares
composing a voter’s credential. As in other election schemes based on threshold homomorphic
cryptosystems (for example, [BFP+01]), we assume that k < y - that is, collusion between k
malicious authorities does not meet the threshold necessary to decrypt the unmixed credentials
EC(CJ) originally posted on the board, decrypt the submitted ballots, EV (CJ + BJ), and then
compare the two sets.
Correctness. Only one vote per credential can be counted through the search algorithm described
in Section 4.3. The Authority cannot infer any credential, and credentials EC(Cφ(J)) are decrypted
by threshold cryptography only in combinations with encrypted ballots EV (Bt). Hence, the Au-
thority cannot vote on behalf of the voter (the credential shares posted on the board are encrypted
with different Paillier’s parameters than the shares of credentials used to vote and decrypt votes).
Moreover, ballots cast on the board by voters are wrapped by non-homomorphic encryption to
avoid attacks in which a credential is re-used.

A replay attack of a cast ballot by the voter or a third party duplicates the same ballot and
does not affect the search algorithm, since only one vote can be counted for each valid credential.
An attempt by a voter to re-use a credential for multiple votes is ineffective - each valid credential
EC(CJ) can only be counted once.

Credentials and permissible ballots are chosen of necessary length to make negligible the proba-
bility that two different cast ballots will collide. Assuming that even just one authority does choose
random k bit numbers for the shares it produces, the probability of a collision with l credentials
being created and l ballots cast is

�
2l
2k .

Verifiability and Transparency. All communications exchanged during the protocol can ap-
pear on the bulletin board.10 Voters can verify that the credential shares they received, EV (ci,j),
correspond to the signed and encrypted shares on the board, EC(ci,j). Voters can also verify that
their cast votes EV (CJ +Bt

J) do appear on the list of votes the Authority will mix and then search
for valid credentials. Since the mixing, decrypting, and searching steps are publicly stored on BB,
the scheme is transparent and universally verifiable (we discuss the concept of voter-verified ballots
in Section 6). Moreover, all votes are decrypted, rather than only their sum (as in traditional
homomorphic voting schemes).
Ease of use. A voter casts her ballot by posting one message ES(EV (CJ +Bt

J)) to the board BB,
with no need to provide proofs of validity of the cast ballot.
Robustness. An authority that does not post and sign its credential shares EC(ci,j) on BB can
be detected and replaced before the voting phase begins.

An authority that does not provide voters with the encrypted credential shares EV (ci,j) and
appropriate designated verifier proofs can also be detected and replaced: a voter who does not
receive (or claim not to have received) a credential’s share appearing on BB can protest before the
voting phase begins. If after repeated protests the voter still claims it has not received a share, a
new authority may be selected to send the share. If the problem persists after a certain number of
authorities have been replaced, the Authority may have to conclude that the voter is lying.

It is not required that all registered voters actually vote for the election to be completed. After
the election deadline has been met, the tallying phase can simply commence. However, a voter who

10Also communications containing the designated verifier proof could appear on the board, unsigned, together with
other invalid proves designed to cheat coercers: see ‘Receipt Freeness and Uncoercibility’ below.
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cannot see her ballot on BB after she sent it, can re-send it and/or notify the Authority before the
tallying phase begins.

Casting ES(EV (CJ +Bt
J)) to the bulletin board does not need to be anonymous (votes are only

revealed after credentials have been mixed). Hence, voter’s verification may be adopted to avoid
denial-of-service (DoS) attacks. However, it would be preferable not to let a coercer know how many
ballots a certain voter has cast to the board (see Section 5.1 below). Anonymous broadcasting could
therefore be applied (see [SA99]), combined with alternative strategies to avoid DoS depending on
the actual implementation of the scheme.
Complexity Analysis. In terms of communication complexity, the voter’s burden is limited to
one message. In terms of computation analysis, however, the Authority needs to perform two mixes
and several (at least 2l) Paillier decryptions, as well as at least l RSA decryptions.

