
H o w to P r e v e n t B u y i n g of Votes in C o m p u t e r
E lec t ions

Valtteri Niemi I and Ari Renvall 2.

Department of Mathematics and Statistics, University of Vaasa, 65101 Vaasa,
Finland

v a l t t e r i , niemi~uwasa. I i
2 Department of Mathematics, University of Turku, 20500 Turku, Finland

a r i . renvall@utu, f i

Abs t rac t . We present a new voting scheme. Our scheme is the first
one which satisfies both of the following properties: each voter can check
that her voting strategy is counted correctly but she cannot prove the
voting strategy to anybody except the full coalition of all interest groups
involved in the voting. The latter property means that buying of votes is
not possible, since the potential buyer does not know whether she gets
what she is paying for!

1 I n t r o d u c t i o n

Computerized elections and votings in general constitute a main application area
of cryptographic protocols. Many elegant voting protocols exist [1], [2], [6], [8],
[9] and they satisfy the most important requirements including secrecy of votes

!,
and correctness of results. Of course, there are many differences':in type and level
of security, efficiency etc.

However, all these protocols are unsatisfactory in one sense: they allow buying
of votes. In traditional voting systems this is prevented in a simple manner, i.e.
the voter cannot prove to a potential buyer that she/he indeed cast the vote as
agreed. In all systems mentioned above any voter can invite anybody to witness
casting of vote by remote terminal. The voter can even let the buyer east the
vote instead of her/him.

It can be argued how severe this problem is. Someone might have the opinion
that buying of votes would be very rare and has no real impact on the result.
We just want to point out that if it is believed that nobody bothers to buy votes
in large scale then it might be reasonable to believe also that nobody bothers
to corrupt a neutral trusted center with big money. In the latter case there is
hardly any need for complicated protocols at all, a simple encryption of votes
and decryption by a reliable center would be secure enough.

In [7] the problem was attacked with partial success. A detailed protocol was
constructed with one essential shortcoming: it was assumed that one fixed party
involved is not interested in buying votes. In the end of [7] an idea was given for

* Research supported by The Academy of Finland, grant 11281

165

a protocol without this shortcoming. The present paper develops the idea and
we construct a protocol which prevents the voter fl'om proving her/his voting
strategy to anybody.

The basic idea is to add a preliminary registration of voters. I t takes place
in physically controlled circumstances and during it each voter gets some in-
format ion that is needed in the actual voting. This information can, of course,
be given to anybody but there is no way of checking its correctness. Indeed,
the correctness is proved to the voter in zero-knowledge in a secure and private
registration booth.

At first glance, it seems that a registration that requires everybody to go
to some place destroys the whole idea of computerized voting. However, this is
needed very seldom and only once for many different votings. Also, it is clear
that some kind of physical identification of voters is needed anyway.

The paper is structured as follows. Next section gives some basic concepts
and an informal description of the protocol. Section 3 contains the protocol while
it is discussed in section 4.

2 A n I n f o r m a l D e s c r i p t i o n o f t h e P r o t o c o l

In this section we discuss the main ideas of our voting scheme. Remember that
the goal is to prevent the possibility to prove one's voting strategy. Denote the
voters by V/, their votes by vi and the corresponding voting strategy by [vii.

In tradit ional balloting booth elections connection between Vi and vl is physi-
cally broken by scrambling Vl with a number of other votes. As a consequence 89
cannot prove which is her vote. Therefore in this setting we may choose simply
vi = [vii. In computerized secret ballot eleetiqns this is obviously not possible.
In cominon solutions (like [1], [2], [6], [8], [9]):;the voting strategy is encrypted
in some way or the vote is cast anonymously together with an eligibility token.
However, in all schemes presented so far the voter has always been able to open
the encryption or to prove that a given eligibility token is the one she used. This
means that the voter has been able to prove her voting strategy.

In our scheme the vote is also essentially of the form vi = ([v i] , e i) , where ei
is an eligibility token. But we construct the token in such a way that V/ can not
prove the validity of ei. In order to do this we use a special type of permutat ion.

D e f i n i t i o n A permutation f is a zero-way permutat ion, if there exists a trap-
door s and an injective function g such that

1. both f and f - 1 can be efficiently computed if one knows s.
2. neither f nor f - 1 can be efficiently computed if one knows only g(s).

It follows from the definition, that s cannot be computed from g(s). Thus,
one can commit to a zero-way permutat ion by disclosing g(s).

It seems plausible to conjecture that zero-way permutat ions exist if t rapdoor
permutat ions exist. For instance, if f -- f l o f~-i where f l and f~ are t rapdoor

166

permutat ions over a set X, then computing both f and f - 1 requires to invert
either f l or f2. There are also other methods to obtain (candidate) zero-way
permutat ions.

The eligibility token of our scheme is now just an element of a set f - l (y)
where f : X ~ X is a zero-way permutat ion chosen by the government of the
voting and Y C X is a suitable set. Of course, it must be computat ional ly
infeasible to generate valid tokens without the help of C. For this reason, Y
should be small enough. On the other hand, Y should not be too small in order
to guarantee that no two voters could get identical tokens. For example, Y could
consist of all such binary strings that contain a long sequence of zeros in the
middle while X contains all strings (of fixed length).

