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Abs t rac t .  We present a new voting scheme. Our scheme is the first 
one which satisfies both of the following properties: each voter can check 
that her voting strategy is counted correctly but she cannot prove the 
voting strategy to anybody except the full coalition of all interest groups 
involved in the voting. The latter property means that buying of votes is 
not possible, since the potential buyer does not know whether she gets 
what she is paying for! 

1 I n t r o d u c t i o n  

Computerized elections and votings in general constitute a main application area 
of cryptographic protocols. Many elegant voting protocols exist [1], [2], [6], [8], 
[9] and they satisfy the most important requirements including secrecy of votes 

!, 
and correctness of results. Of course, there are many differences':in type and level 
of security, efficiency etc. 

However, all these protocols are unsatisfactory in one sense: they allow buying 
of votes. In traditional voting systems this is prevented in a simple manner, i.e. 
the voter cannot prove to a potential buyer that she/he indeed cast the vote as 
agreed. In all systems mentioned above any voter can invite anybody to witness 
casting of vote by remote terminal. The voter can even let the buyer east the 
vote instead of her/him. 

It can be argued how severe this problem is. Someone might have the opinion 
that buying of votes would be very rare and has no real impact on the result. 
We just want to point out that if it is believed that nobody bothers to buy votes 
in large scale then it might be reasonable to believe also that nobody bothers 
to corrupt a neutral trusted center with big money. In the latter case there is 
hardly any need for complicated protocols at all, a simple encryption of votes 
and decryption by a reliable center would be secure enough. 

In [7] the problem was attacked with partial success. A detailed protocol was 
constructed with one essential shortcoming: it was assumed that one fixed party 
involved is not interested in buying votes. In the end of [7] an idea was given for 
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a protocol without this shortcoming. The present paper  develops the idea and 
we construct a protocol which prevents the voter fl'om proving her/his  voting 
strategy to anybody. 

The basic idea is to add a preliminary registration of voters. I t  takes place 
in physically controlled circumstances and during it each voter gets some in- 
format ion that  is needed in the actual voting. This information can, of course, 
be given to anybody but there is no way of checking its correctness. Indeed, 
the correctness is proved to the voter in zero-knowledge in a secure and private 
registration booth. 

At first glance, it seems that  a registration that  requires everybody to go 
to some place destroys the whole idea of computerized voting. However, this is 
needed very seldom and only once for many different votings. Also, it is clear 
that  some kind of physical identification of voters is needed anyway. 

The paper is structured as follows. Next section gives some basic concepts 
and an informal description of the protocol. Section 3 contains the protocol while 
it is discussed in section 4. 

2 A n  I n f o r m a l  D e s c r i p t i o n  o f  t h e  P r o t o c o l  

In this section we discuss the main ideas of our voting scheme. Remember  that  
the goal is to prevent the possibility to prove one's voting strategy. Denote the 
voters by V/, their votes by vi and the corresponding voting strategy by [vii. 

In tradit ional balloting booth elections connection between Vi and vl is physi- 
cally broken by scrambling Vl with a number of other votes. As a consequence  89 
cannot prove which is her vote. Therefore in this setting we may choose simply 
vi = [vii. In computerized secret ballot eleetiqns this is obviously not possible. 
In cominon solutions (like [1], [2], [6], [8], [9]):;the voting strategy is encrypted 
in some way or the vote is cast anonymously together with an eligibility token. 
However, in all schemes presented so far the voter has always been able to open 
the encryption or to prove that  a given eligibility token is the one she used. This 
means that  the voter has been able to prove her voting strategy. 

In our scheme the vote is also essentially of the form vi = ( [ v i ] , e i ) ,  where ei 
is an eligibility token. But we construct the token in such a way that  V/ can not 
prove the validity of ei. In order to do this we use a special type of permutat ion.  

D e f i n i t i o n  A permutation f is a zero-way permutat ion,  if there exists a trap- 
door s and an injective function g such that 

1. both f and f - 1  can be efficiently computed if  one knows s. 
2. neither f nor f - 1  can be efficiently computed if one knows only g(s). 

It  follows from the definition, that  s cannot be computed from g(s). Thus, 
one can commit  to a zero-way permutat ion by disclosing g(s). 

It seems plausible to conjecture that  zero-way permutat ions  exist if t rapdoor  
permutat ions  exist. For instance, if f -- f l  o f~-i where f l  and f~ are t rapdoor  
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permutat ions  over a set X,  then computing both f and f - 1  requires to invert 
either f l  or f2. There are also other methods to obtain (candidate) zero-way 
permutat ions.  