Using mix-net protocols such as those proposed by [FS01] and [Nef01], we can reduce the
number of exponentiations needed to perform the mixes to a factor of 18*2l.11 On the other hand,
the mix-net calculations on credentials and vote+credentials can be done simultaneously, and the
search algorithm is a simple linear search. Furthermore, the computational complexity for voters
is attenuated as voters do not need to prove their ballots are correct (unlike in other homomorphic
protocols such as [CGS97]). Finally, while receipt-freeness is built in our scheme, in other protocols
(such as [BFP+01]) it relies on additional physical assumptions that insert additional computational
complexities.

5.1 Receipt Freeness and Uncoercibility

Since the authorities use designated verifier proofs to demonstrate the equivalence between EV (ci,j)
and the corresponding EC(ci,j), a coercer (or vote-buyer) could not be convinced that the credential
a voter is showing has not been fabricated. When fake credentials are created and submitted
together with proper ballots, a coercer or buyer could never know if the credential they have
received or the vote they have seen the voter casting are truly correct (neither the voter nor the
Authority know the actual credentials at the time of voting, and after the mixing phase no voter can
no longer recognize the ballot they cast). Note also that the credentials are never really decrypted
alone, but always summed to permissible ballots - which in turn are also never decrypted alone and
generated in a distributed manner.

A coercer could collude with some authorities to verify share of credentials received from the
voter. In this case, similarly to [JJ02], if the voter knows at least one honest authority, it can show to
a coercer the actual shares for all other authorities, and a fake credential for the authority she knows
to be honest. This makes ineffective the ‘randomization attack’ by Schoenmakers (as described in
[JJ02]). In this attack, an attacker forces a voter to cast an irregular vote made up with an agreed
random sequence, thus nullifying it in a verifiable way. In our scheme, the decryption phase does
not reveal all the information about ballots that have not been counted because not matching any
permissible ballot Bt. In fact, the actual ballots are not decrypted themselves - rather, only the
sum of ballots and credentials is decrypted, thus limiting the information an observer can access.
In addition, a forced abstention attack (where an attacker forces a voter not to cast any vote, see
[JJ02]) is avoided if votes can be cast anonymously (in which case a coercer cannot know whether
the voter has voted), or if the Authority does not reveal to the coercer the identities of voters who
cast ballots. (While our protocol allows only one vote to be counted per valid credential, it does
not place limits to the number of real or fake ballots the voter may submit. Hence the voter could
please the coercer by adding the unique string to a fake credential, and then could keep on voting
with her own true credential. The unique string would not be revealed after decryption even if it
had been added to a valid credential, simply because, not being one of the permissible ballots, it
would not be included in the search process described in 4.3.)

Apparently, an adversary able to control a voter or obtain her private key is akin to the ‘demon
attack’ described in [JSI96] and may verifiably coerce the voter to his wishes. Effectively, in our

11[Gro03] has recently proposed an efficient calculation for mix-nets based on homomorphic re-encryption.
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protocol a “private key” is any means through which the voter can identify herself to the authority
and the authority can communicate privately with the voter. However, the scheme allows a voter
to cheat the coercer or vote-buyer by revealing a fake private key - there is no need for the voter
to truthfully reveal her key to a malicious party.

A first strategy relies on the Authority and the voter knowing one piece of information that
the coercer cannot independently verify (or many pieces, whose knowledge is distributed across the
authorities). The public/private key-rings the voter chooses to use in the election can be made
dependent on these pieces of information. During the registration phase, the Authority can verify
the identity of the voter by checking that information before the keys are exchanged.

Alternatively, a better strategy relies on the voter and the Authority simply starting the regis-
tration phase with the known public key of the voter, but then exchange new keys in a way that an
external observer could made to believe a false proof about which keys have been exchanged. For
example, after using her known public/private keys to establish communication with the Authority,
the voter can send the latter a new, temporary public key. The Authority answers by sending the
designated verifier proof described in Section 4.3 on the basis of the new key it has just received.
Note that both now and in the scheme we have described in 4.3 the Authority never signs the
message containing the designated verifier proof. This means that anybody could have sent such
message - and, in fact, a smart voter would create a message to herself based on a different public
key than the temporary one she has actually communicated to the Authority in the “handshak-
ing” protocol we are describing, in order to cheat a coercer. Even if the coercer intercepts these
messages, he may not be able to distinguish which one contains the keys the voter has truly chosen
to use. The voter, on the other side, can recognize which message has been sent by the Authority
(even if the Authority does not sign it) because it can verify the designated verifier proof with her
secret key.