The idea of our scheme is that in a preliminary registration phase C gives
each legit imate voter one valid token. The voter gets only a zero-knowledge
proof of the validity of her token and can thus not transfer her conviction of the
validity.

In the voting phase the voters are now allowed to cast as many votes as they
wish. However, they can construct only one vote with a valid token (multiple
use of same token is not allowed).

In the final phase of the scheme C computes the tally of the election. C
collects the votes corresponding to the same strategy and then computes the
number of valid tokens associated to them. This is done so that the the validity
of any single token is never checked. Thus, the number of possible false votes
with invalid tokens will be counted but no-one will find out which votes they
a r e .

If we perform the protocol the way we described it, one severe problem arises.
Even if we can not prove our voting strategy to outsiders, we can prove it to C (in
fact C could find it out by itself). We solve this by dividing C to subgovernments
C t , . . . ,C,~. For example, all the candidates (or their representatives) might act
as subgovernments, as in [6]. The basic idea is that every potential interest group
can trust at least one of the subgovernments. (The reliable one may be different
for each interest group.)

The zero-way fuction f must then be constructed in such a way that each Cj
has a secret share sj needed to compute f and f - 1 . The problem of generating
a valid eligibility token in the registration phase is then solved by applying a
protocol for mult iparty computat ion of [4]. The participants of the protocol are
the voter Vi and every Cj. As a result Vi obtains a valid token as a private output .
If we modify the protocol slightly Vi cannot prove to any proper subcolleetion
of { C 1 , . . . , C ~ } what the output was.

In the final phase where the tally of the election is computed we need to
apply similar mult iparty computat ion protocol.

3 T h e P r o t o c o l

In this section we give a more detailed description of our protocol. The protocol
consists of four phases. For simplicity, we call subgovernments Cj candidates in
the sequel.

167

3.1 P r e l i m i n a r y P h a s e

This phase occurs (e.gl) once in a year. During it candidates make necessary
preparat ions for each (possible) voting of the year. The idea is to build all the
computat ional circuits needed later in the year.

1. Candidates agree and fiX some family of zero-way and t rapdoor permuta-
tions. For instance, a modulus p and a generator g of Z~ is chosen for per-
mutat ions based on discrete logarithm. (This example is also used later in
the protocol but other permutat ions like RSA-based ones could be chosen
as well.)

2. For each future voting, every candidate Cj (j = 1,..., n) generates a random
number sj. They also commit to these numbers by publishing gSj (rood p).
The product s = sl '- 9 s~, serves as the secret key of the zero-way permuta-
tion f : x H x* (mod p), see [3], [7]. No proper subset of candidates can
compute either f or f - 1 .

3. Candidates perform a. multiparty computa.tion to obtain the element g" (rood p).
This is used as their public key in the E1 Gamal cryptosystem. (For details
of the system, consult [5] or some standard textbook , e.g. [10].) Also here
s serves as the t rapdoor information. The resulting encryption function is
denoted by E and decryption function by D.

3.2 R e g i s t r a t i o n P h a s e

In this phase each voter obtains an eligibility token for each future voting. (Of
course, the set of votings for which token is given may vary with respect to, e.g.
age and address of the voter.) This phase occurs also once in a year.

1. The voter is physically identified.
2. She/he goes into a physically secured booth that has private communicat ion

lines to each candidate.
3. For each voting, candidates and the voter execute a mult iparty computa t ion

which gives a private output to the voter. The output is a number f (x) =
x* (rood p) where x is of a very special form. More specifically, assume
p contains 4n bits. Then x is OK if x = Z l . . . z4n where z/ = 0 for i =
n + l , n + 2 , . . . ,an}. (Other forms may do as well.) The number f (x) is called
an eligibility token. It is important that the voter cannot prove validity of
the token to anybody. Tha t means that the mult iparty protocol of [4] must
be modified in the following way:
(a) Each candidate chooses random numbers xj and bj. Her private input
for the protocol consists of x j , bj and sj.
(b) Each candidate sends (privately) by to the voter. At the same t ime she
gives a private zero-knowledge proof that convinces the voter of the correct-
ness of bj. This can be easily added to the protocol of [4] since the candidate

168

must commit to bj anyway using some bit commitment scheme. (We do not
go into the details of this modification, since description of the protocol in
[4] would be needed and it is quite lengthy.)
(c) Output of the computation is f (x) | bl | | bn where x is obtained
by xoring all the xj's and adding the 0-sequence in the middle. The voter
obtains the token by xoring the output by bl @ . . . @ b~. She has no way
of proving the value of f (x) to anybody (except to the full coalition of all
candidates). On the other hand, the probability that a random number is a
valid token is 2 -2".