The eligibility token of our scheme is now just an element of a set f - l (y )  
where f : X ~ X is a zero-way permutat ion chosen by the government of the 
voting and Y C X is a suitable set. Of course, it must be computat ional ly  
infeasible to generate valid tokens without the help of C. For this reason, Y 
should be small enough. On the other hand, Y should not be too small in order 
to guarantee that  no two voters could get identical tokens. For example,  Y could 
consist of all such binary strings that  contain a long sequence of zeros in the 
middle while X contains all strings (of fixed length). 

The idea of our scheme is that  in a preliminary registration phase C gives 
each legit imate voter one valid token. The voter gets only a zero-knowledge 
proof  of the validity of her token and can thus not transfer her conviction of the 
validity. 

In the voting phase the voters are now allowed to cast as many votes as they 
wish. However, they can construct only one vote with a valid token (multiple 
use of same token is not allowed). 

In the final phase of the scheme C computes the tally of the election. C 
collects the votes corresponding to the same strategy and then computes the 
number of valid tokens associated to them. This is done so that  the the validity 
of any single token is never checked. Thus, the number of possible false votes 
with invalid tokens will be counted but no-one will find out which votes they 
a r e .  

If we perform the protocol the way we described it, one severe problem arises. 
Even if we can not prove our voting strategy to outsiders, we can prove it to C (in 
fact C could find it out by itself). We solve this by dividing C to subgovernments 
C t , . . .  ,C,~. For example, all the candidates (or their representatives) might act 
as subgovernments,  as in [6]. The basic idea is that  every potential  interest group 
can trust  at least one of the subgovernments. (The reliable one may be different 
for each interest group.) 

The zero-way fuction f must then be constructed in such a way that  each Cj 
has a secret share sj needed to compute f and f - 1 .  The problem of generating 
a valid eligibility token in the registration phase is then solved by applying a 
protocol for mult iparty computat ion of [4]. The participants of the protocol are 
the voter Vi and every Cj. As a result Vi obtains a valid token as a private output .  
If  we modify the protocol slightly Vi cannot prove to any proper subcolleetion 
of { C 1 , . . . , C ~ }  what the output  was. 

In the final phase where the tally of the election is computed we need to 
apply similar mult iparty computat ion protocol. 

3 T h e  P r o t o c o l  

In this section we give a more detailed description of our protocol. The protocol 
consists of four phases. For simplicity, we call subgovernments Cj candidates in 
the sequel. 
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3.1 P r e l i m i n a r y  P h a s e  

This phase occurs (e.gl) once in a year. During it candidates make necessary 
preparat ions for each (possible) voting of the year. The idea is to build all the 
computat ional  circuits needed later in the year. 

1. Candidates agree and fiX some family of zero-way and t rapdoor  permuta-  
tions. For instance, a modulus p and a generator g of Z~ is chosen for per- 
mutat ions based on discrete logarithm. (This example is also used later in 
the protocol but other permutat ions like RSA-based ones could be chosen 
as well.) 

2. For each future voting, every candidate Cj (j  = 1,..., n) generates a random 
number sj.  They also commit  to these numbers by publishing gSj (rood p). 
The product s = sl '-  9 s~, serves as the secret key of the zero-way permuta-  
tion f : x H x* (mod p), see [3], [7]. No proper subset of candidates can 
compute either f or f - 1 .  

3. Candidates perform a. multiparty computa.tion to obtain the element g" (rood p). 
This is used as their public key in the E1 Gamal  cryptosystem. (For details 
of the system, consult [5] or some standard textbook , e.g. [10].) Also here 
s serves as the t rapdoor information. The resulting encryption function is 
denoted by E and decryption function by D. 

3.2 R e g i s t r a t i o n  P h a s e  

In this phase each voter obtains an eligibility token for each future voting. (Of 
course, the set of votings for which token is given may vary with respect to, e.g. 
age and address of the voter.) This phase occurs also once in a year. 