That is why Evj (EV (ci,j), Pvj ) (that is sent through a tappable channel) and ES(EV (Cj +Bt
j))

(that is published on the bulletin board) are not a receipt. The coercer may order the voter to
reveal how to create a vote ES(EV (Cj +Bt

j)) that is compatible with the receipt Evj (EV (ci,j), Pvj )
and ES(EV (Cj + Bt

j)), but the voter could use a fake credential and a fake designated verified
proof (that is, a false Exj (EV (yi,j), Pxj )) built on a different temporary public key than the one she
created on the fly while communicating with the Authority (after having created a fake message
purportedly from the Authority itself to the voter).

So, even if a coercer asked the voter to provide a decrypted zero-knowledge proof, it could not
be sure that the proof actually corresponds to the right credential and private key.

5.2 Write-in Ballots

In the proposed scheme, permissible ballots Bt are sums of random numbers representing possible
choices: yes/no, multiple candidates, l out of t, and any countable set. Bt is, in other words,
open-ended. For a vote to be detected and counted by the search algorithm, however, it must be in
the list of permissible ballots. Write-in ballots can be implemented by having voters send, together
with or separately from their encrypted ballots ES(EV (CJ + Bt

J)), also suggested ballot or ballots
Bj .12 Once the proposed ballots have been added to the list of permissible ballots, the election
authority can include them in the search process described in Section 4.3.

Obviously, unconditionally write-in ballots clash with the properties of receipt-freeness and
universally verifiability. Consider a randomization attack: a voter inserts random and therefore
uniquely identifiable data into her ballot, in order to signal her vote to the buyer or coercer. This

12If messages can be sent anonymously (see Section 4.2), privacy is trivially guaranteed. But since Bj is not
necessarily the ballot the voter is actually casting inside ES(EV (CJ + Bt

J)), these messages could also be sent when
the communication is not anonymous. A voter could actually choose to vote with an already published permissible
ballot, and attach to her message a fake one. In addition, proposed ballots could also be submitted separately through
a mix-net.
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means that as in [Cha02], [Nef03], and [KY04], when write-in ballots are allowed our protocol
becomes exposed to randomization attacks meant to coerce a voter to vote in a certain way.

However, our protocol makes it straightforward to add election design conditions (rather than
cryptographic scheme conditions) in order to combine write-in ballots with receipt freeness and also
neutralize forced abstention attacks.

In particular, the cryptographic scheme can be combined with an election design modelled after
real elections. Many elections consider void ballots which contain obscenities, random elements,
and other inappropriate material - depending on what is specified in the election’s regulations.
Since suggested ballots have to be submitted by voters in order to be counted, design guidelines
can specify the format that will make those suggestions admissible. The format should be designed
to minimize the opportunities for a cheater to include unrelated information inside the ballot to
make it identifiable. For example, the content may be no longer than x characters. Or, for a U.S.
presidential election, proposed ballots could only contain names of U.S. citizens eligible to become
president. Or, the number of multiple questions in the same ballot should be limited and calibrated
so that particular combinations of answers are not likely to be unique. A proposed ballot that does
not conform to the election rules would not be accepted, and therefore could not even be part of
the search process described in 4.3. In other words, a ballot of that form would neither be counted
nor completely decrypted (since only the sum of credentials and ballots are actually decrypted).

This way, also a forced abstention attack can be neutralized: for the string to be part of the
search process, it must be in the set of voter-submitted and Authority-accepted ballots. But if
abstention is being forced, the ballot must not be a valid vote - which means that it cannot be
accepted by the Authority in first instance, and cannot be part of the search process.

While a forced abstention attack could then be neutralized, a short, admissible write-in may
still be unique and identifiable. These “short” write-ins, however, are only proposed as an election
design condition made possible by the cryptographic design which brings electronic elections closer
to physical elections. Still, the cryptographic design makes alternative election designs possible,
because ballots, in order to be counted, must be in the search set of the Authority - and in order
to be in that set they must have been approved by the Authority itself.

For example, it may be possible to have completely open-ended (identifiable) write-ins (which
may or may not be publicly decrypted to preserve receipt-freeness), or a combination of a countable
ballot part (to be tallied automatically, and with universal verifiability), and a non countable, write-
in part to be decrypted separately.