3.3 V o t i n g P h a s e

During each voting everybody has a chance to send (possibly anonymously)
messages to a public file F. Each voter sends E([vi], f(x)) where a legitimate
vote is encrypted by the public key of that particular voting. If the message does
not show up in F the voter simply sends it again. It is worth noting that nobody
is prevented from sending false messages anyhow.

3.4 C o u n t i n g P h a s e

After every interested and legitimate voter is happy with the public file F can-
didates perform a multiparty computation to calculate the tally of the voting.
The computation has a public input F and private inputs 8j.

1. Entries in F are decrypted and the resulting list of pairs of the form (voting
strategy, token) is used as a secret input in the next step.

2. For each possible voting strategy the number of valid tokens associated to
it is counted. This can be done, since all candidates together can compute
f - l - i m a g e of the token and check that it has the 0-sequence in the middle.
It is important that the result of the validity check is solely used as an
intermediate output and a secret input for the final counting circuit which
gives a non-negative integer as an output.

3. Tally of the voting is the public output of the computation and anybody can
check the correctness of the computation as explained in [4].

Nobody (except a full conspiracy of all candidates) obtains any information
of individual entries in the public file F other than what can be derived from
the tally alone.

Note that a voter may join a valid token to several voting strategies! There
are several ways of preventing this. For example, all different strategies with the
same token could be rejected (as a penalty for at tempted misuse of the protocol).
Another possibility is to check (of course, inside the multiparty computation)
which of the pairs with the same token came first (or last if we want to allow a
last-minute change of opinion).

169

4 S o m e R e m a r k s

Our protocol uses heavily mult iparty computations. However, operations needed
are quite simple like modular exponentiations or counting of valid tokens. Tha t
means the number of gates in the circuits is not extremely large. On the other
hand, the (potentially enormous) number of false votes raises the complexity of
the protocol considerably although the growth is linear. Altogether, our protocol
is clearly impractical. Special-purpose mult iparty protocols could make a change
in this mat ter . The main goal for future research is to construct an efficient
protocol that provides the same features as our protocol.

Many minor modifications can be made in the protocol. In small scale votings
it is quite possible that voters themselves act as subgovernments. Then the first
two phases can be combined.

As already mentioned, there is much freedom in choosing the proper zero-way
and t rapdoor permutations. The main criterion is their suitability for distributed
computat ions with private inputs. Also, it is by no means necessary that the
chosen zero-way and trapdoor permutat ions are linked anyhow.

Encryption of (strategy,token)-pairs is needed since otherwise an active in-
truder could simply change the strategy and leave the token as it is. However,
it could be skipped if each voter, gets several tokens for each voting and these
tokens are used for coding the voting strategy. More specifically, a fixed number
of 0-tokens (resulting from binary strings with long 0-sequences as above) and
1-tokens (resulting from strings with 1-sequences) is given to each voter. Nobody
except the whole collection of candidates can make any difference either between
tokens and non-tokens or between 0-tokens and 1-tokens. The voting strategy
is coded by the or of the tokens in such a way tha t even if the s trategy of
some voter is guessed the order of the tokens cannot be changed to produce
a code for some other strategy. (For example, first tokens code the s trategy in
some straight-forward numbering system and most of the tokens are put in one
of many possible orders that are associated to this particular strategy before-
hand.) Thus, an active intruder could destroy the message at best and in case it
happens, the voter can try again, as explained above.

R e f e r e n c e s

1. J. Benaloh: Verifiable secret-ballot elections, Ph.D. thesis, Yale university, Technical
report 561, (1987).

2. D. Chaum: Untraceable electronic mail, return address, and digital pseudonyms,
Comm. of ACM, 24 (1981), pp. 84-88.

3. D. Chaum: Zero-knowledge undeniable signatures, Proc. E U R O C R Y P T '90,
Springer LNCS 473, (1991), pp. 458-464.

4. D. Chaum, I. Damgs J. van de Graaf: Multiparty computations ensuring privacy
of each party's input and correctness of the result, Proe. CRYPTO '87, Springer
LNCS 293 (1988), pp. 87-119.

5. T. E1 Gamal: A public key eryptosystem and signature scheme based on discrete
logarithms, IEEE Transactions on Information Theory IT-31 (1985), pp. 469-473.

170

6. K. Iversen: A cryptographic scheme for computerized general elections, Proc.
CRYPTO '91, Springer LNCS 576 (1992), pp. 405-419.

7. V. Niemi, A. Renvall: Cryptographic protocols and voting, Proc. Results and Trends
in Theoretical Computer Science, Springer LNCS 812 (1994), pp. 307-316.

8. H. Nurmi, A. Salomaa, L. Santean: Secret ballot elections in computer networks,
Computers and Security 10 (1991), pp. 553 560.

9. C. Park, K. Itoh, K. Kurosawa: Efficient anonymous channel and all /nothing election
scheme, Proc. E U R O C R Y P T '93, Springer LNCS 765 (1994), pp. 248-259.

10. A. Salomaa: Public-Key Cryptography, Springer-Verlag Berlin Heidelberg 1990.