1. The voter is physically identified. 
2. She/he goes into a physically secured booth that  has private communicat ion 

lines to each candidate. 
3. For each voting, candidates and the voter execute a mult iparty computa t ion  

which gives a private output  to the voter. The output  is a number f ( x )  = 
x* (rood p) where x is of a very special form. More specifically, assume 
p contains 4n bits. Then x is OK if x = Z l  . . .  z4n where z/ = 0 for i = 
n + l ,  n + 2 , . . .  ,an}. (Other forms may do as well.) The number f ( x )  is called 
an eligibility token. It is important  that  the voter cannot prove validity of 
the token to anybody. Tha t  means that  the mult iparty protocol of [4] must 
be modified in the following way: 
(a) Each candidate chooses random numbers xj and bj. Her private input 
for the protocol consists of x j ,  bj and sj.  
(b) Each candidate sends (privately) by to the voter. At the same t ime she 
gives a private zero-knowledge proof that  convinces the voter of the correct- 
ness of bj. This can be easily added to the protocol of [4] since the candidate 
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must commit to bj anyway using some bit commitment scheme. (We do not 
go into the details of this modification, since description of the protocol in 
[4] would be needed and it is quite lengthy.) 
(c) Output  of the computation is f (x)  | bl |  | bn where x is obtained 
by xoring all the xj's and adding the 0-sequence in the middle. The voter 
obtains the token by xoring the output by bl @ . . .  @ b~. She has no way 
of proving the value of f (x)  to anybody (except to the full coalition of all 
candidates). On the other hand, the probability that a random number is a 
valid token is 2 -2".  

3.3 V o t i n g  P h a s e  

During each voting everybody has a chance to send (possibly anonymously) 
messages to a public file F. Each voter sends E([vi], f(x)) where a legitimate 
vote is encrypted by the public key of that particular voting. If the message does 
not show up in F the voter simply sends it again. It is worth noting that nobody 
is prevented from sending false messages anyhow. 

3.4 C o u n t i n g  P h a s e  

After every interested and legitimate voter is happy with the public file F can- 
didates perform a multiparty computation to calculate the tally of the voting. 
The computation has a public input F and private inputs 8j. 

1. Entries in F are decrypted and the resulting list of pairs of the form (voting 
strategy, token) is used as a secret input in the next step. 

2. For each possible voting strategy the number of valid tokens associated to 
it is counted. This can be done, since all candidates together can compute 
f - l - i m a g e  of the token and check that it has the 0-sequence in the middle. 
It is important  that the result of the validity check is solely used as an 
intermediate output and a secret input for the final counting circuit which 
gives a non-negative integer as an output. 

3. Tally of the voting is the public output of the computation and anybody can 
check the correctness of the computation as explained in [4]. 

Nobody (except a full conspiracy of all candidates) obtains any information 
of individual entries in the public file F other than what can be derived from 
the tally alone. 

Note that  a voter may join a valid token to several voting strategies! There 
are several ways of preventing this. For example, all different strategies with the 
same token could be rejected (as a penalty for at tempted misuse of the protocol). 
Another possibility is to check (of course, inside the multiparty computation) 
which of the pairs with the same token came first (or last if we want to allow a 
last-minute change of opinion). 
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4 S o m e  R e m a r k s  

Our protocol uses heavily mult iparty computations.  However, operations needed 
are quite simple like modular exponentiations or counting of valid tokens. Tha t  
means the number of gates in the circuits is not extremely large. On the other 
hand, the (potentially enormous) number of false votes raises the complexity of 
the protocol considerably although the growth is linear. Altogether, our protocol 
is clearly impractical.  Special-purpose mult iparty protocols could make a change 
in this mat ter .  The main goal for future research is to construct an efficient 
protocol that  provides the same features as our protocol. 

Many minor modifications can be made in the protocol. In small scale votings 
it is quite possible that  voters themselves act as subgovernments. Then the first 
two phases can be combined. 

As already mentioned, there is much freedom in choosing the proper zero-way 
and t rapdoor  permutations.  The main criterion is their suitability for distributed 
computat ions  with private inputs. Also, it is by no means necessary that  the 
chosen zero-way and trapdoor permutat ions are linked anyhow. 

Encryption of (strategy,token)-pairs is needed since otherwise an active in- 
truder could simply change the strategy and leave the token as it is. However, 
it could be skipped if each voter, gets several tokens for each voting and these 
tokens are used for coding the voting strategy. More specifically, a fixed number  
of 0-tokens (resulting from binary strings with long 0-sequences as above) and 
1-tokens (resulting from strings with 1-sequences) is given to each voter. Nobody 
except the whole collection of candidates can make any difference either between 
tokens and non-tokens or between 0-tokens and 1-tokens. The voting strategy 
is coded by the or of the tokens in such a way tha t  even if the s trategy of 
some voter is guessed the order of the tokens cannot be changed to produce 
a code for some other strategy. (For example, first tokens code the s trategy in 
some straight-forward numbering system and most  of the tokens are put in one 
of many possible orders that  are associated to this particular strategy before- 
hand.) Thus, an active intruder could destroy the message at best and in case it 
happens, the voter can try again, as explained above. 
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