More precisely, it may be possible to split the non write-in and the write-in votes. Imagine
that the election design allows voters to cast either a non write-in ballots (e.g., n selections from
a list of candidates) or a mixed write-in + non write-in ballot (e.g., n− 1 selections from a list of
candidate, as well as a write-in candidate). At registration time the voter could opt to receive only
one credential (valid for the n vote) or two separate credentials (one valid only for a n − 1 vote
and the other valid only for a write-in vote). The three credentials are then used exactly as in the
scheme above - only, now, in a sense, three schemes are run in parallel, each scheme for a set of
credentials type (n, n− 1, and write-in). The three types of credentials would be encrypted under
different parameters so that they cannot be mixed. An external observer may not be able to know
which type of credentials the voter chose. In addition, if there is no initial relation between the n−1
list credential and the write-in credential given to the same voter, then also the relation between
the n − 1 choice and the write-in choice by the same voter cannot be detected after the mixing
phase. This means that even if the write-in part contained unique strings that made that part
identifiable (unless unique strings were made illegal through the election design discussed above, in
which case they would not be part of the search algorithm and could not even be decrypted), the
non-write vote cast by the same voter could not be associated to such identifiable part.13

13We are grateful to an anonymous referee for this suggestion.
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6 Implementation and Voter-Verified Ballots

It is beyond the scope of this paper to discuss physical implementations of its scheme, although we
have mentioned that the protocol may be instantiated in different physical configurations - from
Internet voting to voting kiosks.

It is by now widely accepted that no existing voting protocol can yet be securely deployed in an
insecure environment, such as one made of PC voting stations communicating via the Internet. In
this section, therefore, we only comment on two conditions necessary and sufficient to detect certain
types of election corruptions and attacks on implementations of the scheme. We then discuss the
possibility of voter-verified ballots.

We consider an attacker that can control k authorities, the machine from which the voter is
connecting to the Authority, and monitor all network traffic. Attempts by such attacker to interfere
with the voting process may be detected if the voter could independently know the real signature
of the Authority (thereby being able to verify the shares it receives and the content of the bulletin
board), and had access to a secure machine for all cryptographic computations (thereby being able
to verify the Authority’s signature and the correct encryption of the voter’s own messages).

Because our protocol does not rely on ad hoc physical assumptions, these two conditions could
be satisfied in several implementations, including voting kiosks approaches that may guarantee
secure computing and verification of the Authority’s signature. In such implementation, the kiosk
may also print out a receipt containing the message - ES(EV (CJ + Bt

J)) - that the voter wants to
see (and be counted) on the board. This printed receipt would not be directly humanly readable
(although it may also be presented in a way that it is). It is conceptually similar to the receipt
in [Cha02], in that the voter can verify that the code matches the code later appearing on the
public board (or election web site). This verifiability, however, is stronger than that guaranteed
by [Cha02]’s receipts, as well as by paper-only approaches, in that the voter can first verify that
the encryption is correct on any secure machine (in fact, a voter could calculate in advance what
her vote should look like even before entering the kiosk and voting, if she had already chosen the
randomizing encryption component and the ballot), and thereafter can recognize the presence of
her ballot in the list of submitted ballots (which is not possible with paper-based ballots). Even in
a kiosk application, the protocol does not lose its receipt-freeness: a voter could create and submit
several fake ballots while in the kiosk, and take the respective receipts out of the kiosk inside order
to cheat a coercer. Different hybrid combinations of electronic and paper ballots and receipts for
the voter as well as for the election Authority are therefore possible, making the scheme practical.

7 Concluding Remarks

We have presented a novel electronic voting scheme that achieves privacy, robustness, universal
verifiability, ease of use, and receipt freeness. The scheme can be used to cast different types of
ballots that include yes/no, multi-candidate, l out of t choices, as well as write-in ballots.

Our protocol contributes to the literature by presenting a scheme which guarantees receipt
freeness and uncoercibility without ad hoc physical assumptions and by addressing some of the
issues in existing, comparable protocols. Because our protocol relies on fewer physical constraints
to achieve its properties, it is more reliable, efficient, less relying on trusted equipment to avoid the
risk of vote buying, coercing, and force abstention, and can be deployed in a variety of physical
configurations, depending on needs and available tools (from completely electronic voting to paper-
based voting; from Internet voting to voting kiosks), which is a second, practical strength of this
protocol.

In addition, our protocol allows for flexible ballot formats to be used in receipt-free and universal
verifiable elections.

Because receipt-freeness is guaranteed without physical constraints, the private steps in the
protocol can be documented through voter-verified, even physical ballots, while the public steps
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can be stored (and therefore be auditable) on a public bulletin board, making the whole election
verifiable.

Finally, the protocol proposes a somewhat novel voting application of the homomorphic prop-
erties of certain cryptosystems, in which shares of credentials (that allow voters to cast ballots that
will be tallied) are combined by the voter to her own vote.
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Figure 1: Simplified conceptual view of the entities and information flows composing the election
scheme.
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A Building Blocks

A.1 Paillier Cryptosystem

Since the work of [GM84], several probabilistic encryption schemes have been proposed in the literature (see
[OU98], [NS97], [Pai99], and [DJ01]).

The security of these schemes is based on the difficulty of various types of ‘residuosity’ problems. A
message m is encrypted with a public component and a randomizing component. Only a ‘trapdoor’ allows
the owner of a private key to decrypt the ciphertext without knowing the randomizing component.

The trapdoor discrete logarithm mechanism that we use in our voting scheme is Paillier’s (see [Pai99]).
It can be described in the following way: set n to be an RSA modulus n = pq, where p and q are large
primes. Let g be some element of Z∗

n2 . Let λ(n) =lcm((q− 1)(p− 1)). Let the set Sn = u > n2|u = 1 mod n
be a multiplicative subgroup of integers modulo n2 so that a function L(u) = (u − 1)/n is clearly defined
∀u ∈ Sn. Then (n, g) will be the public parameters and λ(n) the private one. To encrypt a plaintext m < n,
one needs to choose a random r < n and calculate:

c = gmrn mod n2. (6)
To decrypt, one needs to compute:

m =
L(cλ mod n2)
L(gλ mod n2)

mod n. (7)

A.1.1 Self-Blinding and Homomorphic Encryption

The Paillier cryptosystem displays two properties that we use in our election scheme.
First, any Paillier ciphertext may be re-encrypted with a new random r without altering the plaintext.

More formally,

D(E(m)gnr mod n2) = m (8)
for ∀m ∈ Zn.
Second, it has additive homomorphic properties. Two encryption functions m → gmrn mod n2 and

m → gm+nrrn mod n2 are additively homomorphic on Zn, which means that, for example:

D(E(m1)E(m2) mod n2) = m1 + m2 mod n (9)
and

D(E(m1)m
2 mod n2) = m1m2 mod n (10)

for ∀m1,m2 ∈ Zn (see [Pai99]).
Below we denote applications of the second case informally as: E(m1)E(m2) = E(m1 + m2).

A.1.2 Threshold Paillier Cryptosystems

In threshold cryptosystems, the private key that decrypts a group of ciphertexts can be a secret shared by
several entities, so that the collaboration between a sub-set of them is necessary for decryption. This feature,
often adopted in electronic voting schemes, has been implemented in the Paillier cryptosystem by Baudron,
Fouque, Pointcheval, Poupard and Stern [BFP+01] and Fouque, Poupard, and Stern [FPS00].

We use [BFP+01]’s threshold decryption model, in which different entities use a distributed key gen-
eration algorithm such as [Sha79]’s to create a public key PK, secret shares SKi, and the verification keys
VK, VKi. Anybody can encrypt a message using the public key, but to decrypt a ciphertext c a combiner
must send c to the servers, who use SKi, VK, and VKi to output partial decrypted shares ci. The combiner
recovers the original plaintext only if a sufficient number of partial decryptions are actually valid.

A.2 Bulletin Board

Chaum [Cha81] introduced the concept of a bulletin board, a public broadcast channel with memory where
a party may write information that any party may read. Since then, bulletin boards have been often used
in election schemes. All communications with the bulletin board are public and therefore can be monitored.
In the application we consider, no party can erase any data.

22



A.3 Mix-nets

A re-encryption mix network [Cha81] is a distributed protocol that takes as input a set of messages, m =
m1, ...,mn and returns an output consisting of the re-encrypted messages ms, permuted according to a secret
function φ: m’ = m�

φ(1), ...,mφ(n). Thanks to this permutations it is not possible to associate a given m to
any specific m�.

Several efficient and secure (in the sense that the claimed permutations are actually operated) mix-net
protocols have been proposed in the literature, such as [Nef01], [FS01], and [JJR02]. In particular, [Gro03]
has presented an efficient scheme for homomorphic encryption schemes (such as Paillier) that can be used
as a building block for our protocol.
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B Proof of Knowledge that Two Ciphertexts are Encryption of

the Same Plaintext

[BFP+01] provide an interactive zero-knowledge proof of the equality of plaintexts under Paillier encryption.
Under their scheme, the prover can convince the verifier that, given p encryptions ci = gm

i r
nj

j mod n2
j , the

various cj ’s encrypt the same message m. We use a variation of this proof in our scheme - see below.
Based on their proof, we provide here the steps each authority has follow to prove to a voter that the

share of credential she has received from it is also published under a different encryption scheme on the
bulletin board.

Above we defined a share of credential created by a given authority as c. Imagine that nV = pV qV and
nC = pCqC are the k-bit RSA moduli used respectively for the votes public key PKV and the credentials
public key PKC . Then, define:

fV = gc
V rnV

V mod n2
V (11)

and

fC = gc
CrnC

C mod n2
C (12)

as two ciphertexts corresponding to the same λ-bit plaintext c, where gV , gC are public components de-
rived from nV = pV qV and nC = pCqC respectively, as described in Section A.1, and rV , rC are randomizing
components.

We look for a zero-knowledge proof that fV and fC are encryption of the same c. Assume that c lies in
an interval [0, 2λ[ and that the parameters A, t, λ are such that 1/At and 2λ − kA are negligible. Then:

1. The authority picks at random ρ ∈ [0, 2k[, sC ∈ Z∗
n2

C
, and sV ∈ Z∗

n2
V
, computes uC = gρ

CsnC
C mod n2

C

and uV = gρ
V snV

V mod n2
V , and commits to uV , uC .

2. The voter picks a random challenge d in [0, A[ and sends it to the authority.

3. The authority computes z = ρ + cd, wC = sCrd
C mod nC , and wV = sV rd

V mod nV , and sends
z, wC , wV to the voter.

4. The voter checks that z ∈ [0, 2k[, gz
CwnC

C = uCfd
C mod n2

C , and gz
V wnV

V = uV fd
V mod n2

V .

After t iterations of this protocol, the probability that an honest authority is comparing fC,v that encrypt
the same c is overwhelming, while the probability that fC and fV satisfy the steps above while fC encrypts
c1 and ecV encrypts c2 and c1 �= c2 is negligible. The proofs follow directly [BFP+01]’s proof and are not
reported here.

Note that under the Fiat-Shamir scheme [FS87], it is possible to replace the interaction of the verifier
with a hash. Security would be guaranteed under the random-oracle. However, this proof would also be
transferable. To reduce the number of interaction without producing a transferrable proof we will assume
the existence of a designated-verifier proof [JSI96] of the scheme above, as in [HS00], [BFP+01], and [JJ02].
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C Sketch on El Gamal Variation

The El Gamal cryptosystem [ElG84] has properties in common with the Paillier’s cryptosystem that we have
applied in our scheme - in particular, self-blinding and homomorphism. So, we may replace in Section 4
Paillier encryption with El Gamal encryption at the cost of reducing the overall efficiency of the scheme.
The advantage, however, would lie in the following consideration: take two primes p and q and a generator g
of Gq, which are the parameters of the system. The election authorities can then select two different private
keys, s1 and s2, and use the corresponding public keys h = gs1 and h = gs2 for the votes and credentials
respectively (similarly to EV and EC in the terminology we used for the Paillier’s system). The difference is
that those keys can be part of the same domain - hence credential shares created by the authorities do not
need to be smaller than the domain of the cryptosystem: they can be larger than the domain, and still the
evaluation in Step 2 of the Tallying phase (see Section 4.3) is possible, since the remainders are in the same
domain, mod q. The calculation in mod q, however has the advantage of revealing even less information
about the underlying parameters bs and cs.
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